
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

SIMULATION USING GPSS/H

Robert C. Crain
James O. Henriksen

Wolverine Software Corporation
2111 Eisenhower Avenue, Suite 404
Alexandria, VA 22314-4679, U.S.A.

e
t
i

e
d
h

o

g

o
d

o
S

fr
h
e

e
an
e
e
g

e
be
o

y
li
le
in

els
xt

ly

id

s
 a
e

tes
els

s
 of

a
 of
f

gh
ld
d.

del
out
a
a

ly
st
od

 for

of
ABSTRACT

GPSS/H is a traditional simulation language that is w
known for its speed and dependability. In GPSS/H,
process-interaction world view has been combined w
many advanced features to make an extremely pow
and flexible tool, capable of handling large, complicate
models with ease, yet still providing exceptionally hig
performance.

The following sections provide an overview
GPSS/H and its process-interaction world view,
discussion of model-building interfaces includin
tradeoffs associated with graphical modeling envir
ments, and a summary of advanced and recently-ad
GPSS/H features. Finally, the use of special-purp
simulators is discussed, along with features of GPS
which make it very well-suited for use as the engine
such simulators.

1 INTRODUCTION

The widespread success of GPSS/H has resulted
both the superiority of its original design and t
subsequent years of improvement and enhancem
Since it is a simulation language, GPSS/H requires som
programming-style effort, but it does so within
intuitive modeling framework that can be readily us
without extensive programming experience. It is w
suited for modeling both simple systems and lar
complex systems.

Although many new simulation tools have be
introduced over the past decade, they have often
designed for specific classes of applications. In str
contrast, GPSS/H continues to be one of the most general,
flexible, and powerful simulation environments currentl
available. GPSS/H is in use around the globe mode
manufacturing, transportation, distribution, te
communications, hospitals, computers, logistics, min
and many other types of queuing systems.
ors,

18
ll
he
th
rful

f
a

n-
ed

se
/H
in

om
e
nt.

d
ll
e,

n
en

ng

ng
-
g,

2 PRODUCT OVERVIEW

GPSS/H is a discrete-event simulation language. Mod
are developed with an editor and saved in ordinary te
files. With GPSS/H, the text files are subsequent
compiled directly into memory and executed. Exceptionally
fast compilation and execution encourage rap
prototyping and iterative model development.

GPSS/H uses the natural and intuitive process-
interaction approach to modeling. The modeler specifie
the manner in which “objects” flow through a system. As
result, a GPSS/H model reads like a flowchart of th
system being modeled. This modeling approach contribu
greatly to the ease and speed with which simulation mod
can be built.

After the model has been built, the proces
representation is executed by GPSS/H, and the activities
“objects” are automatically controlled and monitored.

2.1 GPSS/H Process Representation

An “object” in a GPSS/H model might be a patient,
telephone call, a truck, a data packet, or any other type
individually identifiable entity. The representations o
these “objects” in GPSS/H are called transactions. As the
model executes, many transactions can be flowing throu
the model simultaneously—just as many “objects” wou
be moving through the real-world system being modele
In addition, multiple transactions can, while flowing
through the model, execute the same GPSS/H mo
statements at the same instant in simulated time with
any intervention by the modeler. The execution of
process-interaction simulation model is thus similar to
multi-threaded computer program. This differs great
from the single-threaded, sequential execution of mo
general-purpose programming languages, and is a go
reason why such languages are usually not good tools
writing simulation models.

Many simulation projects focus on the optimal use
system resources such as people, machines, convey
2

Crain and Henriksen

/
e

u
 u
h

in
he
t
to
g

y

h
lle
g
le
lit
e
n
o

 o

ar

n
x

te
t

fie
a
c

re
 T
g
e

e
a
n
a
il
o

ls
s,
ble

e
k-

 a
 to
 or
ne
r.
el
s

rs

s
to
l-
is

to
r

del
n
d

h as

sy

st
is
hen
e
x
ut

ch

t

er
ly
h
f
d

computers, physical space, and so on. In a GPSS
simulation model, transactions (“objects”) compete for th
use of these system resources. As transactions flow thro
the process representation, they automatically queue
when they can’t gain control of a necessary resource. T
modeler does not have to specify the transaction’s wait
time or its queuing behavior for this to occur. Hence, t
passage of time in a GPSS/H model can be represen
implicitly, as in the case of a part waiting for a machine
become free, or explicitly, as in the case of a part bein
processed by a machine.

