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ABSTRACT represent the variability among practical problem
instances.
In this paper, we describe and discuss alternative input Libraries of standard test problems can facilitate
models for the coefficients in synthetic optimization comparisons across computational studies. However, the
problems. Synthetic, or randomly generated, problems areinference space is limited to the problems contained in the
often used in computational studies to establish the library.
efficacy of solution methods or to facilitate comparative Synthetic test problem generators offer a virtually
evaluations of solution methods. The selection of an input infinite supply of test problems. Any number of test
model for the coefficients in synthetic optimization problems with specified sizes and properties may be
problems is important because such a selection may affectgenerated. A shortcoming of these generators is that the
the outcome of a computational study. Understanding how problems that they generate may bear little resemblance to
an assumed input model affects the characteristics of testproblems encountered in practice. The selection of an
problems can assist researchers in their efforts to appropriate input model can alleviate this concern, at least
accurately quantify and interpret the performance of to a certain extent.

solution methods. This paper focuses on input models for synthetic
optimization problems that are featured in research papers.
1 INTRODUCTION Broadly speaking, these problem-generation methods may

be classified as independent sampling, implicit correlation

When conducting a computational experiment with induction, and explicit correlation induction.
solution methods for optimization problems, a researcher The paper is organized as follows. For convenience,
has to decide on which test problems will be used. Somewe define the 0-1 Knapsack Problem, which we use
options are to use real-world test problems, perturbations throughout the paper as an example class of optimization
of real-world test problems, or synthetic test problems. In a problems, in 82. We describe and discuss each of three
simulation context, we can think of these options as classes of problem-generations methods, or input models,
corresponding to the use of empirical distributions, fitted- in 83, 4, and 5, respectively. In §6, we discuss implications
empirical distributions, and theoretical distributions, of input model selection on the conduct and results of
respectively. Another option is to use standard libraries of computational experiments. Finally, we list open research
test problems. The experimenter’'s decision on test problemquestions related to input modeling for synthetic
selection can affect the inferences that may be drawn from optimization problems in §7.
the results of the computational experiment.

Each option for test problem selection has its pros and 2  0-1 KNAPSACK PROBLEM
cons. For instance, the use of real-world test problems has
the advantage of providing results consistent with those We define the 0-1 Knapsack Problem (KP01) as follows:
for, at least some, example problems encountered in
practice. The principal disadvantage is that there may not o n
be a sizable set of such problems to constitute a Maximize ZCJ' X;
satisfactory experiment. =

Perturbations of real-world examples provide a larger
sample space from which to draw test problems. However,

n

Subject toZaj X <b
=1

the variability across test problems may not adequately l

x, 0{Q3}, Oj
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where all ¢, >0, all a >0, Z c.>b, and a particular site would be directly related to the number or
: : - markets that could be served from that site.

Furthermore, as the size of the test problems is
o ) increased, the coefficients in test problems generated under
realizations of some random variable and that thea; s independent sampling will be increasingly likely to pass
are i.i.d. realizations of some random variatde Some tests of independence. Often, researchers will include large
rule for setting the value df would have to be specified test problems in their experiments, and doing so affects the
before any instance could be completely generated. For ourvariety of the test problems that may be generated, at least
purpose, such a rule need not be specified. in terms of the correlation between coefficient types. Even

KPO1 is a classical optimization problem for which though there is a tendency to try to solve larger and larger
many solution procedures have been devised. We use it agest problems, we see that doing so with problems
the basis for our discussion of input models for synthetic generated under independent sampling yields test problems
optimization problems because of its relatively simple that become more and more alike and unrealistic. When
form. Certainly, other optimization problems besides KP0O1 considered collectively, these larger test problems

max;{a;} <b. We assume that the;s are i.i.d.

could be used for this purpose. represent a smaller portion of the set of all possible test
problems.
3 INDEPENDENT SAMPLING Conducting a computational study only on test

problems generated under independent sampling is likely

Almost every computational study on synthetic to produce results consistent with the median performance
optimization problems includes some test problems that are of the solution method(s) being considered. So that we may
generated under independent sampling. Typically, a get a sense of the range of performance by a solution
discrete uniform distribution is assumed for the values of method, test problems should not be limited to those whose
each type of coefficients. Then, coefficient values are coefficients are generated independently.
generated independently for each coefficient type until all
of the needed coefficients are generated. 4 IMPLICIT CORRELATION INDUCTION

Let a and3 be positive integers. We now present a
procedure for generating KPO1l coefficients under It has been suggested that correlation among coefficient

independent sampling. types in synthetic optimization problems can affect
solution procedure performance in computational
Procedure GENERS8 experiments, and consequently, correlation ought to be an
experimental factor is such experiments. The conventional
1. a; « A~U{12...,a} wisdom is that an extreme level of correlation between key

types of coefficients can produce very challenging test
problems. For some problems (such as KPO1, Set
Covering, Multidimensional Knapsack), strong positive

Independent sampling is certainly easy to implement. correlation is associated with difficult problem instances.
Under this implementation of independent sampling, every For other problems (such as Generalized Assignment),
possible KPO1 test problem, or combination of coefficient strong negative correlation is thought to make a problem
values, is equally likely. The expected correlation between instance more challenging.
coefficient types (in this case, objective and constraint Many researchers include test problems in which
coefficients) is zero. But due to sampling error, the sample correlation is induced between certain types of coefficients
correlation between the coefficient types is not likely to be in an effort to create more challenging test problems and/or
zero. The number of decision variables in the test problemsto produce test problems that are more like instances that
will affect the distribution of sample correlation values. might be encountered in practice.

