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ABSTRACT

Multivariate stochastic optimization plays a major role in
the analysis and control of many real-world systems. 
almost all large-scale practical optimization problems, 
is necessary to use a mathematical algorithm th
iteratively seeks out the solution because an analytic
(closed-form) solution is rarely available. In the abov
spirit, the “simultaneous perturbation stochasti
approximation (SPSA)” method for difficult multivariate
optimization problems has been developed. SPSA h
recently attracted considerable international attention 
areas such as statistical parameter estimation, feedb
control, simulation-based optimization, signal and imag
processing, and experimental design. The essent
feature of SPSAwhich accounts for its power and
relative ease of implementationis the underlying
gradient approximation that requires only two
measurements of the objective function regardless of t
dimension of the optimization problem. This feature
allows for a significant decrease in the cost o
optimization, especially in problems with a large numbe
of variables to be optimized.

1 INTRODUCTION

This paper is an introduction to the simultaneou
perturbation stochastic approximation (SPSA) algorithm
for stochastic optimization of multivariate systems
Optimization algorithms play a critical role in the design
analysis, and control of most physical and nonphysic
systems and are in widespread use in the simulati
community. Before presenting the SPSA algorithm, w
present some general background on the stochas
optimization context of interest here.

The mathematical representation of most optimizatio
problems is the minimization (or maximization) of some
scalar-valued objective function with respect to a vector 
adjustable parameters. The optimization algorithm is 
step-by-step procedure for changing the adjustab
parameters from some initial guess (or set of guesses) t
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value that offers an improvement in the objective function
Although many optimization algorithms have been
developed that assume a deterministic setting and th
assume information is available on the gradient of the los
function with respect to the parameters being optimized
our focus here is on the stochastic setting where on
measurements of the loss function are available (i.e., n
gradient information). (We will, however, present in
Section 6 an adaptive method that applies in both th
gradient-free and gradient-based cases.) This interest 
algorithms without direct gradient information has been
motivated, for example, by problems in the adaptive
control and statistical identification of complex systems
the optimization of processes by large Monte Carlo
simulations, the training of recurrent neural networks, th
recovery of images from noisy sensor data, and the desi
of complex queuing and discrete-event systems. Rathe
these algorithms are based on an approximation to the
gradient formed from (generally noisy) measurements o
the loss function.

More specifically, the goal is to minimize a loss
function L(θ) over θ ∈ Rp, p ≥ 1. The SPSA algorithm
works by iterating from an initial guess of the optimal θ,
where the iteration process depends on the abov
mentioned “simultaneous perturbation” approximationto
the gradient g(θ) ≡ ∂L/∂θ. We assume that
measurements y(θ) of the loss function are available at
any value of θ:

y(θ) = L(θ) + noise.

In some cases, exact loss function measurements w
be available; this corresponds to the noise = 0 setting. Note
that no direct measurements (with or without noise) of the
gradient g(θ) are assumed available. This measuremen
formulation is identical to that of the Kiefer-Wolfowitz
finite-difference SA algorithm (Kiefer and Wolfowitz,
1952, and Blum, 1954). In cases where more than on
point satisfies g(θ) = 0, then the algorithm may only
converge to a local minimum (however, as a consequen
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of the basic recursive form of the algorithm, there 
generally not a risk of converging to a maximum 
saddlepoint of L(θ), i.e., another point where g(θ) may
equal zero). Section 5 will briefly discuss modifications 
the basic SPSA algorithm to allow it to search for t
global solution among multiple local solutions and to fin
solutions in the presence of explicit or implicit constrain
on feasible θ.

Overall, gradient-free stochastic algorithms exhib
convergence properties similar to the gradient-bas
stochastic algorithms (e.g., Robbins-Monro 195
stochastic approximation, i.e., R-M SA) while requirin
only loss function measurements. The gradient-ba
algorithms rely on direct measurements of the gradien
the loss function with respect to the parameters be
optimized. These measurements typically yield 
unbiased estimate of the gradient. A main advantage of th
gradient-free algorithms is that they do not require t
detailed knowledge of the functional relationship betwe
the parameters being adjusted (optimized) and the 
function being minimized that is required in gradient-bas
algorithms. Such a relationship can be notoriously diffic
to develop in some areas (e.g., simulation-bas
optimization and nonlinear feedback controller desig
while in other areas (such as recursive statistical param
estimation), there may be large computational savings
calculating a loss function relative to that required 
calculating a gradient. On the other hand, in some ca
direct gradient observations are used with considera
advantage, including infinitesimal perturbation analys
(IPA) for simulation-based optimization of discrete eve
systems (Fu and Hu 1997) and backpropagation for ne
network training.