A GPSS/H model, like most real-world systems, ma
consist of multiple processes operating at the same tim
Furthermore, each such process may affect the ot
processes in the system. For example, two para
manufacturing processes may converge to a sin
inspection point where they are competing for a sing
resource—the inspector. GPSS/H provides the capabi
for multiple parallel processes to interact with each oth
automatically. Transactions (“objects”) may be se
between processes; they may control or share comm
resources; or they may influence the (global) operation
all processes.

3 MODELING A SYSTEM: TEXT VS. PICTURES

Often, the power and ease-of-use of a simulation tool
confused with the model-building interface provided by the
tool. That interface may be comprised of icons, menus a
data forms; or—as with GPSS/H—it may consist of te
entry; or it may be a combination of the two.

3.1 Developing and Editing Models

Many simulation tools try to build models “visually”. Icons
are placed on the computer screen to represent sys
components, links between them are drawn, and then
operating characteristics of each component are speci
by moving through a series of predefined menus and d
forms. One advantage of this approach is that even novi
can build simple models quickly—but not necessarily
accurately.

Building models of complicated systems requires mo
than simply placing and connecting icons on the screen.
model many processes, an explicit programmin
environment must be provided. For example, th
complicated operating logic of a microprocessor-bas
equipment-controller often needs a procedur
specification—it is simply too cumbersome to represe
such logic visually. As a result, models of complex (re
world) systems built using the iconic approach often st
require the modeler to create substantial amounts
programming code, using a procedural and text-based
representation, to supplement the “visual” model.
183
H

gh
p
e
g

ed

e.
er
l

le

y
r
t
n
f

e

d
t

m
he
d

ta
es

o

d
l
t
l
l
f

Additionally, large “visual” models can become very
cumbersome to view, edit, and document. Large mode
can be comprised of many “screens” of icons and link
many of them with associated programming code reacha
only by going through multiple levels of clicking.
Editing—or even just browsing—such models forces th
user to navigate through a labyrinth of icons, menus, clic
buttons, data fields, and code segments.

In contrast, a text-based interface allows browsing
model simply by scrolling and reading. There is no need
try to remember what details are associated with an icon,
to shift back and forth between icons and forms at o
level, and text-based procedural logic at anothe
Providing a more detailed representation in part of a mod
simply requires continuing to work in the same style a
before, but adding detail to the logic.

Graphical modeling tools can also force their use
to make the model fit within a rigid framework bounded
by the available icons, menus and forms. An obviou
advantage of such a rigid framework is that it tends
steer even a beginning modeler through the mode
building process. The not-so-obvious disadvantage
that the framework may not be versatile enough
accurately model complicated systems, so the modele
may be forced to choose between an inaccurate mo
and starting over with a new simulation tool. For a
excellent discussion of this situation, see Banks an
Gibson (1997).

3.2 What Does Ease-of-Use Mean?

The presence or absence of a single characteristic—suc
a “visual” interface for building models—is not sufficient
to determine a tool’s ease-of-use. Whether a tool is “ea
to use” depends upon the combination of general
characteristics and specific features that are heavily used
when real-world models are built.

Moreover, the ease-of-use that is claimed for almo
all simulation tools can mean many things—that the tool
easy to learn, easy to use once learned, easy to use w
modifying models, easy to use when building simpl
models, or easy to use when building large, comple
models. Rarely is a product equally good at all of these, b
equally rarely is the prospective user informed about whi
“ease-of-use” is being claimed.

Another meaning, which is often overlooked ye
very important when modeling complex, real-world
systems, is that of ease in verifying that the tool’s inn
workings, when running the model, are accurate
mimicking the operation of the actual system. If suc
verification is difficult, it may not be done. The risks o
not doing it have been pointed out by Schriber an
Brunner (1997).

