
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

MODSIM III AND CACI'S APPLICATIONS

Brian Wood
Kerim Tumay

CACI Products Company
3333 North Torrey Pines Court

La Jolla, CA 92037, U.S.A.

t
o

T

n
e
)

d
l

e

n

n

,

ABSTRACT

This tutorial introduces CACI's MODSIM III language,
showing how its simulation "world view" together with its
object-oriented architecture and built-in graphics contribu
to successful simulation model building. The tutorial als
provides an overview of CACI's domain-specific
simulation tools, namely SIMPROCESS and COMNE
III, that are developed using MODSIM III.

1 WHAT IS MODSIM III?

MODSIM III is an object-oriented, general-purpose
simulation tool specifically designed for modeling large
complex systems. It offers you a robust environme
specialized for the successful development of advanc
models which are: 1) Visual, 2) Interactive, and 3
Hierarchical.

 MODSIM III fully supports object-oriented
programming including multiple inheritance,
encapsulation, and polymorphism. It is intended fo
engineers, analysts, and consultants who are intereste
saving time, money, and risk associated with large-sca
complex applications.

MODSIM III is used by over 5,000 users for defens
modeling, network simulation, transportation modeling
supply chain simulation, business process modeling, a
other applications.

Unlike general purpose languages such as C++ a
Java, MODSIM III:

1) captures both concurrent and interacting
behaviors of system components in
simulation time - not an easy task.

2) provides built-in statistical modeling and
statistics gathering functions.

3) includes invaluable development aids such as
run-time checking of object accessing, array
bounds and memory.
234
e

,
t
d

r
 in
e,

,
d

d

4) comes with simulation-specific graphics
libraries and animation,

5) provides interfaces to the HLA (High Level
Architecture), the DOD standard for
distributed simulation.

MODSIM III combines CACI's experience with
simulation programming over three decades with advances
in software engineering to offer the most productive
environment for the development of large, complex,
evolutionary, custom models.

Examples of MODSIM III's simulation features, and
the benefits of object-oriented architecture, are
demonstrated below using code fragments from a
hypothesized airport/airspace planning model. Such a
model might be concerned with the representation of
aircraft, flight duration, air traffic controllers, runway
allocation procedures, and so on. To be of any interest
such a model must represent multiple aircraft in flight
concurrently, and delays due to contending requests for
resources, such as runways.

2 DEFINITION BLOCK

In support of modular program construction, objects in
MODSIM III are described in two separate blocks of code.
The Definition block describes the object type by declaring
its variables and methods. This is the object description as
it will be referred to by other objects in the simulation, and
it provides the formal interface specification. An example
of a Definition block for an aircraft object is shown below.

 Aircraft = OBJECT;
 BestCruise : INTEGER;
 InFlight : Boolean;
 ASK METHOD SetCruise (IN speed:INTEGER;
 TELL METHOD FlyDistance (IN
 distance:INTEGER);
 END OBJECT;

Wood and Tumay

h
t
i
r
i

e

w
d

th

o

e
e
e.

ng
nt
e
n its
an

t's
er

d

et
0

the
.
t
r
ect
ght
re
ds

rs
nt
an

ge
he
e
and
The Definition block for an aircraft object declares t
variables and methods that aircraft objects use in
simulation model. The information the aircraft knows
contained in its variables. In this simple case, the airc
is responsible for the management of two variables, wh
represent its state:

* BestCruise-the optimal speed to cruise at for
given conditions

* InFlight-whether or not the aircraft is
currently in flight.

3 IMPLEMENTATION BLOCK

The aircraft behaviors are described in its methods. Th
methods are named in the object description provided
the Definition block. The logic of what they do and ho
they affect the state variables of the object are describe
the Implementation block, shown below.

OBJECT AircraftObj;

ASK METHOD SetCruise (IN speed:INTEGER);
 BEGIN
 BestCruise := speed;
 END METHOD;

TELL METHOD FlyDistance (

 IN distance; INTEGER);
 BEGIN
 InFlight := TRUE
 WAIT DURATION distance/BestCruise;
 END WAIT;
 InFlight:=FALSE;
 OUTPUT ("Arrived Safely at",SimTime);
END METHOD;

END OBJECT;

The behaviors that objects can perform are
methods described in the Implementation block.

In this case the aircraft is capable of the behavi
described in the following two methods:

* ASK METHOD SetCruise-When the aircraft
is requested to perform this behavior, it
registers the new value for its optimal
cruising speed instantaneously.