Section 2 summarizes the problem setting a
describes SPSA and the related finite-difference algorith
Section 3 discusses some of the theory associated with
convergence and efficiency of SPSA. Section 4 provide
pointer to a step-by-step guide to implementation that
aimed at helping the reader code the algorithm for his
her specific application. Section 5 discusses so
extensions to the basic SPSA algorithm. Section
summarizes some relatively recent results on a seco
order (adaptive) version of SPSA that emulates 
stochastic problems the Newton-Raphson algorithm 
deterministic optimization. This adaptive SPSA approa
applies in either the conventional setting where only lo
function measurements are available (i.e., no gradien
Hessian information) or in the stochastic gradie
(Robbins-Monro) setting where direct unbiased gradi
measurements are available. This paper does not pres
numerical study of SPSA as such studies are availabl
many of the references (see, e.g., Spall 1992; Chin 19
Fu and Hill 1997; or Spall and Cristion 1994, 1998). Som
additional recent applications of SPSA are summarized
Spall (1998a).
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2 FINITE DIFFERENCE AND SIMULTANEOUS
PERTURBATION STOCHASTIC
APPROXIMATION

As motivated above, we now assume that no direct m
surements of ∂L/∂θ are assumed available (the Robbin
Monro stochastic gradient framework is considered 
Section 6). This section will describe the finite-differenc
SA (FDSA) and simultaneous perturbation SA (SPS
algorithms. Although the emphasis of this paper is SPS
the FDSA discussion is included for comparison becau
FDSA is a classical method for stochastic optimizatio
(Kiefer and Wolfowitz 1952, and Blum 1954).

The SPSA and FDSA procedures are in the gene
recursive SA form:

)ˆ(ˆˆˆ
1 kkkkk ga  θ−θ=θ +  , (1)

where )ˆ(ˆ kkg θ  is the estimate of the gradient g(θ) at the

iterate kθ̂  based on the above-mentioned measurements

the loss function. Under appropriate conditions, th
iteration in (1) will converge to θ* in some stochastic sense
(usually “almost surely [a.s.]”) (see, e.g., Fabian 197
Kushner and Clark 1978, or Kushner and Yin 1997).

The essential part of (1) is the gradient approximati
)(ˆ kkg θ . We discuss below the two forms of interest her

Let ck be some (usually small) positive number. One-sid
gradient approximations involve loss measurements y( kθ )
and y( kθ + perturbation) while two-sided gradient approxi-
mations involve measurements of the form y( kθ  ± pertur-
bation). The two general forms of gradient approximation
for use in FDSA and SPSA, respectively, are:

Finite-difference, where each component of kθ̂  is

perturbed one-at-a-time and corresponding measurem
y(⋅) are obtained; each component of the gradient estimat
formed by differencing the corresponding y(⋅) values and
then dividing by a difference interval. This is the standa
Kiefer-Wolfowitz approach to approximating gradien
vectors and is motivated directly from the definition of 
gradient as a vector of p partial derivatives, each constructe
as the limit of the ratio of a change in the function value ov
a corresponding in one component of the argument vec
The two-sided FD approximation is given by
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Stochastic Optimization and

where ei denotes a vector with a one in the i th place and
zeros elsewhere (an obvious analogue holds for the o
sided version in Blum, 1954; likewise for the SP for
below).

Simultaneous perturbation, has all elements of kθ̂
randomly perturbed together (“simultaneously”) to obta

two measurements y(⋅), but each component of )ˆ(ˆ kkg θ is

formed from a ratio involving the difference in the tw
corresponding measurements and the individu
components in the perturbation vector. For two-sided S
we have
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  g  ,      (2)

where the distribution of the user-specifie
p-dimensional random perturbation vector, ∆k = (∆k1,
∆k2,…,∆kp)

T, satisfies conditions discussed in Section 
(superscript “T ”  denotes vector transpose).

