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ABSTRACT

ALPHA/Sim is a general-purpose, discrete-eve
simulation tool.  ALPHA/Sim allows a user to graphica
build a simulation model, enter input data via integra
forms, execute the simulation model, and view 
simulation results, within a single graphical environme
In this paper, we introduce ALPHA/Sim and describe h
to use ALPHA/Sim to build, simulate, and analyze
simple manufacturing system.  In addition, we brie
describe some advanced features and list some sa
applications.

1 INTRODUCTION

ALPHA/Sim is a general-purpose, discrete-eve
simulation tool.  With ALPHA/Sim you can graphicall
build a simulation model, enter input data (timing dela
routing rules, initial conditions, and other data) v
integrated forms, execute the simulation model, and v
the simulation results, within a graphical environment.

ALPHA/Sim provides a hierarchical modelin
capability that allows models to be built from the botto
up, top-down, or both.  Models can be built without see
or writing a single line of code; it can also link to extern
software.  ALPHA/Sim automatically collects statistics 
populations (queues), delays, activity rates, and attribute

ALPHA/Sim has been used in a wide variety 
applications including computer hardware system
manufacturing systems, queuing systems, and mili
command and control.  ALPHA/Sim currently runs on t
PC (Windows NT) and Sun Workstation (SunOS a
Solaris under the X Window System or Motif).

The modeling paradigm used in ALPHA/Sim is bas
on Petri nets (PNs).  PNs were developed in the e
1960s to model concurrent operations in computer syste
Over the years PNs have been extended and applied
wide range of systems characterized as being concur
asynchronous, distributed, parallel, and stochastic.  PNs
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a mathematical and graphical modeling tool.  As 
mathematical tool, PNs can be used to set up st
equations, algebraic equations, and simulation models. 
a graphical tool, PNs provide a visual modeling techniqu

In this paper, we present a brief overview of PNs a
describe how to use ALPHA/Sim to implement a simp
manufacturing model.  Specifically, we describe how 
build the graphical model and define attributes, tok
types, timing delays, decision rules, output attribu
definitions, and statistics collection.  In addition, we brief
describe some advanced features and list some sam
applications.

2 PETRI NETS

Petri nets (PNs) are a graphical and mathematical mode
technique originally developed by C.A. Petri in the ear
1960s to characterize concurrent operations in compu
systems (Petri 1962).  PNs have been extended to cap
many important aspects of large-scale systems, includ
attributes, timing relationships, and stochastic even
(Moore and Lynch 1990, Moore et al. 1986, Murata 198
Peterson 1981).  The greatest appeal of PNs is th
conceptual simplicity.

PNs consist of four primitive elements (tokens, place
transitions, and arcs) and the rules that govern their ope
tion (Figure 1).  PNs are based on a vision of tokens
moving around a network.  Tokens appear as dots a
represent the objects or entities in a system.  Places are
shown as circles and represent the locations where obj
await processing.  Location can be either a physic
location (e.g., the queue where a message waits to be 
cessed) or a state (e.g., an idle resource).  Transitions
appear as rectangles and represent processes or e
(e.g., processing a message or machining a part).  Fina
arcs represent the paths of objects through the syste
Arcs connect places to transitions and vice-versa; 
arrowhead at the end of the arc indicates the direction
the path.
7
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(a)  Token (b)  Place (c)  Transition (d)  Arc

Figure 1: Depiction of PN Primitives

PN firing rules specify the behavior of transitions; i.e
the conditions under which processes or events can oc
Three rules govern transition firing:

1. When all upstream places are occupied by at
least one token, the transition is enabled.

2. Once enabled, the transition fires.
3. When a transition fires, exactly one token is

consumed from each upstream place and
exactly one token is deposited in each
downstream place.

Figure 2 depicts these rules for a transition (Assemble) with
two upstream places (Part A, Part B) and one downstream
place (Assembly).

Assembly

Part A

Part B

Assemble

Assembly

Part A

Part B

Assemble

(a) Two upstream places and one
downstream place connected
to a single transition.

(b) Arrival of token at Part A
partially enables Assemble.

Assembly

Part A

Part B

Assemble

Assembly

Part A

Part B

Assemble

(c) Arrival of token at Part B
fully enables Assemble.

(d) Assemble fires, consumes one
token each from Part A and
Part B, and deposits one
token in Assembly.

Figure 2: Transition Firing

Timing rules are associated with transitions and repr
sent the time required to complete some activity.  A timi
rule may be stochastic, based on an assigned probab
function, a computed value, or a constant.  Decision rules
are associated with places and resolve cases where m
than one transition is enabled by the same token or se
tokens.  There are three types of decision rules:  prior
probability, and constructed.  The priority decision rule
(shown in Figure 3) states that if all other firing rules a
met, the token will leave via the path having the highe
priority.  The probability decision rule states that if al
268
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other firing rules are met, the token will select a path base
on assigned probabilities.  The constructed decision rule
allows the user to specify the condition under which the
token will select a particular path, if all other firing rules
are met.