* TELL METHOD FlyDistance-When
requested to perform this behavior, the
aircraft calculates the required flight time to
cover this distance at its cruising speed. This
particular activity then pauses in execution
until this period of time has elapsed within
23
e
he
s
aft
ch

se
by

 in

e

rs

the simulation model, before completing the
remainder of the behavior-in this case
printing a notification that it has arrived
safely. Unlike ASK methods, TELL methods
are used to describe behaviors that elapse
simulation time. While this method is
paused, waiting for time to pass, other
methods of other objects may be executing.

A key benefit of using MODSIM III in building
complex simulations is the easy modeling of thes
behaviors. In a large model, many objects will hav
behaviors that must take account of the passage of tim
Often, these behaviors will be concurrent, or overlappi
in time. For example, our model will want to represe
multiple "instances" of the aircraft object type. Thes
instances can be created as needed; each can be give
own identifier and has its own state variables and c
execute its methods as requested.

For a simple example of concurrent behaviors, le
look at how an aircraft dispatcher in our model might ord
two aircraft to fly to different destinations:

...
ASK JumboJet TO SetCruise(600);
TELL JumboJet TO FlyDistance(3000);

ASK Biplane TO SetCruise(100);
TELL Biplane TO FlyDistance(200)IN 1.0;

Using TELL methods, the flight times of both the
JumboJet and Biplane aircraft can be modele
concurrently.

In this example, the aircraft object named JumboJ
will elapse 5 hours flying a distance of 3000 miles at 60
mph. One hour after the JumboJet takes off (... IN 1.0),
Biplane aircraft will take off and fly 200 miles at 100 mph
It will complete its flight two hours before the JumboJe
arrives at its destination. MODSIM III is responsible fo
sequencing the execution of the methods of both obj
instances, including the pauses to represent the fli
times, so that the events of taking off and landing a
played out in the correct order in the model. ASK metho
do not elapse any simulation time.

4 TIMING AND INTERACTION

Besides executing concurrently, time elapsing behavio
may interact. To make the model more realistic, we wa
to consider the effect of changing the cruising speed of
aircraft while it is in flight-perhaps in response to a chan
in weather conditions. Such a change invalidates t
original computation of flight time, and a new arrival tim
must be determined based on the new cruising speed
5

MODSIM III and CACI's Applications

or
an
e
in
g
is
.
o
t

il
s

e

n
t

ge
g

e
n
ot
s

d
le

nt

d
.

e

nd
s

at
ic
r.
y
y
nd
n

e

n
a
en

 a

o
nt

e
e
in

e

t
g
to

e

w

n
g
s
r
n

the distance remaining. Let's look at how the logic,
implementation, of the methods of our aircraft objects c
be refined to incorporate this modified behavior. Th
method which is responsible for registering a change
cruising speed may INTERRUPT the time-elapsin
method, FlyDistance, if appropriate. On recognition of th
INTERRUPT, the remaining time to WAIT is reevaluated
To see the changes that we've made, compare this c
with the original Implementation block for the aircraf
object, presented earlier.

OBJECT AircraftObj;

 ASK METHOD SetCruise(IN speed:INTEGER);
 BEGIN
 BestCruise := speed;
 IF InFlight
 INTERRUPT SELF FlyDistance;
 END IF;
 END METHOD;

 TELL METHOD FlyDistance (IN
 distance;INTEGER);
 BEGIN
 InFlight := TRUE
 WHILE distance > 0.0
 speed := BestCruise;
 start := SimTime;
 WAIT DURATION distance/BestCruise;
 distance := 0.0;
 ON INTERRUPT
 elapsed := SimTime-start;
 distance := distance-(elapsed*speed);
 END WAIT;
 END WHILE;
 InFlight:=FALSE;
 OUTPUT ("Arrived Safely at",SimTime);
End METHOD;

The aircraft's CruiseSpeed can now be changed wh
in flight-the arrival time will be recomputed each time thi
occurs.

Look at how the FlyDistance method describes th
entire flight from take off to landing, allowing multiple
speed change events in a logical activity descriptio
Contrast this with multiple, disconnected, even
subroutines in a conventional programming langua
which does not support the concept of time-elapsin
behaviors.

MODSIM III understands the meaning of thes
simulation features. Thus it can diagnose inadverte
misuse early-for example, WAIT statements are n
allowed in ASK methods that are always instantaneou
236
de

e

.

t

.

Not only does such checking save time in building an
running a model, but it can help avoid debugging subt
logic errors in simulations with complex interactions.

These specialized features for modeling concurre
and interacting behaviors distinguish MODSIM III as a
simulation model development tool. In addition,
MODSIM III includes a rich collection of simulation
building block objects. These library objects are designe
to fulfill many common simulation modeling requirements
MODSIM III uses the power of object -oriented software
architecture to allow these pre-built library objects to b
readily adapted to special needs.