Note that the number of loss function measureme
y(⋅) needed in each iteration of FDSA grows with p while
with SPSA only two measurements are needed independent
of p since the numerator is the same in all p components.
(An approach in the same spirit as SPSA, called rand
directions SA, is discussed in Polyak and Tsypkin 197
and Kushner and Clark 1978, but it is shown in Spall 199
1998b, and Chin 1997, that SPSA will generally have
lower asymptotic mean-square error than rando
directions SA for the same number of measurements y(⋅)
since the random directions approach relies on fourth
moments of its perturbation distribution versus just t
second moments for SPSA.) The measurement savings
iteration, of course, provides the potential for SPSA to
achieve large savings (over FDSA) in the total number
measurements required to estimate θ when p is large. This
potential is only realized if the number of iteration
required for effective convergence to θ* does not increase
in a way to cancel the measurement savings per grad
approximation at each iteration. Section 3 will discuss t
efficiency issue further, demonstrating when this potent
can be realized by establishing the fundamental result:

Under reasonably general conditions, SPSA and
FDSA achieve the same level of statistical accuracy fo
a given number of iterations although SPSA uses 
times fewer function evaluations than FDSA (since
each gradient approximation uses only 1/p the numbe
of function evaluations).
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3 BASIC ASSUMPTIONS AND
SUPPORTING THEORY

Spall (1988, 1992) presents conditions for convergence 

the SPSA iterate (kθ̂  Æ θ* a.s.) using the differential

equation approach discussed in Ljung (1977) and Kushn
and Clark (1978) in the context of the R-M algorithm
Because of the different form of the input, the condition
here are somewhat different from those of the R-M
approach. In particular, we must impose conditions on both
gain sequences (ak and ck), the distribution of ∆k, and the
statistical relationship of ∆k to the measurements y(⋅) (the
R-M algorithm does not, in its basic form, have a ck

sequence). These conditions ensure convergence of kθ̂  to a

minimizing point θ*. Alternative conditions for
convergence of SPSA have been presented in Wang a
Chong (1996), Dippon and Renz (1997) (Dippon and Re
also present an asymptotic normality result unde
conditions slightly different from those given below),
Chen, et al. (1999), and Gerencsér (1999).

Although the convergence result for SPSA is of som
independent interest, the most interesting theoretical resu
in Spall (1992), and those that most justify the use 
SPSA, are the asymptotic efficiency conclusions th
follow from an asymptotic normality result. This result
follows from conditions given in Spall (1992) showing tha

kβ/2( kθ̂ − θ*)  →dist.
N(µ, Σ) as k Æ ∞ , (3)

where  →dist.
 denotes convergence in distribution, β >

0, µ and Σ are a mean vector and covariance matrix. Her
µ depends on both the Hessian and the third derivatives
L(θ) at θ* and Σ depends on the Hessian matrix at θ*.
(Note that in general, µ ≠ 0 is in contrast to many well-
known asymptotic normality results in estimation
including those for the R-M algorithm. As with the R-M
case, the asymptotic distribution result (3) allows one 
determine optimal gain decay rates, i.e., rates that provi
the maximum value of β/2. This maximum value is β/2 =

1/3. Hence the fastest possible rate at which the error kθ̂ −
θ* will go to zero is k−1/3 (so that the quantity on the left-
hand side of (3) is properly “balanced” when considerin
the kβ/2 = k1/3 multiplier). This contrasts with the fastest
allowable rate of k−1/2 for the R-M SA algorithm. Hence,
one measure of the value of the gradient information in R
M is the increase in rate of convergence. (Kleinman, et a
1999 discusses one case where it also possible to get a k−1/2

rate of convergence in SPSA through the use of comm
random numbers in a simulation-based optimizatio
context.)

