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ABSTRACT

This tutorial gives an introduction to parallel and
distributed simulation systems. Issues concerning t
execution of discrete-event simulations on parallel a
distributed computers either to reduce model executi
time or to create geographically distributed virtua
environments are covered.  The emphasis of this tutoria
on the algorithms and techniques that are used in 
underlying simulation executive to execute simulations o
parallel and distributed computing platforms.

1 INTRODUCTION

Parallel discrete event simulation is concerned with t
execution of simulation programs on multiprocesso
computing platforms.  Distributed simulation is concerne
with the execution of simulations on geographicall
distributed computers interconnected via a local ar
and/or wide area network.  In both cases the execution o
single simulation model, perhaps composed of seve
simulation programs, is distributed over multiple
computers.

There are several reasons one might want to distrib
the execution of a simulation across multiple computers:

• Reduced execution time. By subdividing a
large simulation computation into many sub-
computations that can execute concurrently
one can reduce the execution time by up to a
factor equal to the number of processors that
are used.  This may be important simply
because the simulation takes a long time to
execute, e.g., simulations of communication
networks containing tens of thousands of
nodes may require days or weeks for a single
run.  In other situations, on-line simulations
may be used as a forecasting tool to predict
the effects of critical decisions made now,
e.g., how are traveler delays affected by
rerouting commercial air traffic around
thunderstorms developing in Chicago.  Such
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simulations must be able to model many
hours of air traffic in only seconds of wall-
clock time in order to be useful in on-line
decision making processes.

• Geographical distribution. Executing the
simulation program on a set of geographically
distributed computers enables one to create
virtual worlds with multiple participants that
are physically located at different sites.  This
greatly alleviates travel expenses associated
with creating joint exercises involving
participants at different locations.

• Integrating simulators that execute on
machines from different manufacturers.
Suppose flight simulators for different types
of aircraft have been developed by different
manufacturers. Rather than porting these
programs to a single computer, it may be
more cost effective to “hook together” the
existing simulators, each executing on a
different computer, to create a new virtual
environment.

• Fault tolerance. Another potential benefit of
utilizing multiple processors is increased
tolerance to failures. If one processor fails, it
may be possible for other processors to
continue the simulation provided critical
elements do not reside on the failed
processors.

This paper is organized as follows.  The next sectio
distinguishes between major classes of application
namely analytic simulations and virtual environments an
provides some historical background concerning the orig
of work in these fields.  The two sections that follow are
concerned with the execution of analytic simulations o
parallel computers, with the principal goal of reducing
execution time.  Synchronization is a key problem tha
must be addressed.  Section 5 is concerned with distribut
virtual environments.  This paper is an updated version of
previous tutorial presented at this conference in 199
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(Fujimoto 1995).  A much more detailed treatment of th
subject is presented in (Fujimoto 1999).

2 ANALYTIC SIMULATIONS AND
VIRTUAL ENVIRONMENTS

Here, we distinguish between two major categories 
parallel and distributed simulations: analytic simulations
and distributed virtual environments.  Analytic simulations
are typically used to quantitatively analyze the behavior 
systems, e.g., to determine the average delay to downlo
files in a telecommunication network or to identify
bottlenecks in a factory assembly line.  These simulatio
usually run "as-fast-as-possible" meaning the goal is 
complete the simulation execution as quickly as possib
They may run as "batch" programs without huma
intervention, or may include an animation to depict th
operation of the system being modeled.

Virtual environments are a newer class of simulatio
applications.  Here, simulations are used to create virtu
worlds into which humans can be embedded for training 
entertainment.  For example, military exercises a
routinely rehearsed by interconnecting tank and fligh
simulators, and multi-player video games allow players 
different locations to interact with each other and simulate
adversaries.  These simulations must execute in real-ti
so that the simulated world evolves in synchrony wit
wall-clock time.

Historically, work in parallel and distributed
simulation for analytic applications arose largely from th
high performance computing research communit
Synchronization of discrete event simulations wa
recognized very early on as a central problem, and h
attracted a considerable amount of research.  Ea
algorithms were developed in the late 1970s and ea
1980s.  Research in this and other issues continues to 
day.  Application of this technology to real-world
applications was slow at first, with notable successes 
modeling military engagements (Wieland, Hawley et a
1989; Wilson and Weatherly 1994) and commercial a
traffic  (Wieland 1997) as notable production uses of th
technology.  More recently, the technology is becomin
widely utilized through its incorporation in the Departmen
of Defense (DoD) High Level Architecture (HLA) effort
that is has been adopted by the DoD and NATO, and
undergoing commercial standardization.