Simulation Using GPSS/H

a

n

e

t

S
t

m

io
e
a
i

e

n
g

e

m

ul

s
e

n.
-

y
ed,
 a
d

om

or
t,
e
of

d
,
ed
of
hat
H
n

or
er
 to
gh
del
a
es
ion
4 IMPORTANT FEATURES OF GPSS/H

Several characteristics make Wolverine’s GPSS/H
excellent choice for a general simulation environment.
key feature of GPSS/H is the conceptual flexibility to
model a wide range of different types of systems: a
system that can be described as a process flow, w
objects and resources acting upon each other, can
modeled. This may include people on a mass tran
system, tasks in an office environment, or data flow with
a computer network.

Specification flexibility is also provided within the
language: complex math formulas, expressions, a
constants can be used virtually anywhere in the model.
promote model readability, elements and entities may
specified by names instead of numbers.

Basic simulation output data, such as queuing a
service statistics, are automatically provided each time a
model is run, which greatly aids incremental mod
development. In addition, with very little effort virtually
any of the automatically gathered statistics can be writ
to a file for use with other software.

GPSS/H is available for PCs and SUN SPAR
workstations. On the PC, GPSS/H Professional runs as a
32-bit application under Windows 98, Windows 95, Window
NT, Windows 3.x, OS/2, or even—if necessary—plain DO
providing tremendous speed as well as model size tha
limited only by the computer’s available memory.

4.1 GPSS/H Input and Output Capabilities

The file and screen I/O built into GPSS/H provide a varie
of ways to get data into a model and get results o
GPSS/H can read directly from the keyboard or fro
standard text files, and it can write directly to the screen
to text files. The GETLIST statement and the BGETLIS
block read integer, character, and double-precis
floating-point data. Input data files are free-format (valu
on each line are simply separated by blanks or tabs),
special actions may be specified for error and end-of-f
conditions.

Customized output is generated using the PUTP
statement and the BPUTPIC block. These use a v
intuitive “picture” type of format specification, which
follows the “what you see is what you get” conventio
Special provisions are included to make it easy to
tabular output. Character strings can also be manipula
using built-in capabilities. Writing output files using th
comma-separated-value (.CSV) format, for easy input in
a spreadsheet, is very straightforward with GPSS/H.

4.2 Scripting Language for Experiment Control

One run proves nothing. The results from a single run o
simulation are only single observations of rando
18
n
A

y
ith
be

sit
in

nd
To
be

nd

l

en

C
true
s
,

 is

ty
ut.

or
T
n
s
nd
le

IC
ry

.
et
ted

to

f a

variables that may be subject to wide variations. Caref
experimental design, using multiple runs, is essential to
accurately predict the behavior of the model output.
GPSS/H provides the tools to build a complet
experimental framework.

A complete scripting language is available to
construct experiments and control model executio
Experiments can be automated with DO loops and IF
THEN-ELSE structures. Statistics collection may be totall
or selectively reset, and/or data values may be assign
both during a model run and before or after each run in
series of runs. The experimental specifications an
parameters, like any other model data, can be read in fr
a data file or from the keyboard if desired.

4.3 Statistically Robust Random-Number Streams

The need to provide multiple independent streams of
random numbers for use in different parts of the model (
in the same parts for different runs) is very importan
particularly after a model is largely complete and th
modeler is concentrating on validation and the running
experiments. The indexed Lehmer random number
generator provided in GPSS/H was designed an
implemented specifically to provide exceptionally simple
straightforward control of the random number streams us
in a model. Modelers can easily specify any number
streams and guarantee that they will be independent (t
they will not be autocorrelated due to overlap). GPSS/
automatically detects any accidental overlap, providing a
extra measure of protection to users.

4.4 Validation and Debugging

The GPSS/H Interactive Debugger conveniently provides f
rapid model development and verification. Simple debugg
commands are used to control a model’s execution and
examine its status. Functions are provided to “step” throu
the model, to set breakpoints and traps that interrupt mo
execution based on multiple criteria, and to return to
previously saved state of the model. Almost all data valu
can be examined, including local data, global data, transact
attributes, entity statistics, and array data values.