Because MODSIM III provides you with a rich set of
features to manage the complex scheduling, interaction a
synchronizing of time-elapsing behaviors, it save
significant development time.

Consider contention for resources, an issue which is
the heart of many discrete system simulations. Specif
allocation policies are a basis for common behavio
Objects incur delays in competing for resources; the
queue for resources on some priority basis; they ma
choose to abandon requests after a time-out interval, a
the simulation model will want to report to some degree o
measurements of resource utilization, waiting tim
statistics, and so on.

MODSIM III provides a prebuilt Resource object as
one of many objects in its simulation support libraries. I
our airport model, for example, runways are clearly
resource. We could use an instance of ResourceObj tak
directly from MODSIM III's library to model runway
allocation, enqueueing and dequeueing the aircraft on
first-come-first-served basis, and recording statistics.

We need to make one important change, however. T
avoid the danger of wake turbulence effects, it is importa
that a light aircraft not use a runway immediately following
a large aircraft; it should delay a short time to allow wak
vortices in the air to dissipate. This is where inheritanc
comes in. It allows us to describe a Runway object
terms of the existing ResourceObj provided by MODSIM
III. We only need to specify the differences between th
new RunwayObj and ResourceObj.

Inheritance is one of the chief benefits of objec
oriented software construction, and the basis for providin
libraries of useful objects which can be readily adapted
specialized needs.

In the example below, we have imported a resourc
management object from the MODSIM III library, defined
an enumerated variable called AircraftCategory and sho
the Definition block for Runway. By declaring our
Runway object to be derived from the library-supplied
resource management object, it inherits all the built-i
capabilities for enqueueing requests and maintainin
utilization statistics. The Give method is declared a
overridden, meaning that a different implementation, fo
just this method, will be substituted in the Implementatio

Wood and Tumay

xtra
ur
 to

 to

s
me

ely
a

ion
ble
me
lve

m
on
 an
sfu
the
eci

the
e
s t
he
e
al
 t

el
ata
 fo
se
n:

ure
y

g
 are

c
ts
l
n
p

ing
re
d
to

o
g
gh
f
d

on
 In
e
of
ll
.

ur
n

:
a,

f
d
st

t

block (not shown). The Runway object also has an e
variable to 'remember' the last aircraft type. O
specialized implementation logic can now be designed
impose appropriate delays before giving the runway
aircraft of different categories.

 FROM ResMod IMPORT ResourceObj;
 TYPE
 AircraftCategory = (Light, Heavy);
 ...
 Runway = OBJECT(ResourceObj);
 lastuse : AircraftCategory;
 OVERRIDE
 TELL METHOD Give(IN number : INTEGER);
 END OBJECT;
 ...

The Runway object, derived from MODSIM III'
resource management object has been customized to
special modeling requirements.

Inheritance provides a disciplined way to selectiv
modify and extend object characteristics. As
specification mechanism, it maintains a clear distinct
between those properties which continue to be availa
unchanged, and those enhancements designed to
special needs-this is very valuable as software evo
through versions and upgrades.

New object types, derived through inheritance fro
existing objects, continue to conform to comm
interfaces, but incorporate additional capability. This is
excellent match to the evolutionary nature of succes
simulation models; with increasing understanding of
system comes a desire to add details in areas of sp
focus.

The reuse of libraries of pre-built objects holds out
promise of real productivity gains in softwar
development. Without a means to adapt such object
special needs, this promise is rarely fulfilled. T
extensibility offered by inheritance, coupled with th
modular separation of interface definitions from actu
implementation code are the mechanisms needed
support practical reuse of object libraries.

Object orientation offers other benefits to mod
development. The controlled access to object d
structures through the object methods is necessary
building robust objects which can be the basis of reu
Look back at the modified aircraft object implementatio
any request to change the aircraft speed can now ens
reevaluation of the flight time-which is faithful to the wa
things happen in the real world.

Taken together, support for object modelin
concepts, along with concurrent time based behaviors
237
et

et
s

l

al

o

o

r
.

 a

what make MODSIM III an effective simulation
productivity tool.

5 GRAPHICS AND SIMULATION

MODSIM III comes with rich graphics libraries for
graphical scenario layout (User Interface), dynami
analysis, and animation. Through inheritance, the objec
in your simulation can aquire a rich set of graphica
properties and behaviors. You can use this to provide a
interactive, graphically managed model that speeds u
analyses and produces easy-to-understand results. Add
graphics is easy. You use a graphical editor to configu
the appearance of icons, menus, dialog boxes an
presentation charts. Minimal code then connects these
the entities and variables in the model.

