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ABSTRACT

We discuss ideas useful to simulation practitioners wh
specifying the probability models used to represent stoch
tic behavior. Emphasis is on situations in which the classi
simple models are inadequate. After discussing some g
eral modeling issues, we consider univariate distributio
nonnormal random vectors and time series, and nonhom
geneous Poisson processes.

1 INTRODUCTION

We assume that the reader is familiar with Nelson a
Yamnitsky (1998), last year’s excellent advanced tutorial
simulation input modeling. That tutorial isadvancedin the
sense that it focuses on nonclassical univariate distributi
and on dependence, both statistical and through time.
addition to being advanced, their tutorial is practical in th
it focuses on ideas supported by easily obtainable softwa
(For an introductory tutorial, see any of Leemis 1996, 199
1998, 1999). Simulation textbooks often discuss inp
modeling, but typically not the advanced topics consider
in Nelson and Yamnitsky (1998).

Rather than repeating the content of their advanced
torial, we expand upon it via comments and opinions. So
comments are historical, some point to additional referen
and ideas, some concern common errors. The opinions,
hope, are obviously opinions and that the reader, at le
upon reflection, agrees with them. Such agreement is so
times difficult to attain, however, as evidenced by Kelton
al. (1990). In the spirit of a tutorial, no ideas here are ne
A fairly extensive list of references is provided, with th
large number from recent Winter Simulation Conferenc
indicating that input modeling remains a topic of substant
interest.

We organize our thoughts beginning with some ge
eral issues, followed by sections on univariate distribution
random vectors and time series, and the nonhomogene
Poisson process.
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2 GENERAL ISSUES

Underlying our discussion of input modeling is our vie
of simulation experiments (Nelson and Schmeiser 19
Schmeiser 1990). We assume that the purpose of an
periment is to estimate a performance measureθ , a (not
necessarily scalar) constant with unknown value. The s
ulation experiment can be represented by the sequenc
transformations

G → U → X → Y → θ̂ ,

whereθ̂ is a point estimator ofθ , which is a characteristic
(e.g., mean or quantile) of the unknown probability mode
the output dataY . The output dataY are a known function
g of the input dataX, whose probability model is assume
to be known. The input dataX are generated as rando
variates (see, e.g., Devroye 1986) using theU(0, 1) random
numbersU , which are generated from a (pseudo)rand
number generatorG.

2.1 The Logical and Input Models

We state this formalism to emphasize that a simulat
model has two application-dependent components: the
terministiclogical modelg, which transforms the input dat
X into output dataY , and the probabilisticinput model,
which represents that stochastic behavior. Given a log
model and an input model, the simulation experiment c
be run to obtain the point estimatorθ̂ , which typically goes
to θ in the limit as the simulation run length goes to infinit
Whether conclusions about the value of the model’s per
mance measureθ apply to the real-world system of intere
depends directly upon the degree to which the logical
input models are valid (i.e., match the real-world syste

Commercial simulation software provides extens
support in creating the logical model, with relatively li
tle support for creating the input model. General-purpo
commercial statistical software (such as SAS or SPSS)
be helpful for input modeling, but is not designed to foc
0
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on the issues that arise in simulation input modeling. Spe
cialized commercial software designed for simulation inpu
modeling includes the ARENA input modeler (Kelton et al.
1998), BESTFIT (Jankauskas and McLafferty 1996) and
EXPERTFIT (Law and McComas 1998). They focus on
the important, but relatively simple, task of fitting classical
univariate distributions to data and incorporating the fitted
distributions into simulation software. The last few years
have produced some easily attainable noncommercial sof
ware and ideas for creating more-complex input models
including Avramidis and Wilson (1994), Cario (1996), Cario
and Nelson (1997a, 1997b), Chen (1999), Kuhl, Damerdj
and Wilson (1997, 1998), Kuhl, Wilson and Johnson (1997)
Song and Hsiao (1993), Song, Hsiao and Chen (1995), Sta
field et al. (1996), and Wagner and Wilson (1995, 1996a
1996b). These (and some other ideas) are discussed
Nelson and Yamnitsky (1998).

The attitudes of a practitioner toward the level of detail
in the logical model and in the input model are often quite
different. The inclination to include unneeded detail in
the logical model is pervasive, despite ubiquitous warning
in discussions of simulation modeling. The inclination to
simplify the input model (via use of classical distributions,
statistical independence, and time homogeneity) is equall
pervasive. Warnings against such simplification are easil
found: Bratley, Fox, and Schrage (1987), Kelton et al.
(1990), Johnson (1987), and Wilson (1997); warnings ar
implicit in sensitivity analyses such as Gross and Juttijudat
(1997), Gross and Masi (1998), and Reilly (1998).