• The debugger provides a “windowing” mode
that displays source code, model status, and
interactive user input as the model runs.

• A modeler can interrupt a long-running
model at any time and use the debugging
features to make sure that everything is
running correctly before resuming execution.

• The GPSS/H debugger has almost no effect
on execution speed. Because of this, many
modelers use the debugger as their everyday
run-time environment for GPSS/H.
4

Crain and Henriksen

S

s.
ust
al

er
g

ild

ost
5 FEATURES OF GPSS/H

GPSS/H is continually improving and evolving. Some
the more significant additions to the widely-used GPS
Professional version have been:

• The BLET Block and the LET Statement can
be used to assign a value to any GPSS/H data
item. Unless you need the rarely used range-
type assignments, there is no longer any
reason to use the ASSIGN, SAVEVALUE,
and MSAVEVALUE Blocks. The BLET
Block provides a single, straightforward
syntax for assigning values to all GPSS/H
data items. For example, using BLET to
assign a value of 1 to the Transaction
parameter named ALEX is quite intuitive:

BLET PF(ALEX)=1

Using indirect addressing, such as assigning a
value to the Parameter specified by the
number given in PF(ALEX), is similarly
intuitive, yet is not likely to be written by
accident:

BLET PF(PF(ALEX))=1

• GPSS/H supports convenient built-in
random-variate generators for 26 statistical
distributions.

• GPSS/H Professional is bundled with
ExpertFit™, the highly-regarded distribution-
fitting software from Averill M. Law and
Associates.

• GPSS/H Professional supports user-written
external routines in both C and FORTRAN.
Although it is rarely necessary to go
“outside” GPSS/H when developing a model,
it can be helpful in special situations. For
example, it might be desirable to use
scheduling software from the real system as a
component of the simulation model.
Similarly, a modeler might want to use pre-
existing computational code, or need to write
extremely complex computational routines
that can become somewhat cumbersome as
GPSS/H Blocks. Other special situations
might involve the need to interface with non-
ASCII data files, or to develop a specialized
user-interface.

• CHECKPOINT and RESTORE statements
allow a model to save its state at a
predetermined point during execution, then
make repeated runs using that state as the
starting point. In many cases, CHECKPOINT
18
of
/H

and RESTORE can be much easier to use
than the traditional READ and SAVE
statements.

• The SYSCALL statement and the
BSYSCALL Block, which take an operating
system command line as an operand, allow a
running GPSS/H model to shell out to the
operating system to perform the specified
command. SYSCALL and BSYSCALL are
especially useful when using existing
programs to perform data analysis during
model execution or between simulation runs.
The models can communicate with the
external programs through data files. The
ability to shell out to the host operating
system has also been implemented in the
GPSS/H Interactive Debugger. In order to use
this feature, one merely types a “$” followed
by the operating system command at the
debugger prompt.

• The operations that can be performed on
Transactions in a User Chain were extended.
The SCANUCH and ALTERUCH Blocks
allow examining and changing the Parameters
of such Transactions without having to
UNLINK and reLINK them. They operate on
User Chains in exactly the same way as SCAN
and ALTER operate on Groups.

• Floating-point Parameters can be examined
and/or modified during operations on both
User Chains and Groups.

6 BUILDING A SIMULATOR USING GPSS/H

Earlier in this paper, the capabilities of visual-style
modeling tools were contrasted with those of language
Regardless of which approach is used, the modeler m
still build from scratch a model that represents the physic
system of interest. Modeling complex systems correctly
requires intimate knowledge of both the simulation
software and the system under study (Schriber and Brunn
1997). However, not everyone who can benefit from usin
simulation has the time or the training necessary to bu
simulation models.