Spall (1992, Sect. 4) uses the asymptotic normali
result in expression (3) (together with a parallel result fo
3
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FDSA) to establish the relative efficiency of SPSA. Th
efficiency depends on the shape of L(θ), the values for {ak}
and {ck}, and the distributions of the {∆ki} and

measurement noise terms }{ )(ε ±
k . There is no single

expression that can be used to characterize the rela
efficiency. However, as discussed in Spall (1992, Sect
and Chin (1997), in most practical problems, SPSA will 
asymptotically more efficient than FDSA. In particular, b
equating the asymptotic mean-squared err






 θ−θ

2

*ˆ  E k  in SPSA and FDSA, we find

py

y 1

FDSAinvalues)(ofno.

SPSAinvalues)(ofno.
→

θ
θ

(4)

as the number of loss measurements in both proced
gets large. Hence, expression (4) implies that the p-fold
saving per iteration (gradient approximation) transla
directly into a p-fold savings in the overall optimization
process.

4 PRACTICAL IMPLEMENTATION OF SPSA

Spall (1998c) provides a convenient step-by-step summ
for implementation of SPSA. This summary includ
simple MATLAB code for implementing the steps. Als
included are practical guidelines in choosing the g
sequences ak = a/(A+k+1)α and ck = c/(k+1)γ with a, c, A,
α, and γ being non-negative constants.

5 OPTIMAL PERTURBATION DISTRIBUTION;
APPLICATIONS IN CONTROL SYSTEMS;
GLOBAL, DISCRETE, AND CONSTRAINED
OPTIMIZATION

Sadegh and Spall (1998) consider the problem of choo
the best distribution for the ∆k vector. Based on asymptoti
distribution results, it is shown that the optimal distributi
for the components of ∆k is symmetric Bernoulli. This
simple distribution has also proven effective in ma
finite-sample practical and simulation examples. T
recommendation in the algorithm description mentioned
Section 4 follows from these findings. It should be note
however, that other distributions are sometimes desira
Since the user has full control over this choice and si
the generation of ∆k represents a trivial cost towards th
optimization, it may be worth evaluating other possibiliti
in some applications. For example, Maeda and 
Figueiredo (1997) used a symmetric two-part unifo
distribution, i.e., a uniform distribution with a sectio
removed near 0 (to preserve the finiteness of inve
moments), in an application for robot control.
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Some extensions to the basic SPSA algorithm ab
are reported in the literature. For example, its use
feedback control problems, where the loss funct
changes with time, is given in Spall and Cristion (19
1998). The 1998 reference is the most comp
methodological and theoretical treatment. A one-
measurement form of the SP gradient approximation
considered in Spall (1997). Although it is shown in th
reference that the standard two-measurement form will
usually be more efficient (in terms of total number of lo
function measurements to obtain a given level of accur
in the θ iterate), there may be advantages to the o
measurement form in real-time operations, such 
feedback control, where the underlying system dynam
may change too rapidly to get a credible gradient estim
with two successive measurements. The Spall and Cris
(1994) reference also reports on a gradient smoothing 
(analogous to “momentum” in the neural netwo
literature) that may help reduce noise effects and enh
convergence (and also gives guidelines for how 
smoothing should be reduced over time to ens
convergence). Alternatively, it is possible to avera
several SP gradient approximations at each iteration
reduce noise effects (at the cost of additional funct
measurements); this is discussed in Spall (1992).

Implementations of SPSA for global minimization are
discussed in Chin (1994) and Maryak and Chin (199
The Chin approach is based on a step-wise (slo
decaying) sequence ck (and possibly ak) and the
Maryak/Chin approach is based on the principle of injec
Monte Carlo noise in the right-hand side of the basic SP
updating step. This latter approach is a common way
converting SA algorithms to global optimizers (e.g., Y
1999). Discrete optimization problems (where θ may take
on discrete or combined discrete/continuous values) 
discussed in Gerencsér, et al. (1999). The discrete S
relies on a fixed-gain (constant ak and ck) version of the
standard SPSA method. The loss function is assumed 
convex and, in the process of optimization, is tempora
extended to a unique, continuous convex function. T
(unique) continuous extension is then used to form
gradient approximation, which is used in a fixed-gain 
algorithm. The parameter estimates produced 
constrained to lie on the discrete-valued grid. The prob
of constrained (equality and inequality) optimization w
SPSA is considered in Sadegh (1997) and Fu and 
(1997) using a projection approach. While the project
approach has an elegant mathematical form and ma
easy to implement, it is quite restricted in the types
constraints that can be practically handled. (Essentially,
constraints must be represented explicitly in θ in a “nice”
way so as to facilitate the mapping of a constraint violat
in θ to the nearest valid point. In practice this usually bo
down to simple componentwise constraints stating 
individual components of θ are bounded below and abov
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Stochastic Optimization an