The larger the test problems, the less dispersed the sample  When test problems are generated under implicit
correlation values are likely to be. As the size of the test correlation induction (ICI), parameters for a problem-
problems is increased, it will become increasingly rare to generation method are specified. The values specified for
find a test problem with even modest correlation between these parameters imply some population correlation
the coefficient types (Reilly 1993). structure between coefficient types.

We would not expect that coefficient types in practical Unfortunately, the implied correlation levels are not
instances of KPO1 or many other optimization problems normally quantified in any of the papers in which ICI
would be uncorrelated, let alone independent. For example, methods are utilized. Rather, computational results for
consider a set covering problem in which warehouse sites problems generated under ICl are compared to the results
are to be selected so that some collection of markets mayfor problems generated under independent sampling. Even
be served at minimum cost. In such a case, we would when different sets of parameter values are specified for an
expect that the cost to build and/or maintain a warehouse at
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IClI method, the test problems generated under ICI are
sometimes considered collectively when the results are
analyzed.

Calculating correlation levels induced under ICI
methods is not difficult. Instead of quantifying the induced
correlation levels, qualitative labels are used to distinguish
the various of levels of correlation induced. Reilly (1997)
provides closed form expressions for the correlation levels
induced under ICI methods for some classical optimization
problems.

Perhaps the most commonly used form of ICI was
introduced by Martello and Toth (1979) for KPOL1.

significantly affected by relatively minor changes in the

correlation level. This observation underscores the
importance of selecting an input model for computational
experiments and of understanding what properties the
resulting test problems will have.

Other types of ICI methods of KPO1 include
“uncorrelated coefficients with similar weights” (see, e.g.,
Martello and Toth, 1997) and ‘“inversely strongly
correlated coefficients” (see, e.g., Martello, Pisinger, and
Toth 1999).

ICI methods are effective because they do indeed
induce correlation between selected types of coefficients. It

Additional examples of the use of ICI to generate KPO1 is not clear that the correlation that is induced is indicative
instances include Balas and Zemel (1980), Martello and of the correlation that would be found among coefficients
Toth (1988, 1997), Pisinger (1997), and Martello, Pisinger, in real-world instances. IClI methods are not difficult to
and Toth (1999). implement.

Similar ICI methods have been used to generate A serious drawback with ICI methods is that changes
instances of Multidimensional Knapsack Problems (Balas in the coefficients’ population correlation structure are
and Martin, 1980; Fréville and Plateau 1994, 1996), Set confounded with the marginal distributions of coefficient
Covering Problems (Rushmeier and Nemhauser 1993) andvalues (Carieet al 1995; Reilly 1997, 1998).

Generalized Assignment Problems (Martello and Toth
1981; Amini and Racer 1994).

Let o be a positive integer, and lef and y be
nonnegative integers. In order to generate coefficients for An alternative to implicit correlation induction is explicit
a KPO1 instance with ICI, we might use the following correlation induction. Under explicit correlation induction
procedure. (ECI), a joint distribution of coefficient values is specified
or marginal distributions of values for each type of
coefficient and a correlation structure are specified. In

5 EXPLICIT CORRELATION INDUCTION

Procedure ICI

either case, the coefficients’ population correlation
1. a; « A~U{12..0a}. structure is known or may be quantified.
Under ECI, it is easy to control the correlation
2. 4 «T~U{=0,-0+1...0} structure among coefficient types because the correlation
3. Cj=a;+t; +y. structure can be varied without affecting the marginal

distributions of coefficient values. As a result, the effect of
correlation on solution procedure performance is easier to
isolate and measure.

Reilly (1991, 1993) wggests that ECI can be
implemented for KP0O1 by “mixing” coefficient values
generated under independent sampling with values
generated based on extreme correlation. (Hill and Reilly
1999) extend this idea to multivariate sampling for
optimization problems with more than two types of
coefficients.)

Let A~U{12,...,a} and C~U{L2,...,3}. Also, let

f,, F., and F,'be the mass function, cumulative mass
function, and inverse cumulative distribution function for
A, respectively. Then,f., F., and F:'are similarly
defined forC.