Consequently, a third type of modeling tool, the
special-purpose simulator, has emerged as a way of
providing simulation capabilities to users with little or no
modeling experience. Special-purpose simulators are m
often developed under circumstances where:

• a single model development effort can benefit
multiple users

• modeling expertise can only be obtained from
indirect sources, such as internal or external
consultants
5

Using GPSS/H

n

d
fi

r
t

io
u
ta

t

i
u

r
e
d
h
a
.
e

z
 a

o
h
t
h

in

g

s

is
y

o
t

it
o
a

h
te
h

ue,
g

tes
n

e
 a
is
l

ry
me
r.
l
n
on

the
’s
e

ne
t,

ut
a

ed

.
nt
Simulation

In these cases, it makes sense to have an experie
simulationist develop the model, freeing the end-user fro
learning modeling and simulation-software skills.

The special-purpose simulator is thus a custom-bu
analysis tool designed by an experienced simulation-mo
builder. At its heart is a data-driven model of a speci
system or set of similar systems. The simulator provides
user with a method to easily modify model paramete
define experiments, run tests, and get results. A simula
is usually comprised of a data-entry front end, a simulat
engine, and an output browser. The simulation engine r
a parameterized model which accepts user-specified da
execution time. Combining these tools brings the power
simulation analysis into the hands of the non-simulationis

6.1 Data-Entry Front End

The front end is the means by which the user of a spec
purpose simulator modifies the run parameters witho
changing the underlying model. This may take seve
forms, the most basic and rarely used of which involv
manually editing a text file. In another approach, the mo
itself prompts the user for input from the keyboard as t
model executes. Still other designs require modifying d
by using an external spreadsheet or database program
matter which approach is used, the purpose of the front
is to conveniently produce a data file which can be used
the simulation model as it executes.

A more advanced approach integrates a customi
front-end data-entry program, a simulation engine, and
output browser under a single outer shell (Figure 1).
Typically created using a tool such as Visual Basic,
through use of macros within spreadsheet software suc
Excel, the shell may be menu- or button-driven. Data-en
“windows” and dialog boxes guide the user through t
process of specifying parameters, running the model, a
viewing the output. The shell may also provide built-
help facilities and data “range-checking” (e.g., verifying
that all operation times are non-negative before executin

6.2 Simulation Model

The most important component of the special-purpo
simulator is the underlying model. Since the end user
generally prevented from modifying the model, th
component determines the maximum flexibility offered b
the simulator. It must be generic enough to accept a br
range of inputs, and it must be updated periodically
ensure that the model remains valid.

A static simulation model can be produced and
design frozen when the simulator is initially created,
model code can be generated “on-the-fly” every time th
the model parameters are modified by a user. In eit
case, user input is not limited to operating-parame
values—a user can also alter logic embedded deeply wit
186
ced
m

ilt
el
c
its
s,
or
n
ns
 at

of
.

al-
t

al
s
el
e
ta
No
nd
by

ed
n

r
 as
ry
e
nd

).

e
is

ad
o

s
r
t

er
r
in

Simulation Engine
Simulation Model

Output Browser

Menu-Driven
Front End

(Enter model parameters
and write data file)

(Run parameterized
model and read data file)

(Format, view, analyze
results)

S
H
E
L
L

Control returns to "shell" after each component finishes executing

Output File

Data File

Text Files
Visual
Basic

Functional
Components

Figure 1: Components of a Special Purpose Simulator

the model. For example, based on a user-specified val
the model could select one of three different order-pickin
algorithms that have been pre-coded into the model.

6.3 Simulation Engine

The simulation engine runs the model and genera
output. There are several features to look for whe
selecting the engine.

Most importantly, the language used for the engin
must be flexible enough to handle the demands that
generalized model places on the software. Flexibility
crucial in the areas of file input, file output, and contro
logic within the model. Execution speed is also a prima
concern. The faster a model executes, the better—ti
executing a model is often down-time for the use
GPSS/H’s speed and built-in flexibility make it an idea
simulation engine for a special-purpose simulator. A
excellent example of the use of GPSS/H as a simulati
engine is given in Coughlan and Nolan (1995).