Filled Orders

Product

Orders

Fill

WarehouseStore

(p=1)

(p=2)

Filled Orders

Product

Orders

Fill

WarehouseStore

(p=1)

(p=2)

(a) Both transitions enabled; Fill
will fire since it has a higher
priority than Store.

(b) Fill  fires; consumes one token
each from Product and
Order, and deposits one
token in Filled Orders.

Figure 3: Effect of a Priority Decision Rule

Attributes on tokens are used to specify a set o
characteristics associated with a token (e.g., size, typ
priority, identity, etc.).  The output values of the attributes
may be changed at transitions.  They can also be used
determine timing and decision rules.  Finally, the values o
the attributes can be passed to external algorithms and t
results incorporated into the PN model.

In addition to a standard arc, there are two other ar
types which allow for more complicated transition logic.
The enable arc is depicted as a line with a solid, filled
circle at the end where the arrowhead normally appear
The enable arc enables a transition if the upstream place
occupied by a token, but does not consume the token (t
token remains in the upstream place).  The inhibit arc is
depicted as a line with a hollow circle at the end where th
arrowhead normally appears.  The inhibit arc disables 
transition if the upstream place is occupied by a token, b
does not consume the token (the token remains in th
upstream place).

Box nodes are used to encapsulate portions of a PN
model and to provide a hierarchical modeling capability
Box nodes group or cluster PN fragments of relate
subsystems, functions, or organizational units.

3 BUILDING MODELS WITH ALPHA/SIM

With ALPHA/Sim you can: build and debug your models
graphically; build models from the top-down, bottom-up,
or both; easily modify model parameters and structure
navigate through the model; monitor results at any point i
the simulation run; and save any model component fo
reuse in other models.

The remainder of this section illustrates how to use
ALPHA/Sim to implement a simple manufacturing system
that produces two types of parts.  “Type 1” parts are
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turned, milled, and plated, in that order; “Type  2” parts a
turned and milled.  Input parameters include part mix a
part processing times.  Output parameters include bu
sizes (queue lengths), machine utilization, part latency, a
throughput.

3.1 Drawing the Graphical Model

We begin by drawing the graphical model.  Figure 4 sho
an ALPHA/Sim screen with the status bar and the me
bar at the top, an icon palette to the left, and the draw
window with scroll bars at the bottom and to right.  W
create the graphical model by using the mouse to drag-a
drop icons from the icon palette onto the drawing are
then connecting the icons with arcs.  Icons a
automatically assigned unique default names (see Figur
which can be changed to something more meaningful.

Figure 5 shows the complete manufacturing mod
The place-transition combination in the upper-left corn
periodically generates new parts that are deposited into
Lathe_Q place.  Arriving parts wait at the Lathe_Q until
the Lathe becomes available.  They are then turned a
enter the Mill_Q, where they wait for the Mill  to become
available.  Once the parts are milled, they are passed to
,FRQ#3DOHWWH

6WDWXV#%DU

0HQX#%DU

,FRQV

'UDZLQJ#$UHD
'HIDXOW#,FRQ#1DPHV

6FUROO#%DUV

Figure 4: Sample ALPHA/Sim Screen
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Plate_Q.  Since “Type 2” parts are done, they are routed
the stock of Finished_Type_2 parts.  “Type 1” parts remain
in the Plate_Q until the Plating_Machine is available.
Once plating is complete, the “Type 1” parts enter 
Finished_Type_1 stock.

3.2 Defining Token Types

Once the graphical model is built, we use the Token T
Edit Form to define the token types; for this model, 
have two:  “Part” and “Machine”.  Figure 6 shows th
Token Type Edit Form for “Part”.  This form contains 
field for naming the token type and a field for defining t
associated attributes.  Each attribute definition consists 
name, class, type, and an initial range.

The attribute’s class can be a scalar (single) value
array of values, or a matrix of values; if it is an array 
matrix, we must specify its size (the number of rows a
columns).  The attribute’s type can be Boolean, integ
real, string, or another (previously defined) token type.
the type is not another token type, we can specify an in
range for the attribute, if desired.  Table 1 lists the tok
type definitions for the manufacturing model.
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Figure 5: Manufacturing Model

Figure 6: Token Type Edit Form for the “Part” Token Type
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Table 1:  Token Type Definitions for Model

Token Type Attributes Class Type

id Scalar Integer

type Scalar String

arrive Scalar Real

wait Scalar Real

process Scalar Real

Part

latency Scalar Real

id Scalar Integer

type Scalar StringMachine

p_time Scalar Real
270
3.3 Place and Transition Forms

Once the token types are defined, we use the place 
transition forms to assign token types, initial toke
populations, and timing, routing, and other logical rule
Figure 7 shows a sample place form.  The top of the pla
form lists the input and output transitions, and allows us 
specify the token type and the number of initial token
The middle of the form allows us to specify statistic
collection and set the queuing order (FIFO, LIFO, o
ascending/descending on an attribute value).  The bott
of the form allows us to set decision rules (priority
probability, or constructed) for routing tokens out of th
place.



