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ABSTRACT

In a continually changing environment, a simulation stu
that integrates the activities of data collection, mod
analysis, and decision making has some distin
advantages. In this paper we look at simulation proje
dynamics from a high-level and examine some ways 
integrating these activities. From this perspective, t
processes used to drive a simulation model are forecas
environmental changes, and the parameters for model
these processes are viewed as leading indicators. A sim
decision-making scenario having some of th
characteristics of semiconductor manufacturing is used
illustrate the ideas.

1 INTRODUCTION

From a high-level perspective, a simulation study consi
of data collection, model analysis, and decision makin
Each of these is generally viewed as a separate activity,
interactions of which are usually not considered.  The g
of this paper is to provide a framework for integratin
these activities, with the aim of producing better decisio
The particular example we develop is motivated by t
problem of tool set selection in semiconducto
manufacturing, but the ideas generalize to any situat
where simulations are used to make decisions in a rap
changing environment.

The following simple decision-making scenario 
used for illustration. Consider the situation where we mu
make a choice between two alternative syste
configurations sometime in the future. The system 
currently configured as A, and by some future date, Td ,
(which, for simplicity, we will assume is fixed) we mus
decide whether to switch the configuration to B or to
maintain configuration A. We would like to choose the
configuration that will maximize the expected performan
of the system (e.g. profits) over a finite time horizon [Td,
Th], conditioned on the history of the system up to time Td.
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Figure 1 shows a timeline of this decision process. T0

represents the current time.

Time
T0 Td Th

ConfigurationA Switch toB?

Performance

Figure 1:  Timeline of the decision process.

We will make the decision between configurations A
and B based on the results of a simulation study.  The
study (data collection, simulation execution, and outpu
analysis) typically requires large amounts of time, on the
order of weeks or months.  The current state of practic
tends to separate data collection from the other tasks.  I
other words, during the first stage of the study, say from
T0 to Tsim, data is collected or a data base is updated an
queried to parameterize the model.  (See Figure 2.
Simulation execution and output analysis are performed
from Tsim to Td, at which point the decision is made. This
means that the decision is based only on observations 
the real world up to time Tsim, which may be some time
before Td.

Under the presumption that the quality of the
decision increases with the amount of real-world data
there is a tendency to delay simulation execution and
output analysis (and hence the decision) as long a
possible. We believe there is value in having some
information about the decision earlier than Td. For
example, if early conditions look favorable, we may wish
to expedite the decision.  If conditions are less favorable
we may wish to delay the decision and search for othe
alternatives. In particular, we would like to take into
account conditions right up to time Td.
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Time
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collect
data simulate
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Figure 2:  Revised timeline of the decision process.

A sequential approach to analysis is cumbersome if 
desire up-to-date information about the decision 
conditions change over the interval T0 to Td.  We are
required to repeatedly parameterize and execute 
simulation model.  An alternative is to make multiple run
of the simulation model at the beginning of the study (i.
at time T0) using a range of parameter values.  W
calculate various “leading indicators” (e.g. estimate
demand rate) over the course of each sample path, u
simulated time Td.  Then at any time Ti between T0  and Td,
we can construct a regression model to pred
performance over the interval [Td, Th] based on the values
of the leading indicators over the interval [T0, Ti].  By
calculating the actual values of the leading indicators fro
the real-world data, we can predict the expect
performance, conditional on the environment up to time Ti.
The idea is similar to response surface methodologies 
predicting simulation results, but for input processes rath
than decision variables.

A difficulty is deciding how to select the paramete
values to use for the simulation runs at time T0.  One
might sample from an appropriate posterior distributio
function, given any available information.  Anothe
difficulty is choosing appropriate leading indicators
When there is no dependency in the input process, 
indicators can be functions of the current system state a
the parameter values used to generate the sample p
(The real-world indicators would use estimates of th
parameters.)  When there is dependency, the indicat
can also be functions of the history of the system up
the current time.

We hope to make these ideas more concrete with 
example described in the next section.  We describe h
the standard approach and the leading indicato
methodology can be applied to this example and comp
the quality of decisions made with each methodology 
various time points between T0 and Td.

2 EXAMPLE:  TOOL SELECTION IN A
SEMICONDUCTOR FAB

We consider a simple example that has some of 
characteristics typical of the semiconductor industr
This industry is characterized by highly uncertain dema
for products, extremely expensive equipment, and lo
lead times for ordering equipment.  The economic li
cycle of a new product may only be a matter of seve
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months and consists of a ramp-up phase, a mature phas
and a ramp-down phase.  (See Figure 3.)  Productio
strategies may be build-to-order since inventory rapidly
becomes obsolete.

Product
Demand

Time

ramp-up

mature

ramp-down

Figure 3:  Economic life cycle of a new product.

In this example the manufacturer has started to
experience demand for a new product, at the beginning o
its ramp-up phase.  The factory has some existing capaci
for manufacturing the new product, however by time  Td

the manufacturer  must decide whether to order anothe
tool set for the factory or to make do with the existing
equipment.  If a new tool set is ordered, it goes online
immediately.  The current configuration (A) for our model
factory consists of five parallel bottleneck tools, each with
an exponential processing rate µ. Configuration B is
obtained by adding a sixth tool to the system.