Largely independent of the above efforts, work i
distributed virtual environments has been undertaken 
two distinct communities.  This technology has bee
embraced by the military establishment as a more co
effective means to train personnel.  The SIMNET
(SIMulator NETworking) project that ran from 1983 to
1990 demonstrated the viability of using distribute
simulations to create virtual worlds for training soldiers i
military engagements (Miller and Thorpe 1995).  This lea
12
moto

is

of

of
ad

ns
to
le.
n
e

n
al
or
re
t

at
d

me
h

e
y.
s
as
rly
rly
this

in
l.
ir
e
g
t

 is

n
in
n
st

d
n
d

to the creation of a set of standards for interconnectin
simulators known as the Distributed Interactive Simulatio
(DIS) standards (IEEE Std 1278.1-1995 1995).  DIS ha
since been replaced by the aforementioned High Lev
Architecture that broadened this DIS approach to includ
analytic simulations.

A separate track of research and development effor
in distributed virtual environments came from the Interne
and computer gaming community.  Work in this area ca
be traced back to a role-playing game called dungeons a
dragons and a textual fantasy computer game call
Adventure developed in the 1970's. These soon gave w
to MultiUser Dungeon (MUD) games in the 1980's
Important additions such as sophisticated comput
graphics helped created the video game industry that 
flourishing today.

3 PARALLEL DISCRETE EVENT SIMULATION

Much of the work concerning the execution of analytic
simulations on multiprocessor computers is concerned wi
synchronization. The synchronization algorithm ensure
that before-and-after relationships in the system bein
simulated are correctly reproduced in the simulatio
program.  Toward this end, conservative and optimistic
synchronization mechanisms have been devised.  The
mechanisms usually assume the simulation consists of
collection of logical processes (LPs) that communicate by
exchanging time-stamped messages or events.  The goa
the synchronization mechanism is to ensure that each 
processes events in timestamp order; this requirement
referred to as the local causality constraint.  It can be
shown that if each LP adheres to the local causali
constraint, execution of the simulation program on 
parallel computer will produce exactly the same results 
an execution on a sequential computer.  An important si
effect of this property is that it is straightforward to ensur
that the execution of the simulation is repeatable, i.e
repeated executions of the simulation program using th
same input data and parameters will always produce t
same results.

Each logical process can be viewed as a sequent
discrete event simulation.  This means each LP maintai
some local state and a list of time stamped events that ha
been scheduled for this LP (including local events withi
the LP that it has scheduled for itself), but have not y
been processed.  This pending event list must also inclu
events sent to this LP from other LPs.  The mai
processing loop of the LP repeatedly removes the smalle
time stamped event and processes it.  Thus, t
computation performed by an LP can be viewed as 
sequence of event computations.  Processing an ev
means zero or more state variables within the LP may 
modified, and the LP may schedule additional events fo
itself or other LPs.  Each LP maintains a simulation tim
3
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clock that indicates the time stamp of the most recent ev
processed by the LP.  Any event scheduled by an LP m
have a time stamp at least as large as the LP's simula
time clock when the event was scheduled.

3.1 Conservative Synchronization

Historically, the first synchronization algorithms wer
based on conservative approaches.  This means 
synchronization algorithm takes precautions to avo
violating the local causality constraint.  For examp
suppose an LP is at simulation time 10, and it is ready
process its next event with time stamp 15.  But how d
the LP know it won't later receive an event from anoth
LP with time stamp (say) 12?  The synchronizati
algorithm must ensure no event with time stamp less t
15 can be later received before it can allow the time sta
15 event to be processed.

Thus, the principal task of any conservative protoco
to determine when it is "safe'' to process an event, 
when can one guarantee no event containing a smaller 
stamp will be later received by this LP.  An LP cann
process an event until it has been guaranteed to be safe

3.1.1  First Generation Algorithms

The algorithms described in (Bryant 1977; Chandy a
Misra 1978) were perhaps the first synchronizati
algorithms to be developed.  They assume the topol
indicating which LPs send messages to which others
fixed and known prior to execution.  It is assumed each 
sends messages with non-decreasing time stamps, an
communication network ensures that messages 
received in the same order that they were sent.  T
guarantees that messages arriving on each incoming lin
an LP arrive in timestamp order.  This implies that t
timestamp of the last message received on a link is a lo
bound on the timestamp of any subsequent message
will later be received on that link.

