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ABSTRACT 2 GENERAL ISSUES

We discuss ideas useful to simulation practitioners when Underlying our discussion of input modeling is our view
specifying the probability models used to represent stochas- of simulation experiments (Nelson and Schmeiser 1986,
tic behavior. Emphasis is on situations in which the classical Schmeiser 1990). We assume that the purpose of an ex-
simple models are inadequate. After discussing some gen- periment is to estimate a performance measyra (not

eral modeling issues, we consider univariate distributions, necessarily scalar) constant with unknown value. The sim-
nonnormal random vectors and time series, and nonhomo- ulation experiment can be represented by the sequence of
geneous Poisson processes. transformations

1 INTRODUCTION G>U—>X—>Y—0,

We assume that the reader is familiar with Nelson and whered is a point estimator of, which is a characteristic
Yamnitsky (1998), last year’s excellent advanced tutorial on (e.g., mean or quantile) of the unknown probability model of
simulation input modeling. That tutorial &dvancedn the the output dat&’. The output dat& are a known function
sense that it focuses on nonclassical univariate distributions g of the input dataX, whose probability model is assumed
and on dependence, both statistical and through time. In to be known. The input datX are generated as random
addition to being advanced, their tutorial is practical in that variates (see, e.g., Devroye 1986) usinglh@, 1) random

it focuses on ideas supported by easily obtainable software. numbersU, which are generated from a (pseudo)random
(For an introductory tutorial, see any of Leemis 1996, 1997, number generato.

1998, 1999). Simulation textbooks often discuss input

modeling, but typically not the advanced topics considered 2.1 The Logical and Input Models

in Nelson and Yamnitsky (1998).

Rather than repeating the content of their advanced tu- We state this formalism to emphasize that a simulation
torial, we expand upon it via comments and opinions. Some model has two application-dependent components: the de-
comments are historical, some point to additional references terministiclogical modelg, which transforms the input data
and ideas, some concern common errors. The opinions, we X into output dataY, and the probabilistiégnput model,
hope, are obviously opinions and that the reader, at least which represents that stochastic behavior. Given a logical
upon reflection, agrees with them. Such agreement is some-model and an input model, the simulation experiment can
times difficult to attain, however, as evidenced by Kelton et be run to obtain the point estimatér which typically goes
al. (1990). In the spirit of a tutorial, no ideas here are new. to 6 in the limit as the simulation run length goes to infinity.
A fairly extensive list of references is provided, with the Whether conclusions about the value of the model's perfor-
large number from recent Winter Simulation Conferences mance measur@ apply to the real-world system of interest
indicating that input modeling remains a topic of substantial depends directly upon the degree to which the logical and
interest. input models are valid (i.e., match the real-world system).

We organize our thoughts beginning with some gen- Commercial simulation software provides extensive
eral issues, followed by sections on univariate distributions, support in creating the logical model, with relatively lit-
random vectors and time series, and the nonhomogeneoustle support for creating the input model. General-purpose
Poisson process. commercial statistical software (such as SAS or SPSS) can

be helpful for input modeling, but is not designed to focus
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on the issues that arise in simulation input modeling. Spe-
cialized commercial software designed for simulation input
modeling includes the ARENA input modeler (Kelton et al.
1998), BESTFIT (Jankauskas and McLafferty 1996) and
EXPERTFIT (Law and McComas 1998). They focus on
the important, but relatively simple, task of fitting classical
univariate distributions to data and incorporating the fitted
distributions into simulation software. The last few years
have produced some easily attainable noncommercial soft-
ware and ideas for creating more-complex input models,
including Avramidis and Wilson (1994), Cario (1996), Cario
and Nelson (1997a, 1997b), Chen (1999), Kuhl, Damerd;i
and Wilson (1997, 1998), Kuhl, Wilson and Johnson (1997),
Song and Hsiao (1993), Song, Hsiao and Chen (1995), Stan-
field et al. (1996), and Wagner and Wilson (1995, 1996a,

1996b). These (and some other ideas) are discussed in

Nelson and Yamnitsky (1998).

The attitudes of a practitioner toward the level of detalil
in the logical model and in the input model are often quite
different. The inclination to include unneeded detail in
the logical model is pervasive, despite ubiquitous warnings
in discussions of simulation modeling. The inclination to
simplify the input model (via use of classical distributions,
statistical independence, and time homogeneity) is equally
pervasive. Warnings against such simplification are easily
found: Bratley, Fox, and Schrage (1987), Kelton et al.
(1990), Johnson (1987), and Wilson (1997); warnings are
implicit in sensitivity analyses such as Gross and Juttijudata
(1997), Gross and Masi (1998), and Reilly (1998).