Why the different attitudes? Certainly a reason is
that the logical model is often visible and supported by
commercial software while the input model is less visible in
that it is hidden by its own essence: observations are random
In addition, there is the wide-spread sense thatθ depends
only weakly on characteristics of the input model beyond the
population mean E(X). Even in the simple case where the
performance measure is a mean (i.e.,θ = E(Y ) = E(g(x))

), typically E(g(X)) 6= g(E(X)); that is, model performance
is not obtained by substituting mean behavior. For example
a serial production line with deterministic arrival and service
times might need no buffers, but buffers are needed whe
stochastic behavior is present.

2.2 Stochastic and Subjective Uncertainty

Two types of uncertainty are represented in the input mode
Helton (1996) refers to them as stochastic (or aleatory) an
subjective (or epistemic). For example, suppose that for an
particular simulated the time between arrivals is modeled
as a Poisson process with a constant rateλ. In addition,
suppose that for each dayλ is chosen from a particular
Weibull distribution. The arrival times are clearly stochastic
uncertainty. The randomness ofλ, however, might be either
stochastic or subjective. It would be stochastic if the arriva
111
-

-

in

.

,

.

rate depends upon the day’s weather; it would be subjecti
if the arrival rate is an unknown constant and the Weibu
distribution is reflecting the modeler’s lack of knowledge
about the true value. Notice that the simulation computatio
is identical in either case; only the interpretation differs. In
the latter case, the simulation results correspond to no re
world system. Sometimes more appropriate is a sensitivi
analysis that checks the change inθ̂ for a change inλ.

Barton and Schruben (1993) discuss explicit methods f
incorporating uncertainty about the model in the simulatio
experiment. Here again, the interpretation of the simulatio
results must be carefully stated because there is no real-wo
system that corresponds to the simulated model.

2.3 Goodness-of-Fit Tests

As a final general comment, we mention the inappropria
use of goodness-of-fit tests to determine whether an inp
model is adequate (and, more generally, whether a simulati
model is valid). The problem with such tests is that the
deal with statistical significance while the relevant issue
is practical significance. Remember that, except for som
trivial situations, we know before any data are collecte
and/or analyzed that the typical simple null hypothesis o
a goodness-of-fit test is false. The question is not wheth
the input model is absolutely correct; it is whether the inpu
model is adequate for the analysis at hand. A particul
model might be quite adequate for a quick study over th
weekend and quite inadequate for a six-month study, even
the real-world system is the same. Similarly, an input mod
might be adequate for a simulation experiment with a sma
number of replications but inadequate when run with man
replications. The fallacy of the goodness-of-fit test is mad
obvious when a large real-world data set it fitted to man
classical distributions and all are rejected; all are rejecte
because the large sample size yields large power and the e
in the model is indeed statistically significant. The tyrann
of the goodness-of-fit test is such that many practitione
fear using a distribution that has been rejected, even af
confirming visually and conceptually that it provides an
adequate fit.

The preceding paragraph is not meant to criticize th
use of goodness-of-fit statistics for heuristic ranking o
competing models (for example, Cheng et al. 1996).
should be remembered, however, that different statisti
can provide quite different rankings. But if comparing
alternative input models is the goal, then a Bayesian approa
(e.g. Chick 1997) has substantial advantages.

3 UNIVARIATE DISTRIBUTIONS

Sometimes the method of hypothesizing a classical dist
bution, estimating parameter values, and testing adequa
leads quickly to a good model. Certainly the three inpu
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Advanced Input Modeling

modeling programs mentioned earlier automate this ta
well. But what to do when the classical distributions a
not adequate? Schmeiser (1977), in an input-model
tutorial before commercial input-modeling software, em
phasized classical four-parameter families of distributio
such as the Pearson and Johnson, both elegant in that
provide one and only one distribution for any first fou
moments and inelegant in that they use more than o
functional form. Also discussed were two relatively ne
four-parameter family designed explicitly for use in simula
tion experiments (Ramberg and Schmeiser 1974, Schme
and Deutsch 1977), elegant in that they used only one fu
tional form and are relatively easy to fit, but inelegant in th
the one-to-one relationship with moments is lost. These d
tributions are all inadequate for data sets having anoma
as simple as being bimodal with tails.