Messages arriving on each incoming link are stored
first-in-first-out order, which is also timestamp orde
because of the above restriction.  Local events sched
within the LP can be handled by having a queue with
each LP that holds messages sent by an LP to itself.  E
link has a clock that is equal to the timestamp of t
message at the front of that link's queue if the que
contains a message, or the timestamp of the last rece
message if the queue is empty.  The process repeat
selects the link with the smallest clock and, if there is
message in that link's queue, processes it.  If the sele
queue is empty, the process blocks.  The LP never blo
on the queue containing messages it schedules for it
however.  This protocol guarantees that each process 
only process events in non-decreasing timestamp order.
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Although this approach ensures the local causali
constraint is never violated, it is prone to deadlock.  A
cycle of empty links with small link clock values (e.g.,
smaller than any unprocessed message in the simulat
can occur, resulting in each process waiting for the ne
process in the cycle.  If there are relatively few
unprocessed event messages compared to the numbe
links in the network, or if the unprocessed events becom
clustered in one portion of the network, deadlock ma
occur very frequently.

Null messages are used to avoid deadlock.  A nu
message with timestamp Tnull sent from LPA to LPB is a
promise by LPA that it will not later send a message to LPB

carrying a timestamp smaller than Tnull.  Null messages do
not correspond to any activity in the simulated system; the
are defined purely for avoiding deadlock situations
Processes send null messages on each outgoing link a
processing each event.  A null message provides t
receiver with additional information that may be used t
determine that other events are safe to process.

Null messages are processed by each LP just li
ordinary non-null messages, except no activity is simulate
by the processing of a null message.  In particula
processing a null message advances the simulation clock
the LP to the time stamp of the null message.  However, 
state variables are modified and no non-null messages 
sent as the result of processing a null message.

How does a process determine the timestamps of t
null messages it sends?  The clock value of each incomi
link provides a lower bound on the timestamp of the ne
event that will be removed from that link's buffer.  When
coupled with knowledge of the simulation performed b
the process, this bound can be used to determine a low
bound on the timestamp of the next outgoing message on
each output link.  For example, if a queue server has
minimum service time of T, then the timestamp of any
future departure event must be at least T units of simulated
time larger than any arrival event that will be received i
the future.

Whenever a process finishes processing a null or no
null message, it sends a new null message on ea
outgoing link. The receiver of the null message can the
compute new bounds on its outgoing links, send th
information on to its neighbors, and so on.  It can be show
that this algorithm avoids deadlock (Chandy and Misr
1978).

The null message algorithm introduced a key proper
utilized by virtually all conservative synchronization
algorithms: lookahead.  If an LP is at simulation time T,
and it can guarantee that any message it will send in t
future will have a time stamp of at least T+L regardless o
what messages it may later receive, the LP is said to hav
lookahead of L.  As we just saw, lookahead is used 
generate the time stamps of null messages. One constra
of the null message algorithm is it requires that no cyc
4
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among LPs exist containing zero lookahead, i.e., it 
impossible for a sequence of messages to traverse 
cycle, with each message scheduling a new message w
the same time stamp.

3.1.2  Second Generation Algorithms

The main drawback with the null message algorithm is 
may generate an excessive number of null messag
Consider a simulation containing two LPs.  Suppose bo
are blocked, each has reached simulation time 100, a
each has a lookahead equal to 1. Suppose the n
unprocessed event in the simulation has a time stamp
200.  The null message algorithm will result in nul
messages exchanged between the LPs with time stamp 1
102, 103, and so on.  This will continue until the LP
advance to simulation time 200, when the event with tim
stamp 200 can now be processed.  A hundred n
messages must be sent and processed between the two
before the non-null message can be processed. This
clearly very inefficient.  The problem becomes even mor
severe if there are many LPs.

The principal problem is the algorithm uses only th
current simulation time of each LP and lookahead t
predict the minimum time stamp of messages it cou
generate in the future.  To solve this problem, we obser
that the key piece of information that is required is the tim
stamp of the next unprocessed event within each LP.  If t
LPs could collectively recognize that this event has tim
stamp 200, all of the LPs could immediately advance fro
simulation time 100 to time 200.  Thus, the time of the ne
event across the entire simulation provides critica
information that avoids the "time creeping" problem in th
null message algorithm.  This idea is exploited in mor
advanced synchronization algorithms.

Another problem with the null message algorithm
concerns the case where each LP can send message
many other LPs.  In the worst case, the LP topology is ful
connected meaning each LP could send a message to 
other.  In this case, each LP must broadcast a null mess
to every other LP after processing each event.  This al
results in an excessive number of null messages.