Why the different attitudes? Certainly a reason is
that the logical model is often visible and supported by
commercial software while the input model is less visible in
thatitis hidden by its own essence: observations are random.
In addition, there is the wide-spread sense thatepends
only weakly on characteristics of the input model beyond the
population mean &). Even in the simple case where the
performance measure is a mean (ite= E(Y) = E(g(x))

), typically E(g(X)) # g(E(X)); thatis, model performance

is not obtained by substituting mean behavior. For example,
a serial production line with deterministic arrival and service
times might need no buffers, but buffers are needed when
stochastic behavior is present.

2.2 Stochastic and Subjective Uncertainty

Two types of uncertainty are represented in the input model.
Helton (1996) refers to them as stochastic (or aleatory) and
subjective (or epistemic). For example, suppose that for any
particular simulated the time between arrivals is modeled
as a Poisson process with a constant vatedn addition,
suppose that for each dayis chosen from a particular
Weibull distribution. The arrival times are clearly stochastic
uncertainty. The randomnessxfhowever, might be either
stochastic or subjective. It would be stochastic if the arrival
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rate depends upon the day’s weather; it would be subjective
if the arrival rate is an unknown constant and the Weibull
distribution is reflecting the modeler’s lack of knowledge
about the true value. Notice that the simulation computation
is identical in either case; only the interpretation differs. In
the latter case, the simulation results correspond to no real-
world system. Sometimes more appropriate is a sensitivity
analysis that checks the changedirior a change in.

Barton and Schruben (1993) discuss explicit methods for
incorporating uncertainty about the model in the simulation
experiment. Here again, the interpretation of the simulation
results must be carefully stated because there is no real-world
system that corresponds to the simulated model.

2.3 Goodness-of-Fit Tests

As a final general comment, we mention the inappropriate
use of goodness-of-fit tests to determine whether an input
modelis adequate (and, more generally, whether a simulation
model is valid). The problem with such tests is that they
deal with statistical significance while the relevant issue
is practical significance. Remember that, except for some
trivial situations, we know before any data are collected
and/or analyzed that the typical simple null hypothesis of
a goodness-of-fit test is false. The question is not whether
the input model is absolutely correct; it is whether the input
model is adequate for the analysis at hand. A particular
model might be quite adequate for a quick study over the
weekend and quite inadequate for a six-month study, even if
the real-world system is the same. Similarly, an input model
might be adequate for a simulation experiment with a small
number of replications but inadequate when run with many
replications. The fallacy of the goodness-of-fit test is made
obvious when a large real-world data set it fitted to many
classical distributions and all are rejected; all are rejected
because the large sample size yields large power and the error
in the model is indeed statistically significant. The tyranny
of the goodness-of-fit test is such that many practitioners
fear using a distribution that has been rejected, even after
confirming visually and conceptually that it provides an
adequate fit.

The preceding paragraph is not meant to criticize the
use of goodness-of-fit statistics for heuristic ranking of
competing models (for example, Cheng et al. 1996). It
should be remembered, however, that different statistics
can provide quite different rankings. But if comparing
alternative input models is the goal, then a Bayesian approach
(e.g. Chick 1997) has substantial advantages.

3 UNIVARIATE DISTRIBUTIONS
Sometimes the method of hypothesizing a classical distri-

bution, estimating parameter values, and testing adequacy
leads quickly to a good model. Certainly the three input-
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modeling programs mentioned earlier automate this task For the harder problem of providing the desired Pearson
well. But what to do when the classical distributions are correlation, see Cario and Nelson (1997b) and Chen (1999).

not adequate? Schmeiser (1977), in an input-modeling
tutorial before commercial input-modeling software, em-
phasized classical four-parameter families of distributions

When the multivariate properties of the model are par-
ticularly difficult, a simple method is to “bootstrap” from a
data set for real-world data. Customers might arrive accord-

such as the Pearson and Johnson, both elegant in that theying to a fitted input model but have characteristics assigned

provide one and only one distribution for any first four
moments and inelegant in that they use more than one
functional form. Also discussed were two relatively new
four-parameter family designed explicitly for use in simula-

by choosing, with replacement, a real-world past customer.
The advantage and disadvantage is that every customer in
the simulation will be identical, except for arrival time, to

a real-world customer.