The manufacturer is concerned with the factory’s
ability to satisfy demand during the ramp-up phase of the
new product, when the market allows them to ask a hig
price for the new product.  In this analysis Th is the end of
the product’s ramp-up phase, the time at which deman
enters the mature phase.  (Here we consider Th to be fixed,
although it would more realistically be an uncertain
quantity.)  We would like to minimize a cost function over
the period [Td, Th], which includes the cost of the tool set
(if purchased).  Since the manufacturer would like to fill
orders quickly, the cost function also penalizes long lead
times (the delay between an order’s arrival and
fulfillment).  The cost function is:

[ ]

( )received orders of  timelead average  

cost

2

set    toolpurchase1 1
×

+×=

c

c

For this example we take c1 = 0.5 and c2 = 1.
Orders for the new product arrive according to a

nonstationary Poisson process with arrival rate λ(t).  We
model λ(t) with a logistic function:
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In this example the “actual” order arrival process has
values -6, 0.1, and 5 for α, β, and γ.    (The arrival rate λ(t)
and the integrated rate function Λ(t) are shown in Figures 4
and 5.)  We suppose that the manufacturer knows γ (the
size of the market) but must estimate α and β for the
simulation study.  We describe an estimation procedure fo
these parameters in the next section.  The values for Td and
Th are 80 and 120 respectively.
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Figure 4:  The arrival rate function, λ(t).
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Figure 5:  The integrated rate function, Λ(t).

To understand how the decision is affected by the
values of α and β, we simulated the system at a variety of
parameter settings.  Each replication had 5 servers up 
time Td.  Using CRN we then split the replication, either
keeping 5 servers (the no-purchase decision) or adding o
(the purchase decision).  Table 1 shows some of the resul
A “Y” means the purchase decision had the lower mea
cost, and an “N” means the no-purchase decision had t
lower mean cost.  The actual parameter values (-6, 0.
correspond to a purchase decision.

Table 1: Purchase decisions at
different values of α and β, with γ = 5.

α,β 0.1 0.2 0.3
-10 Y
-9 N Y
-8 Y
-7 N Y
-6 Y
-5 Y Y
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3 FORECASTING THE ORDER
ARRIVAL PROCESS

At various times Ti during the simulation study we must
estimate the parameters α and β from the actual order
arrival process.  Suppose that there were n order arrivals
during the interval [T0, Ti].  Let t0 = T0, and let t1,…,tn  be
the times of the order arrivals between T0 and Ti.  The
arrival rate has the form

  ( ) { }
{ }





++

+
=

βα
βαγλ
t

t
t

exp1

exp ,

where α and β are values that we wish to estimate.  The
integrated rate function is

( ) ( ) { }
{ } 
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Define random variables Xi as:
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The Xi’s are exponentially distributed with mean 1.  We

obtain moment estimators βα ˆ and ˆ  by solving the

following equations for βα  and :
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The solution may be approximated using, for example, the
Gauss-Newton method.

Other approaches for estimating the parameters o
Poisson processes are described by Cox and Lewis (1966
For a recent paper on the subject, refer to Kuhl, Damerdji
and Wilson (1977).

4 APPLYING THE LEADING
INDICATORS METHODOLOGY

To investigate the performance of the leading indicators
methodology, we simulated its use on the example
described in the previous sections.  For each replication w
generated an “actual” arrival sample path using the value
(-6, 0.1) for (α,β).  At timepoints T1 = 40, T2 = 60, and T3 =
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80 both the leading indicators method and the stand
approach were used to make a decision.  We first desc
the implementation of the two methods, then their relati
performance at the three timepoints.

The first step of the leading indicators methodology 
to generate sample paths for the regression model.  
each study we made 100 simulation runs, drawing valu
for α  and β  from U(-10,0) and U(0,1) distributions,
respectively.  Regression models were then constructed
each timepoint Ti, i = 1,2,3 to predict the difference in
performance between the two system configurations o
the interval [Td, Th].  The independent variables (leading
indicators) were α, β, and the system state (number of fre
servers and number in queue) at time Ti.  Finally, at times
Ti, i = 1,2,3 the regression models were used to make 

purchase decisions.  Estimators α̂  and β̂  (based on the

actual data up to time Ti) were used for α  and β.

For the standard approach, estimators α̂  and β̂  were

calculated at timepoints Ti, i = 1,2,3 based on the actual dat
available up to time Ti.  We then used these values t
generate 100 simulations of the system over the interval Ti,
Th] and chose the configuration with the lowest average co

In order to determine the correct decision for ea
replication, conditional on the “actual” sample path up 
time Ti, we also simulated each system configuration ov
the interval [Ti, Th] using the actual parameter values α = -
6 and β  = 0.1.  Table 2 shows the frequency of corre
decision for each method at timepoints T1, T2, and T3.  The
table also shows the average squared difference betw
the predicted performance over the interval [Ti, Th] and the
expected performance given the correct parameter valueα
= -6 and β  = 0.1.  As expected, the quality of decision
made with the standard approach improves with t
amount of data.  The leading indicators approach wo
reasonably well early in the time horizon, meaning that
may be a useful tool for providing early information abo
the decision.

Table 2:  Relative performance of methodologies.
Standard Approach
(Leading Indicators)

Early
Decision
Time

T1 = 40 T2 = 60 T3 = 80

% correct 33 (81) 81 (76) 90 (81)

MSE 0.33(0.07) 0.05(0.04) 0.03(0.04)

5 COMMENTS AND TOPICS FOR
FURTHER RESEARCH

The leading indicators method describe here see
promising as a tool for providing early information abou
328
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decisions.  Further investigation is required concerning th
choice of leading indicators and the method’s performanc
on problems with dependent arrival processes.  Anothe
area of interest is the method’s relationship to the Bayesia
approach to input distribution selection developed by
Chick (1999).  Rather than point estimates for α and β, one
would use an appropriate posterior distribution based o
data collected up to the time of the decision.  For example
suppose we start with prior ( )βαπ , .  Since the Xi’s are iid

exponential and
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The posterior distribution is then:
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The leading indicators would be appropriate functions o
this distribution.
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