One early approach to solving these problems is a
alternate algorithm that allows the computation t
deadlock, but then detects and breaks it (Chandy and Mi
1981).  The deadlock can be broken by observing that t
message(s) containing the smallest timestamp is (a
always safe to process.  Alternatively, one may use 
distributed computation to compute lower bound
information (not unlike the distributed computation using
null messages described above) to enlarge the set of s
messages.

Many other approaches have been developed.  So
protocols use a synchronous execution where th
computation cycles between (i) determining which even
125
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are "safe'" to process, and (ii) processing those events.  It
clear that the key step is determining the events that a
safe to process each cycle.  Each LP must determine
lower bound on the time stamp (LBTS) of messages 
might later receive from other LPs.  This can be
determined from a snapshot of the distributed computatio
as the minimum among:

• the simulation time of the next event within
each LP if the LP is blocked, or the current
time of the LP if it is not blocked, plus the
LP's lookahead and

• the time stamp of any transient messages, i.e.,
any message that has been sent but has not
yet been received at its destination.

A barrier synchronization can be used to obtain th
snapshot.  Transient messages can be "flushed" out of t
system in order to account for their time stamps.  If first-in
first-out communication channels are used, null messag
can be sent through the channels to flush the channe
though as noted earlier, this may result in many nu
messages.  Alternatively, each LP can maintain a count
of the number of messages it has sent, and the number
has received.  When the sum of the send and recei
counters across all of the LPs are the same, and each 
has reached the barrier point, it is guaranteed that there a
no more transient messages in the system.  In practic
summing the counters can be combined with the
computation for computing the global minimum value.

To determine which events are safe, the distance
between LPs is sometimes used.  This "distance" is the
minimum amount of simulation time that must elapse fo
an event in one LP to directly or indirectly affect anothe
LP, and can be used by an LP to determine bounds on t
timestamp of future events it might receive from other LPs
This assumes it is known which LPs send messages 
which other LPs.  Full elaboration this technique is beyon
the scope of the present discussion, however, the
techniques and others are described in (Fujimoto 1999).

3.2 Optimistic Synchronization

In contrast to conservative approaches that avoid violation
of the local causality constraint, optimistic methods allow
violations to occur, but are able to detect and recover fro
them.  Optimistic approaches offer two important
advantages over conservative techniques.  First, they c
exploit greater degrees of parallelism.  If two events might
affect each other, but the computations are such that th
actually don't, optimistic mechanisms can process th
events concurrently, while conservative methods mus
sequentialize execution.  Second, conservative mechanis
generally rely on application specific information (e.g.,
distance between objects) in order to determine whic
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Parallel and Dis

events are safe to process.  While optimistic mechanis
can execute more efficiently if they exploit suc
information, they are less reliant on such information f
correct execution.  This allows the synchronizatio
mechanism to be more transparent to the applicat
program than conservative approaches, simplifyi
software development.  On the other hand, optimis
methods may require more overhead computations t
conservative approaches, leading to certain performa
degradations.

The Time Warp mechanism (Jefferson 1985) is t
most well known optimistic method.  When an LP receiv
an event with timestamp smaller than one or more even
has already processed, it rolls back and reprocesses t
events in timestamp order.  Rolling back an event involv
restoring the state of the LP to that which existed prior
processing the event (checkpoints are taken for t
purpose), and "unsending" messages sent by the ro
back events.  An elegant mechanism called anti-messa
is provided to "unsend" messages.

An anti-message is a duplicate copy of a previous
sent message.  Whenever an anti-message and its matc
(positive) message are both stored in the same queue
two are deleted (annihilated).  To "unsend'' a messag
process need only send the corresponding anti-messag
the matching positive message has already been proces
the receiver process is rolled back, possibly produc
additional anti-messages.  Using this recursive proced
all effects of the erroneous message will eventually 
erased.

Two problems remain to be solved before the abo
approach can be viewed as a viable synchronizat
mechanism.  First, certain computations, e.g., I
operations, cannot be rolled back.  Second, t
computation will continually consume more and mo
memory resources because a history (e.g., checkpoi
must be retained, even if no rollbacks occur; som
mechanism is required to reclaim the memory used for t
history information.  Both problems are solved by global
virtual time (GVT).  GVT is a lower bound on the
timestamp of any future rollback.  GVT is computed b
observing that rollbacks are caused by messages arri
"in the past."  Therefore, the smallest timestamp amo
unprocessed and partially processed messages give
value for GVT.  Once GVT has been computed, I/
operations occurring at simulated times older than GV
can be committed, and storage older than GVT (except 
state vector for each LP) can be reclaimed.