6.4 Output Browser

The output browser displays the data generated by
model in an easy-to-understand form. If the simulator
user has limited experience in simulation modeling, th
standard-style statistical reports provided by the engi
may be totally unsuitable. Custom-formatted outpu
including summary statistics, should always be used to
present simulator results. Statistical analysis of the outp
can be performed directly by the shell program, by
spreadsheet or similar program, or by a specializ
statistical software product.

Animation is yet another form of simulation output
Animating a generalized model can sometimes prese

Crain and Henriksen

r
a

ic
-
b
f

n
e

o
’

t

e

-

e

e

a

-
ly

ial
to

el

h
eir

e

g
s.

y,
s

w
s

l
n

f
of
s

ce
r

e
.
n
ion
ess
n
ors
obstacles. Accounting for variations in resource numbe
and capacities, flow and routing-patterns, and physic
layout dimensions makes animating a generic model mo
difficult than animating a specific model. However, a bas
animation helps confirm model validity to the non
simulationist. High quality animations can be generated
coupling a GPSS/H model with Wolverine’s Proo
Animation™, a general-purpose animation tool.

6.5 Run-Time Versions Provide an
Economical Simulation Engine

A simulator is generally developed for a single applicatio
where it is intended to be used by many people. Howev
each user must have a copy of the simulation software
order to execute the model. For a simulator used by doze
or even hundreds of users, the cost of the simulati
software may render a project too expensive. Wolverine
Run-time GPSS/H offers a solution to this problem.

Run-time GPSS/H is identical to Wolverine’s 32-bi
GPSS/H Professional, except that it can only run mode
which previously have been specially compiled with th
regular Professional version. The run-time version allow
economical distribution of high-performance GPSS/H
based simulators.

Security is another important feature provided by th
run-time version. Since only pre-compiled models can be
run, the end user cannot view or edit the model “sourc
code. The user has access only to the data files used by
front-end and the output browser; hence, confidenti
models can be safely distributed. Even further security can
be obtained by producing special “project-specific” pre
compiled models that can only be run by a special
designated group of users.

SUMMARY

GPSS/H has a strong history of success in both commerc
and academic environments. The product continues
evolve in functionality and to grow in use. Although
GPSS/H uses a more traditional text-based mod
definition, it continues to forge a reputation for the
robustness, modeling flexibility, ease-of-use and very hig
performance that experienced modelers demand for th
projects.

REFERENCES

Banks, J. and R. Gibson. 1997. Simulation modeling: som
programming required. IIE Solutions February 1997:
26-31.

Coughlan, K.L., and Paul J. Nolan. 1995. Developin
special purpose simulators under Microsoft Window
In Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos, K. Kang, W.R.
187
s
l

re

y

,
r,
in
ns
n
s

ls

s

”
the
l

Lilegdon, and D. Goldsman, 969-976. Piscatawa
New Jersey: Institute of Electrical and Electronic
Engineers.

Schriber, T.J., and D.T. Brunner 1997. Inside simulation
software: how it works and why it matters. In
Proceedings of the 1997 Winter Simulation
Conference, ed. S. Andradottir, K.J. Healy, D.H.
Withers, and B.L. Nelson, 14-22. Piscataway, Ne
Jersey: Institute of Electrical and Electronic
Engineers.

AUTHOR BIOGRAPHY

ROBERT C. CRAIN joined Wolverine Software
Corporation in 1981. He received a B.S. in Politica
Science from Arizona State University in 1971, and a
M.A. in Political Science from The Ohio State University
in 1975. Among his Wolverine responsibilities is that o
chief developer for PC and workstation implementations
GPSS/H. Mr. Crain is a Member of ACM. He served a
Business Chair of the 1986 Winter Simulation Conferen
and General Chair of the Twenty-Fifth Anniversary Winte
Simulation Conference in 1992.

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He was the chief developer of th
first version of GPSS/H, of Proof Animation, and of SLX
He is a frequent contributor to the literature on simulatio
and has presented many papers at the Winter Simulat
Conference. Mr. Henriksen has served as the Busin
Chair and General Chair of past Winter Simulatio
Conferences. He has also served on the Board of Direct
of the conference as the ACM/SIGSIM representative.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