Later models (Avramidis and Wilson 1994 and Wagn
and Wilson 1995, 1996a, 1996b), based on polynomi
in various forms, allowed distributions to be formed o
the fly with an arbitrarily large number of parameters. Th
Bézier models of Wagner and Wilson are particularly elega
in that they combine direct tractable visual distributio
fitting with an arbitrary number of parameters. The Bézier
transformation of the polynomial to a function that can b
dragged on a computer screen is fundamental to the id
without the visualization, a direct polynomial fit is unwieldy
because polynomials are not automatically monotonica
increasing from zero to one. That arbitrarily difficult dat
sets can be modeled interactively and visually using on
one functional form is a significant advance.

4 MODELING DEPENDENCY

Two fundamental forms of statistical dependency arise: Ra
dom vectors with dependent components and time ser
with autodependence. We comment briefly on each.

Other than the multivariate normal distribution, few
random-vector models are tractable and general, thou
many multivariate distributions are well documented (Joh
son 1987). The early approach to creating flexible multiva
ate models was to assume a particular marginal distributi
as done, for example, by Schmeiser and Lal (1980, 198
and Lewis and colleagues (e.g., Lewis and Orav 198
Wagner and Wilson (1995) discuss a generalization hav
Bézier marginal distributions and Stanfield et al. (199
discuss a generalization having Johnson marginals.

A more-general idea is to transform the multivariat
normal distribution to a multivariate uniform distribution
The components of the multivariate uniform distributio
then are placed in the inverse transformations of the desi
marginal distributions to obtain pseudorandom vectors. T
resulting model has the desired marginal distributions a
desired rank correlation, as discussed, e.g., in Clemen
Reilly (1999) in the context of decision-analysis modelin
112
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For the harder problem of providing the desired Pears
correlation, see Cario and Nelson (1997b) and Chen (199

When the multivariate properties of the model are pa
ticularly difficult, a simple method is to “bootstrap” from a
data set for real-world data. Customers might arrive acco
ing to a fitted input model but have characteristics assign
by choosing, with replacement, a real-world past custom
The advantage and disadvantage is that every custome
the simulation will be identical, except for arrival time, to
a real-world customer.

Similar to random vectors, the most tractable time
series models have normal marginal distributions. Lew
and colleagues (for example, Lawrance and Lewis 198
developed a variety of ingenious simple time-series mo
els having nonnormal marginal distributions, often gamm
More generally, and as with random vectors, transform
tion from the normal model works well. See Cario (1996
Cario and Nelson (1997a), Song and Hsiao (1993) and So
Hsiao, and Chen (1995). In principal, transformation fro
processes with other marginal distributions could be use
for example, various simple queueing models provide tim
series with exponential marginal distributions, as discuss
in Schmeiser and Song (1989).

5 POISSON PROCESSES

Point processes model events that occur at points in ti
(such as arrivals) or in space (such as defects). The Pois
process is the special case when arrivals, say, are indepen
(that is, the numbers of arrivals in nonoverlapping incremen
of time are independent of each other). Fortunately,
Poisson process model is often appropriate and can
verified by the physics of the situation (and without da
collection) simply by asking whether there is any mechanis
by which arrivals can “see” each other.

If a Poisson process model is appropriate, the on
input-modeling issue is to determine the appropriate arriv
rate, which can be any nonnegative function of time.
the rate is assumed to be constant, estimation is trivia
easy. Only a bit more difficult is to assume that the ra
is piecewise constant over intervals of time. Substantia
more generally, Wilson and colleagues (e.g., Kuhl, Damer
and Wilson 1997, 1998, Kuhl, Wilson and Johnson 199
have investigated an assortment of increasingly comp
functional forms to model trends and seasonalities.

Leemis (1991) and Arkin and Leemis (1999) fit piece
wise-linear rates to real-world arrival times. This approac
is nonparametric in that no model parameters need to
specified and generation of arrivals from a piecewise-line
rate function is straightforward (Klein and Roberts 1984
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6 FINAL COMMENT

Despite the recent advances in generality, automation
software, and visualization, simulation practitioners are o
ten left to their own devices when the input model becom
complex (for example, Ware et al. 1998 and Pritsker
al. 1995). What to do, for example, when a nonnorm
time series of random vectors is needed? What to do wh
non-Poisson defects in time and space are to be mode
The ideas above are useful building blocks, but the st
of the art is far from allowing novice practitioners to build
complex input models in the way that they can build compl
logical models with today’s commercial software.
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