GVT computations are essentially the same as LB
computations used in conservative algorithms.  This 
because rollbacks result from receiving a message or a
message in the LP's past.  Thus, GVT amounts 
computing a lower bound on the time stamp of futu
messages (or anti-messages) that may later be received
12
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A pure Time Warp system can suffer from overly
optimistic execution, i.e., some LPs may advance too fa
ahead of others leading to excessive memory utilizatio
and long rollbacks.  Many other optimistic algorithms have
been proposed to address these problems (Fujimoto 199
Most attempt to limit the amount of optimism.  An early
technique involves using a sliding window of simulated
time (Sokol and Stucky 1990).  The window is defined a
[GVT, GVT+W] where W is a user defined parameter
Only events with time stamp within this interval are
eligible for processing. Another approach delays messa
sends until it is guaranteed that the send will not be lat
rolled back, i.e., until GVT advances to the simulation time
at which the event was scheduled. This eliminates the ne
for anti-messages and avoids cascaded rollbacks, i.e.,
rollback resulting in the generation of additional rollbacks
(Dickens and Reynolds 1990).

Another problem with optimistic synchronization
concerns the amount of memory that may be required 
store history information.  Several techniques have bee
developed to address this problem.  For example, one c
roll back computations to reclaim memory resource
(Jefferson 1990; Lin and Preiss 1991).  State saving can 
performed infrequently rather than after each event (Lin
Preiss et al. 1993; Palaniswamy and Wilsey 1993).  Th
memory used by some state vectors can be reclaimed ev
though their time stamp is larger than GVT (Preiss an
Loucks 1995).

Early approaches to controlling Time Warp execution
used user-defined parameters that had to be tuned 
optimize performance.  Later work has focused on adaptiv
approaches where the simulation executive automatical
monitors the execution and adjusts control parameters 
maximize performance.  Examples of such adaptive contr
mechanisms are described in (Ferscha 1995; Das a
Fujimoto 1997), among others.

3.3 Current State-of-the-Art

Synchronization is a well-studied area of research in th
parallel discrete event simulation field.  There is no clea
consensus concerning whether optimistic or conservativ
synchronization perform better; indeed, the optima
approach usually depends on the application.  In general,
the application has good lookahead characteristics a
programming the application to exploit this lookahead i
not overly burdensome, conservative approaches are t
method of choice.  Otherwise, optimistic synchronization
offers greater promise.  Disadvantages of optimisti
synchronization include the potentially large amount o
memory that may be required, and the complexity o
optimistic simulation executives. Techniques to reduc
memory utilization further aggravate the complexity issue.

Recently, synchronization algorithms have assumed a
increased importance because of their use in the DoD Hi
6



im

y

x
e

f
d
c

o
t

t
is
[
a
to
a
g

ll
g
n
a
r
a
c
n
r
t
s
i

fe
is
e

 

th
ra
u
 
c
b
e
u
i
th
 
o

s
ns

ch
st-
is
e
te.

of
s
ts
w

he
e
ns
by

re,
of

wn
n
in
r

ibed
ri

n
n

g
or
is

he

d

e
al
),
tic
 of
r

ct
a
in
the

ly
en
Fuj

Level Architecture (HLA).  Because the HLA is driven b
the desire to reuse existing simulations, an importa
disadvantage of optimistic synchronization in this conte
is the effort required to add state saving and oth
mechanism to enable the simulation to be rolled back.

4 TIME PARALLEL SIMULATION

Time-parallel simulation methods have been developed 
attacking specific simulation problems with well-define
objectives, e.g., measuring the loss rate of a finite capa
queue.  Time-parallel algorithms divide the simulated tim
axis into intervals, and assign each interval to a differe
processor.  This allows for massively parallel executi
because simulations often span long periods of simula
time.

A central question that must be addressed by tim
parallel simulators is ensuring the states computed at 
"boundaries" of the time intervals match.  Specifically, it 
clear that the state computed at the end of the interval i-

1,Ti] must match the state at the beginning of interv
[Ti,Ti+1].  Thus, this approach relies on being able 
perform the simulation corresponding to the ith interv
without first completing the simulations of the precedin
(i-1, i-2, ... 1) intervals.