ALPHA/Sim Simulation Software Tutorial
Figure 7:  Place Form for the Plate_Q Place
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Figure 8 shows a sample transition form.  The left sid
of the form lists all the input places, and clicking on on
opens the input token profile to display the input toke
type definition for that place.  Similarly, the right side o
the form lists the output places and clicking on one ope
the output token profile.  Ordinarily, the values of the inpu
attributes are mapped to their corresponding outp
attribute; however, we can assign new output attribu
values using the area below the output token profile.

The center of the transition form is used to set a timin
rule and to specify statistics collection preferences.  F
timing rules, we can specify “None”, “Selected
Distribution”, or  “Constructed”.  If we choose “Selected
Distribution”, we are prompted to select from one of th
six available probability distributions and provide the
appropriate parameters; Table 2 lists these distributions a
their parameters.  If we choose  “Constructed”, we ca
enter an expression that utilizes other distributions 
attribute values.  The language used for the expression
271
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English-like; e.g., the timing rule at the Interarrival_Delay
transition is:

IF (Initial_Token.type = 1)
      Exponential(10)
ELSE exponential(5)

Table 2:  Built-In Timing Distributions

Distribution Parameters

Constant Value

Exponential Mean

Gamma Alpha, Beta

Normal Mean, Std Dev, Min, Max

Triangular Min, Mode, Max

Uniform Min, Max



Moore, Chiang, and Hammer
Figure 8:  Transition Form for the Interarrival_Delay Transition
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“Initial_Token.type” is the value of the attribute type on
the token coming from the place Initial_Token.  The lower-
left corner of the transition form is used to define enable
inhibit transition firing logic or conditions to stop the
simulation.

3.4 Specifying the Model Logic via the Forms

We use the Place form to assign token types to plac
specify initial token populations, define decision (routing
rules, and specify conditions to stop simulation runs.  W
use the Transition form to assign timing rules, defin
output attribute expressions, specify enable and inhi
transition firing logic, and specify conditions to sto
simulation runs.  First, we assign token types to plac
using the Token Id option menu on each Place For
Next, we specify two initial tokens at the Initial_Token
place (one for each part type) and one initial token in ea
machine place (Lathe, Mill , and Plating_Machine).  Table
3 lists the token type assignment and initial toke
population for each place in the model.  Table 4 lists t
272
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attribute values for places having an initial tok
population, which is assigned using the Initial Tokens 
Place Form.

Table 3:  Token Type Assignments and Initial Populatio

Token Type Places
# Initial
Tokens

Initial_Token 2

Lathe_Q

Mill_Q

Plate_Q

Finished_Type_1

Part

Finished_Type_2

0

Lathe

MillMachine

Plating_Machine

1
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Table 4:  Initial Token Values

Place Attributes Initial Value

type 1, 2
Initial_Token

all others 0

id unique integer
Machine

type
“lathe”, “mill”,
“plating”

Next, we specify a constructed decision rule at 
Plating_Q place so that “Type 1” and “Type 2” parts a
routed to the appropriate downstream places.  If it is “T
1”, we route the part to the Plate_Part transition;
conversely, if it is “Type 2”, we route the part to the Done
transition.  The bottom portion of Figure 7 shows t
decision rule as it appears on the Plate_Q Place Form.
Alternatively, we can assign enabling logic at t
Plate_Part and Done transitions to control the flow of par
types out of the Plate_Q place.  At the bottom of eac
transition form, there is a Transition Firing Logic sectio
under that section is a field for entering an Enable Lo
expression.  For “Type 1” parts, we enable Plate_Part
transition firing only if the value for the type attribute of
the incoming token from the Plate_Q place equals “1”.
Conversely, for “Type 2” parts, we enable Done transition
firing only if the value of the type attribute equals “2”.  If
desired, we can set a queuing order for the Lathe_Q and
Mill_Q places.

Finally, we define output attribute expressions 
collect information on the machines and on individual pa
as they pass through the system.  ALPHA/Sim provi
four simulation variables that can be used in 
expressions:  $time$, $delay$, $count$, and $pop$.  T
5 lists the definition for each simulation variable.  Since 
are interested in the queuing, service, and system time
the parts, we utilize the $time$ and $delay$ variab
Table 6 lists the output attribute definitions for t
transitions.  The bottom-left portion of Figure 8 shows 
output definition for the arrive attribute as tokens are fire
from the Interarrival_Delay transition out to the Lathe_Q
place.  We can also specify statistics collection for pla
(average population), transitions (firing rates), a

Table 5:  ALPHA/Sim Simulation Variables

Variable Description

$time$
current simulation time prior to
transition firing

$delay$ time delay of a transition firing

$count$
number of times a transition has
fired

$pop$ current number of tokens in a place
27
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attributes, using the place and transition form statist
panels (see Figures 7 and 8, respectively).