Let p*be the maximum possible correlation between

It is unfortunate that correlation levels are apparently ao and C. The minimum possible correlation is then
not quantified by the researchers who implement ICI

problem-generation methods. The computational results P ~7F - If pis the deswe(.j value of the correlation and
reported for different classes of KPOL instances suggestif a value for 6 is chosen such that

that the performance of solution methods may be (1-6/@aB))p” <p<@-6/(aB))p*ando<6 <1/(af),

With Procedure ICI, the coefficients generated are said
to be “weakly correlated” if=0, “strongly correlated” if
0=0, and “value independent” =0 and y=0. When
neitherd nory is 0, the coefficients are said to be “almost
strongly correlated”. Reilly (1998) points out that for
typical values of these parameters, the induced correlation
is over 0.97 for the weakly correlated coefficients and very
nearly 1 for the almost strongly correlated coefficients.
With value independent problems and strongly correlated
coefficients, the induced correlation is perfect.

Reilly (1998a) shows that, under Procedure ICI,

a?-1

Com(AC)= |—5—— -
a“+456(0+1)-1
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then a composite mass function foA, may be It seems that researchers tend to follow the lead of
constructed as follows: their predecessors when deciding on what types of test
problems to use. There is clearly some merit to doing so.

A'g*(a,c)+A g (a,c) +A°f,(a) fo (C), However, once a particular problem-generation method is

used in one study, it can become the standard approach for

. ~ ) generating test problems from a particular class, whether it
where g”(ac)andg(a,c) are the maximum- and  generates good sets of test problems or not.

minimum-correlation distributions folA(C), respectively, We think that it is unfortunate that input models are
andA\* =(1-aB0+plp*)I2, A =(1-apé-plp*)/2, not examined and understood to the same extent that, say,
0 random number generators are, before they are widely
and A” =a36. adopted.
The following procedure may be used to generate We regret that we may leave the reader with the
coefficients with explicitly induced correlation: impression that correlation is the most significant
distributional factor on solution procedure performance.
Procedure ECI Correlation is indeed important, but there are other
distributional factors that can influence performance of
1. Generateu~U (01 ) solution methods as well. For example, other factors that
2. Generate as follows: matter include distribution family (Loulou and Michaelides
(@) If us<A®, generated,) using GENERS. éQeTHQy) 1%ng%;)he range of coefficient values (Yang 1994;
(b) If A°<us<A®+A", generateq,c) based Hooker (1994) advocates the development on an
ong*(ac). empirical science of algorithms. By recognizing the
(c) Otherwise, generate a) based on characterist_ics of synthetic optimizatio_n_problems and
- understanding how those characteristics affect the
9 (ac. performance of solution methods, one can better interpret

the results of computational experiments and better assess

Procedure ECI is not difficult to implement. The the true capabilities and limitations of solution methods.
primary advantage of ECI over ICI is that the correlation Cario et al. (1995) conducted a study of the
structure among the CoeffiCient typeS can be Controlled performance of a genera'_purpose solver (LlNDO) on
systematically in a computational experiment. With the Generalized Assignment Problem instances generated
ECI implementation recommended here, an experimenter ynder ICI and ECI. They attempted to facilitate
also is able to control the entropy of the distribution for Comparisons of resu|ts across the problem_generation
(A,Q) by varying the parametef (Peterson and Reilly  methods by synchronizing some of the parameters of the
1995). (The parametef represents the smallest joint distributions of the coefficient values. Based on their work,
probability for any possible value oA(C). So, by varying it appears that ECI instances are more challenging to solve
0, an experimenter can effect changes in entropy.) than the comparable ICI instances are. We know of no

Of course, the distribution of coefficient values under other study that includes instances generated under both
ECI may not be similar to the distribution of coefficient ICI and ECI.
values observed for practical problem instance. However, We think that ECI methods offer clear advantages over
the fact that distributional parameters can be systematically ICI methods, and even more so over independent sampling.
varied and controlled without affecting the marginal This is not to say that we think that ECI, and in particular
distributions of coefficient values is a decided advantage of the ECI approach we have presented, is the definitive

ECI over ICI. problem-generation method. Much additional research and
experimentation with synthetic optimization problems is
6 DISCUSSION needed.

Computational experiments are usually conducted so that7 OPEN QUESTIONS

the effectiveness of a solution method can be assessed or

so that the performances of alternative solution methods Interesting open research questions include:
can be compared. There is too little guidance about

generating synthetic optimization problems available to * How should synthetic instances of a given
researchers who wish to conduct computational class of optimization problems be generated?
experiments. Hall and Posner (1999) provide some general, « What distributions of coefficient values
but helpful, guidelines for experimenters. should be used when generating instances of

a particular class of optimization problem?
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e How do the distribution families and the
parameters of the assumed distributions of
coefficient values affect the performance of
solution methods?

» How should relationships between different
types of coefficients observed in real-world
instances be accounted for in synthetic
optimization problems?

e How can the characteristics of practical
instances of optimization problems be
measured and represented in synthetic
problem instances?

* How should the purposes of a computational
experiment affect the selection of an input
model for the coefficients in synthetic
optimization problems?

e How can we “synchronize” instances of a
particular optimization problem that are
generated with different problem-generation

methods?
e How can we generate instances with
comparable difficulty  for different

optimization problems?

e How can the results from computational
studies on synthetic optimization problems be
used to design more effective solution
methods?

« How can we determine in advance the best
way to solve an instance of some
optimization problem?
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