tion experiments (Ramberg and Schmeiser 1974, Schmeiser Similar to random vectors, the most tractable time-
and Deutsch 1977), elegant in that they used only one func- series models have normal marginal distributions. Lewis
tional form and are relatively easy to fit, but inelegant in that and colleagues (for example, Lawrance and Lewis 1981)
the one-to-one relationship with moments is lost. These dis- developed a variety of ingenious simple time-series mod-
tributions are all inadequate for data sets having anomalies els having nonnormal marginal distributions, often gamma.
as simple as being bimodal with tails. More generally, and as with random vectors, transforma-
Later models (Avramidis and Wilson 1994 and Wagner tion from the normal model works well. See Cario (1996),
and Wilson 1995, 1996a, 1996b), based on polynomials Cario and Nelson (1997a), Song and Hsiao (1993) and Song,
in various forms, allowed distributions to be formed on Hsiao, and Chen (1995). In principal, transformation from
the fly with an arbitrarily large number of parameters. The processes with other marginal distributions could be used;
Bézier models of Wagner and Wilson are particularly elegant for example, various simple queueing models provide time

in that they combine direct tractable visual distribution
fitting with an arbitrary number of parameters. Thezier
transformation of the polynomial to a function that can be
dragged on a computer screen is fundamental to the idea;
without the visualization, a direct polynomial fit is unwieldy
because polynomials are not automatically monotonically
increasing from zero to one. That arbitrarily difficult data
sets can be modeled interactively and visually using only
one functional form is a significant advance.

4 MODELING DEPENDENCY

Two fundamental forms of statistical dependency arise: Ran-
dom vectors with dependent components and time series
with autodependence. We comment briefly on each.

Other than the multivariate normal distribution, few
random-vector models are tractable and general, though
many multivariate distributions are well documented (John-
son 1987). The early approach to creating flexible multivari-
ate models was to assume a particular marginal distribution,
as done, for example, by Schmeiser and Lal (1980, 1982)
and Lewis and colleagues (e.g., Lewis and Orav 1989).
Wagner and Wilson (1995) discuss a generalization having
Bézier marginal distributions and Stanfield et al. (1996)
discuss a generalization having Johnson marginals.

A more-general idea is to transform the multivariate
normal distribution to a multivariate uniform distribution.
The components of the multivariate uniform distribution
then are placed in the inverse transformations of the desired
marginal distributions to obtain pseudorandom vectors. The
resulting model has the desired marginal distributions and
desired rank correlation, as discussed, e.g., in Clemen and
Reilly (1999) in the context of decision-analysis modeling.
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series with exponential marginal distributions, as discussed
in Schmeiser and Song (1989).

5 POISSON PROCESSES

Point processes model events that occur at points in time
(such as arrivals) or in space (such as defects). The Poisson
processis the special case when arrivals, say, are independent
(thatis, the numbers of arrivals in nonoverlapping increments
of time are independent of each other). Fortunately, a
Poisson process model is often appropriate and can be
verified by the physics of the situation (and without data
collection) simply by asking whether there is any mechanism
by which arrivals can “see” each other.

If a Poisson process model is appropriate, the only
input-modeling issue is to determine the appropriate arrival
rate, which can be any nonnegative function of time. If
the rate is assumed to be constant, estimation is trivially
easy. Only a bit more difficult is to assume that the rate
is piecewise constant over intervals of time. Substantially
more generally, Wilson and colleagues (e.g., Kuhl, Damerd;ji
and Wilson 1997, 1998, Kuhl, Wilson and Johnson 1997)
have investigated an assortment of increasingly complex
functional forms to model trends and seasonalities.

Leemis (1991) and Arkin and Leemis (1999) fit piece-
wise-linear rates to real-world arrival times. This approach
is nonparametric in that no model parameters need to be
specified and generation of arrivals from a piecewise-linear
rate function is straightforward (Klein and Roberts 1984).
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6 FINAL COMMENT

Despite the recent advances in generality, automation via

software, and visualization, simulation practitioners are of-
ten left to their own devices when the input model becomes
complex (for example, Ware et al. 1998 and Pritsker et
al. 1995). What to do, for example, when a nonnormal

time series of random vectors is needed? What to do when
non-Poisson defects in time and space are to be modeled?

of-fit. In Proceedings of the 1996 Winter Simulation
Conference ed. J. M. Charnes, D. J. Morrice, D. T.
Brunner and J. J. Swain, 199-206. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers.
Chick, S. E. 1997. Bayesian analysis for simulation input
and output. IrProceedings of the 1997 Winter Simula-
tion Conferenceed. S. Andradttir, K. J. Healy, D. H.
Withers and B. L. Nelson, 253-260. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers.

The ideas above are useful building blocks, but the state Clemen, R. T. and T. Reilly. 1999. Correlations and copulas

of the art is far from allowing novice practitioners to build
complex input models in the way that they can build complex
logical models with today’s commercial software.
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