Because of the "state-matching'' problem, time-para
simulation is really more of a methodology for developin
massively parallel algorithms for specific simulatio
problems than a general approach for executing arbitr
discrete-event simulation models on parallel compute
Time-parallel algorithms are currently not as robust 
space-parallel approaches because they rely on spe
properties of the system being modeled, e.g., specificatio
the system's behavior as recurrence equations and/o
relatively simple state descriptor.  This approach is curren
limited to a handful of applications, e.g., queuing network
Petri nets, cache memories, and multiplexers 
communication networks.  Space-parallel simulations of
greater flexibility and wider applicability, but concurrency 
limited to the number of logical processes. In some cas
both time and space-parallelism can be used.

One approach to solving the state matching problem
to have each processor guess the initial state of 
simulation, and then simulate the system based on 
guessed initial state (Lin and Lazowska 1991). In gene
the initial state will not match the final state of the previo
interval.  After the interval simulators have completed,
"fix-up" computation is performed to account for the fa
that the wrong initial state was used.  This might 
performed, for instance, by simply repeating th
simulation, using the final state computed in the previo
interval as the new initial state. This "fix-up'' process 
repeated until the initial state of each interval matches 
final state of the previous interval.  In the worst case,
such iterations are required when there are N simulat
127
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However, if the final state of each interval simulator i
seldom dependent on the initial state, far fewer iteratio
will be needed.

In (Heidelberger and Stone 1990) the above approa
is proposed to simulate cache memories using a lea
recently-used replacement policy.  This approach 
effective for this application because the final state of th
cache is not heavily dependent on the cache's initial sta
A variation on this approach devised in the context 
simulating statistical multiplexers for asynchronou
transfer mode (ATM) switches precomputes certain poin
in time where one can guarantee that a buffer overflo
(full queue) or underflow (empty queue) will occur
(Fujimoto, Nikolaidis et al. 1995).  Because the state of t
system, namely, the number of occupied buffers in th
queue, is known at these points, independent simulatio
can be begun at these points in simulated time, there
eliminating the need for a fix-up computation.

Another approach to time-parallel simulation is
described in (Greenberg, Lubachevsky et al. 1991).  He
a queuing network simulation is expressed as a set 
recurrence equations that are then solved using well-kno
parallel prefix algorithms.  The parallel prefix computatio
enables the state of the system at various points 
simulated time to be computed concurrently.  Anothe
approach also based on recurrence equations is descr
in (Baccelli and Canales 1993) for simulating timed Pet
nets.

5 DISTRIBUTED VIRTUAL ENVIRONMENTS

While the foundation for parallel discrete event simulatio
lies in early research concerning synchronizatio
algorithms, early work in DVEs came from the SIMNET
project that demonstrated the viability of interconnectin
autonomous simulators in a distributed environment f
military training exercises.  SIMNET was used as the bas
for the initial DIS protocols and standards, and many of t
fundamental principles defined in SIMNET remain in DIS
and the HLA today.  SIMNET realized over 250 networke
simulators at 11 sites in 1990.

From a model execution standpoint, a DIS exercis
can be viewed as a collection of autonomous virtu
(manned training simulators), live (physical equipment
and constructive (wargaming simulators and other analy
tools) simulators, each generating its own representation
the battlefield from its own perspective.  Each simulato
sends messages, called protocol data units (PDUs),
whenever its state changes in a way that might affe
another simulator.  Typical PDUs include movement to 
new location, firing at another simulated entity, changes 
its appearance to other simulators (such as rotating 
turret of a tank), etc.

In order to achieve interoperability among separate
developed simulators, a set of standards have be
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developed (IEEE Std 1278.1-1995 1995).  The standar
specify the format and contents of PDUs exchange
between simulators as well as when PDUs should be sen

DIS is based on the following underlying design
principles (DIS Steering Committee 1994):

• Autonomy of simulation nodes.  Autonomy
facilitates the development, integration of
legacy simulators, and simulators joining or
leaving the exercise while it is in progress.
Each simulator advances simulation time
according to a local real-time clock.
Simulators are not required to determine
which other simulators must receive PDUs;
rather, PDUs are broadcast to all simulators
and the receiver must determine those that are
relevant to its own virtual environment.

• Transmission of "ground truth" information.
Each node sends absolute truth about the state
of the entities it represents.  Degradations of
this information (e.g., due to environmental
effects or sensor limitations) are performed
by the receiver.

• Transmission of state change information
only.  To economize on communications,
simulation nodes only transmit changes in
behavior.  If a vehicle continues to "do the
same thing" (e.g., travel in a straight line with
constant velocity), the rate at which state
updates are transmitted is reduced.
Simulators do transmit "keep alive''
messages, e.g., every five seconds, so new
simulators entering the exercise can include
them in their virtual environment.