Table 6:  Output Attribute Definitions

Transition Output
Attri-
bute

Definition

id $count$Interarrival
_Delay

Lathe_Q
arrive $time$ + $delay$

wait $time$ - Lathe_Q.arrive
Turn_Part Mill_Q

process $delay$

wait
$time$ - Mill_Q.arrive -
Mill_Q.processMill_Part Plate_Q

process Mill_Q.process + $delay$

wait
$time$ - Plate_Q.arrive -
Plate_Q.process

process
Plate_Q.process +
$delay$

Plate_Part
Finished
_Type_1

latency
$time$ + $delay$ -
Plate_Q.arrive

Done
Finished
_Type_2

latency $time$ - Plate_Q.arrive

3.5 Controlling the Simulation Run

Additional forms are available to set the simulation ru
time, the number of replications and random number see
and statistics collection preferences.  ALPHA/Sim h
facilities for collecting aggregate, interval, and samp
statistics.  Before run execution, ALPHA/Sim
automatically checks all expressions for errors and if no
exists, executes the simulation run.  The results can
observed on-screen or sent to a file for further analy
The simulation can also be run in batch mode.

4 ADVANCED FEATURES

ALPHA/Sim incorporates a number of additional feature
such as:  functions, enable and inhibit logic, stop wh
conditions, boxes, show tree, and various printing and 
handling features.  ALPHA/Sim includes over thirty buil
in mathematical functions as well as arithmetic and logi
operators that can be used in timing rules, decision ru
output attribute definitions, and other expressions.  
addition, it is possible to incorporate user-defined functio
and interact with external code.  Enable and inhibit log
can be used in transition forms to specify whic
combinations of tokens will allow a transition to fire.  Sto
when conditions are logical expressions that can be use
stop the simulation run when a specified condition 
reached.  Boxes provide a hierarchical modeling capabil
Show tree displays the model hierarchy in a tree struct
3
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and provides an easy way to navigate through a mod
The graphical model and the information contained in th
forms can be printed out to a laser printer or sent to a file

5 SAMPLE APPLICATIONS

ALPHA/Sim and its predecessor, Modeler, have been us
to develop a wide array of discrete-event simulatio
models, such as computer components and systems (e
Ethernet system (Brennan, Walenty, and Moore 1995
client-server system, and high-speed disk system
manufacturing systems (Moore and Gupta 1999), larg
scale military command and control systems (Moore an
Lynch 1990), and business process reengineering a
workflow models for a charter air cargo and passeng
service system.

The client-server system consists of several da
processing nodes connected via a local area netwo
(LAN).  The model evaluates the impact of changing th
number of hardware components and their capabilities 
throughput and latency for individual processes.  It als
identifies bottlenecks in the system, thereby indicatin
good candidates for increasing capacity.

The charter air cargo and passenger service mo
depicts the workflow for a thirty-person office responsibl
for handling and scheduling domestic and internation
transportation.  This workflow is unique in that the staff’
activities are frequently interrupted by higher priority task
and phone calls or delayed due to communications dela
The model was used to determine the impact of automat
and task redefinition on staffing requirements an
throughput.

6 SUMMARY AND CONCLUSIONS

In this paper, we described a general-purpose, discre
event simulation software tool called ALPHA/Sim.  The
modeling paradigm used by ALPHA/Sim is based on Pe
nets, a concept developed in the early 1960s to mo
concurrent operations in computer systems.  Over t
years, this concept has been extended to incorpor
attributes, timing relationships, and stochastic events.

With ALPHA/Sim, you can:  build and debug your
models graphically; build models from the top-down
bottom-up, or both; easily modify model parameters an
structure; navigate through the model; monitor results 
any point in the simulation run; and save any mod
component for reuse in other models.

ALPHA/Sim’s graphical modeling and simulation
environment makes it possible to develop and exerci
simulation models without having to see or write a line o
code.  The graphical interface allows you to design th
model using the mouse to drag-and-drop icons onto
drawing area.  The logic and input parameters for th
model are entered using the appropriate integrated form
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ALPHA/Sim also provides the ability to interface with
external software.

We described how to use ALPHA/Sim and illustrated
its key features via a simple example of a manufacturin
system.  In addition, we listed some of the advance
features of the tool.  We also listed a number of samp
applications and briefly described two of these, namely 
client-server performance model and a business proce
workflow model.
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