5.1 Graphical Scenario Layout

Interactive graphical editing lets you define a scenario t
simulate by selecting icons from the palette, positionin
them on the screen, and configuring parameters throu
dialog boxes. This function simplifies development o
graphical applications such as SIMPROCESS an
COMNET III.

5.2 Dynamic Analysis and Animation

With a scenario on the screen, you can begin the simulati
and see an animated picture of the system under study.
addition, you can study plots that are drawn while th
simulation is running. You can pan and zoom on areas
special interest. These results, shown dynamically, wi
suggest alternatives that can be tried immediately
Interacting with the model in this way increases
understanding of the system under study and speeds yo
analysis. Often errors that may have otherwise bee
difficult to find will be obvious. Dynamic analysis
contrasts sharply with the old iterative approach to
simulation, where the following steps were repeated
prepare data, simulate, examine results, modify dat
simulate, and analyze the results.

Through animation, you can dramatize the effect o
alternative system configurations, spot unexpecte
behavior, and back up your recommendations. It's the be
way to sell your ideas.

6 DEVELOPMENT ENVIRONMENT

MODSIM is a complete development environment tha
including a Compilation Manager and a Debugging
Manager.

MODSIM III and C

lly

a
 a

li
a
in
yo
rr
a
h
t
 a
gg
al
ci
a
or

s
II
S
il

in
p

nd
a
d
s
e

s
,

s
nd

ss

,
p

e

m

,

s
n

n

38
6.1 Compilation Manager

The MODSIM compilation manager automatica
determines which modules have been edited since the
compilation and recompiles only those modules and
other modules that depend on them. No make files
required.

6.2 Debugging Manager

Selective runtime checking of object referencing, inva
parameters, array bounds, and memory use are invalu
aids to modeling large, complex systems. With debugg
support enabled, a runtime error automatically drops
into debugging mode, allowing you to see where the e
occurred and letting you examine variables. A traceb
shows you the calling chain that led to the current met
or procedure, so you can browse up and down
execution stack examining the sequence of procedure
method calls that preceded the error. The debu
supports a wide range of capabilities that are essenti
interactive symbolic debugging. In addition it has spe
knowledge of MODSIM III's simulation constructs and c
display the pending list, simulation time, and mem
usage information.

7 MODSIM III APPLICATIONS

Using MODSIM III, CACI Products Company ha
developed two domain-specific simulators. COMNET
(Communication Network simulator) and SIMPROCE
(Business Process Simulator) allow you to rapidly bu
hierarchical, animated simulations without programm
(in a matter of hours). These tools are ideal for ra
prototyping.

Figure 1: A COMNET III Screen shot

COMNET III is designed for network engineers a
managers who need to minimize the response time
maximize bandwidth utilization of their data an
telecommunication networks. COMNET III provide
seamless interfaces with major network managem

2

ACI's Applications

last
ny
re

d
ble
g
u

or
ck
od
he
nd
er

 to
al
n
y

I
S
d
g
id

nd

nt

systems and traffic collection systems. The building block
of COMNET III, nodes (computers, routers, switches)
links (Ethernet, Token Ring, Point-to-point), and traffic
sources provide templates for graphically building network
performance models.

Figure 2: A SIMPROCESS Screen Shot

SIMPROCESS is designed for business proces
engineers and managers who need to reduce the time a
risk it takes to service customers, fulfill demand, and
develop new products. SIMPROCESS integrates proce
mapping, hierarchical event-driven simulation, and
activity-based costing into a single tool. The building
blocks of SIMPROCESS, namely processes
resources, and entities (flow objects), bridges the ga
between ABC (Activity Based Costing) and dynamic
process analysis.

These MODSIM III applications will be demonstrated
during the presentation of the MODSIM III Tutorial in the
'99 Winter Simulation Conference.

AUTHOR BIOGRAPHY

BRIAN WOOD started working for CACI Products
Company in 1993 as a project engineer in Europ
developing Air Traffic Control simulations for the EC.
Since 1996, he has been a project manager for custo
MODSIM III applications. During this time, he has
completed projects for Teledyne Ryan, Lockheed Martin
Union Pacific Railroad, Raytheon, and the US Navy. Brian
has a BS in Industrial Engineering and Operation
Research from California Polytechnic State University, Sa
Luis Obispo.

KERIM TUMAY is the Vice President of Modeling and
Simulation Solutions for CACI Products Company in La
Jolla, CA. He received his MS and a BS degrees i
Industrial Engineering from Arizona State University. He
is the co-author of two popular simulation books titled
"Simulation Made Easy" and "Process Simulation
Methods".

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