• Dead Reckoning Algorithms.  All simulators
use common algorithms to extrapolate the
current state (position) of other entities
between state updates. More will be said
about this later.

• Simulation time constraints.  Because humans
cannot distinguish differences in time less
than 100 milliseconds, a communication
latency of up to this amount is required.
Lower latencies are needed for other, non-
training, simulators, e.g., testing of weapons
systems.

We note that these design principles are seldom us
in PADS research, but are pervasive in DIS work.

5.1 Dead Reckoning

DIS simulations use a technique called dead-reckoning to
reduce interprocessor communication to distribute positio
information.  This reduction is realized by observing tha
128
s

d

rather than sending new position coordinates of movi
entities at some predetermined frequency, processors 
estimate the location of other entities through a loc
computation.

In principal, one could duplicate a remote simulator 
the local processor so that any dynamically changing st
information is readily available.  This local computation
when applied to computing position information of movin
entities, if referred to as the dead-reckoning model (DRM).

In practice, the DRM is only an approximation of th
true simulator.  An approximation is used because (1) 
DRM does not receive inputs received by the actu
simulator, e.g., a pilot using a flight simulator decides 
travel in a new direction, and (2) to economize on t
amount of computation required to execute the DRM.  
practice, the DRM is realized as a simplified, lower fidelit
version is true model.  To limit the amount of erro
between the true model and the DRM, the true simula
maintain its own copy of the DRM to determine when th
divergence between them has become too large, i.e.,
difference between the true position and the dead-recko
position exceeds some threshold.  When this occurs, 
true simulator transmits new, updated information (the tr
position) to reset the DRM.  To avoid jumps in the displa
when the DRM is reset, simulators may realize th
transition to the new position as a sequence of ste
(Fujimoto 1999).

5.2 Data Distribution (DD)

An important question concerns scaling exercises 
include more entities and sites (locations).  Significa
changes to DIS are required to enable simulations of t
size, particularly with respect to the amount o
communications that are required.

Even with dead-reckoning, the DIS protocol describe
above does not scale to such large simulations. An obvi
problem is the reliance on broadcasts.  There are t
problems: (1) realization of the communication bandwid
needed to perform broadcasts, is costly, and (2) 
computation load required to process incoming PDUs
excessive and wasteful, particularly as the size of t
exercise increases because a smaller percentage of
incoming PDUs will be relevant to each simulator.

Whenever a simulator performs some action that m
be of interest to other simulators, e.g., moving an entity
a new location, a message is generated. Some mean
required to specify which other simulators should receive
copy of this message. Specifically, the distribute
simulation system must provide mechanisms for t
simulators to describe both the information it is producin
and the information it is interested in receiving. Based 
these specifications, the executive must then determ
which simulators should receive what messages.
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Data distribution has some similarities to Intern
newsgroups. Specifically, newsgroup users must expr
what information they are interested in receiving b
subscribing to specific newsgroups. The contents of 
information that is being published is described by t
newsgroup(s) to which it is sent, e.g., a recipe for a n
cake would be published to a cooking newsgroup, not o
concerning the weather. The newsgroup names are crit
because they provide a common vocabulary for users
characterize both the information being published, and 
information they are interested in receiving.

The set of newsgroup names defines a name space, i.e.,
a common vocabulary used to describe data and to exp
interests. Each user provides an interest expression that spe-
cifies a subset of the name space, i.e., a list of newsgro
that indicate what information he is interested in receivin
A description expression, again a subset of the name spac
is associated with each message that describes the con
of the message. Logically, the software managing the ne
groups matches the description expression of each mes
with the interest expression of each user. If the two overl
i.e., have at least one element of the name space in comm
the message is sent to that user.

The name space, interest expressions, and descrip
expressions define the heart of the interface to the D
mechanisms. The DD software must map this interface
the primitives provided by the communication facilitie
such as joining, leaving, and sending messages to multi
groups. The challenging aspect of the DD interface 
defining abstractions that are both convenient for t
modeler to use, and provide an efficient realization us
standard communication primitives. DD interfaces that a
similar to basic communications primitives len
themselves to straightforward implementation, but may 
difficult for modelers to use. On the other hand, high
level mechanisms such as "I am interested in receiv
position updates for all tanks with a 2.0 radius circle of m
current position" are more difficult to implement, leadin
to slow and/or inefficient mechanisms.

5.3 Data Distribution in the HLA

To illustrate these concepts, consider the data distribut
mechanisms provided in the High Level Architecture.  T
HLA Interface Specification includes two sets of servic
to implement data distribution: declaration manageme
and data distribution management.  Declarati
management services use a class-based approach.  
means the federation defines a set of objects according 
class hierarchy, and individual federates may subscribe
receive updates to object attributes of specific classes.  
example, a simulator might specify that it wishes to rece
a message whenever the position attribute of any ta
object (object declared from the tank class) is updat
This approach is static in the sense that interest express
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are based on classes that are statically defined.  One cou
not, for instance, use these services to get updates for tan
objects that are "close by" because the position of othe
tanks relative to one's current position is not known until
during the execution.

The data distribution management (DDM) services
provide a means for providing this capability.  The name
space for the HLA DDM services is called a routing space.
Routing spaces are an abstraction defined separately from
objects and attributes, solely for the purpose of data
distribution. A routing space is a multidimensional
coordinate system. The name space for a single N-
dimensional routing space is a tuple (X1, X2, ... XN) with
Xmin & Xi & Xmax, where Xmin and Xmax are federation-
defined values. For example, Figure 1 shows a two-
dimensional routing space with axis values ranging from
0.0 to 1.0. The relationship of the routing space to element
of the virtual environment is left to the federation
designers. For example, a two dimensional routing space
might be used to represent the geographical area covere
by the virtual environment, however, the data distribution
software is not aware of this interpretation.

0.0 0.5 1.0

1.0

0.5

0.0

S1

U
S2

Figure 1:  HLA DDM example

Interest and description expressions in the HLA define
areas called regions, of a routing space. Specifically, each
region is a set of one or more extents, where each extent is
a rectangular N-dimensional area defined within the N-
dimensional routing space. Four extents are shown in
Figure 1. Each extent is specified as a sequence of N
ranges (R1, R2, ... RN) where range Ri is an interval along
dimension i of the routing space. For example, the extent
labeled S1 in Figure 1 is denoted ([0.1,0.5], [0.2,0.5]),
using the convention that R1 corresponds to the horizontal
axis, and R2 corresponds to the vertical axis.

A region is the union of the set of points in the routing
space covered by its extents. Interest expressions ar
referred to as subscription regions, and description
expressions are referred to as publication regions. For
9
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example, the routing space in Figure 1 includes one upda
region U and two subscription regions S1 and S2. Th
extents defining a single region need not overlap.

Each federate can qualify a subscription to an objec
class by associating a subscription region with the
subscription, e.g., to only get updates for vehicles within 
certain portion of the routing space. Similarly, an update
region may be associated with each instance of an object.
a federate’s subscription region for an object class overlap
with the update region associated with the instance of th
object being modified, then a message is sent to th
federate.

For example, suppose the routing space in Figure 
corresponds to the geographic area (i.e., the playbox) of
virtual environment that includes moving vehicles.
Suppose the update region U is associated with an aircra
object that contains attributes indicating the aircraft’s
position. The region defined by U indicates the aircraft is
within this portion of the playbox. Suppose S1 and S2 ar
the subscription regions created by two distinct federate
F1 and F2, each modeling a sensor. The extents of the
subscription regions are set to encompass all areas that 
sensors can reach. If the aircraft moves to a new positio
within U, thereby updating its position attribute, a messag
will be sent to F1 because its subscription region S
overlaps with U, but no message will be sent to F2 whos
subscription region does not overlap with U.

Definition of subscription regions also involves certain
compromises, particularly if the subscription region
changes, as would be the case for a sensor mounted o
moving vehicle. Changing a subscription region can be 
time consuming operation involving joining and leaving
multicast groups. Defining large subscription regions will
result in less frequent region modifications, but will result
in the federate receiving more messages that are n
relevant to it. Small regions yield more precise filtering,
but more frequent changes. The region size should be set
strike a balance between these two extremes.

6 SUMMARY

Parallel and distributed simulation technologies addres
issues concerning the execution of simulation programs o
multiprocessor and distributed computing platforms
These technologies find applications in high performanc
computing contexts as well as in the creation o
geographically distributed virtual environments.
Originating in the 1970's, these remain active fields o
research to this day.

We have given a brief introduction to this field by
giving a sampling of some of the issues commonly
addressed by researchers working in this area
Synchronization is a fundamental issue that has long be
studied in the parallel discrete event simulation field.  A
130
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central issue in distributed virtual environments concer
efficient distribution of data, particularly for large DVEs.
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