by particular constants.) An alternative approach 
constrained optimization is given in Wang and Sp
(1999). This approach is based on altering the loss func
to include a penalty term. In particular, at iteration k, L(θ)
is replaced by a modified loss function

L(θ) + rkP(θ) ,

where rk is an increasing sequence of positive scalars (rk Æ
∞) and P(θ) is a penalty function that takes on (usua
large) positive values when the constraints are violated
many practical problems constraints are only implicit inθ,
and the penalty function approach is well-suited to han
such cases (e.g., if it is required that 0 ≤ h(θ) ≤ 1 for some
function h(⋅), then P(θ) can be chosen to penalize values
θ such that h(θ) is outside of [0, 1] without specifying an
explicit constraints on the components of θ).

6 ADAPTIVE SIMULTANEOUS
PERTURBATION APPROACH

6.1 Introduction and Basic Algorithm

Based on the simultaneous perturbation idea, this se
presents a general adaptive SA algorithm that is based
simple method for estimating the Hessian matrix wh
concurrently estimating the primary parameters of inte
(θ). This adaptive approach produces a stochastic anal
to the deterministic Newton-Raphson algorithm, hence
producing a recursion that is optimal or near-optimal in
rate of convergence and asymptotic error (see Subse
6.3). The approach applies in both the gradient-free se
stressed above and in the root-finding/stochastic grad
based (Robbins-Monro) setting. Like the standard (fi
order) SPSA algorithm, the algorithm requires only a sm
number of loss function (or gradient, if relevan
measurements per iteration—independent of the prob
dimension—to adaptively estimate the Hessian 
parameters of primary interest.

Before the approach is presented, it is useful
contrast it with other second-order SA approaches. A m
complete discussion on related work is given in Sp
(1999). In the gradient-free setting, Fabian (1971) fo
estimates of the gradient and Hessian for a New
Raphson-type SA algorithm by using, respectively, a fin
difference approximation and a set of differences of fin
difference approximations. This leads to O(p2)
measurements of L(·) per update of the θ estimate, which is
extremely costly when p is large. Ruppert (1985) assum
that direct measurements of the gradient g(·) are available,
as in the Robbins-Monro algorithm. He then forms
Hessian estimate by taking a finite difference of grad
measurements; hence, O(p) measurements of g(·) are
required for each update step in estimating θ. A type of
105
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second-order optimal convergence for SA is reported i
Ruppert (1991) and Polyak and Juditsky (1992) based o
the idea of iterate averaging. However, as discussed 
Maryak (1997), Dippon and Renz (1997), and Spall (1999
this approach may not provide optimal asymptotic
convergence in the gradient-free setting and may perform
relatively poorly in practical finite-sample problems. The
algorithm here is in the spirit of adaptive (matrix) gain SA
algorithms such as those considered in Benveniste et 
(1990, Chaps. 3–4) in that a matrix gain is estimate
concurrently with an estimate of the parameters of interes
It differs, however, in the relative lack of prior information
required (especially in the gradient-free case) and in th
small number of loss and/or gradient measurements need
per iteration.

The second-order ASP approach is composed of tw
parallel recursions: one for θ and one for the Hessian of
L(θ). The two core recursions are, respectively,

)(),ˆ(ˆˆ 1
1 kkkkkkkkk HfHGHa =θ−θ=θ −

+ , (5a)

H
k

k
H

k
Hk k k=

+
+

+−1

1

11
ü , k = 0, 1, 2, (5b)

where ak  is a non-negative scalar gain coefficient,

)ˆ( kkG θ  is the input information related to )ˆ( kg θ  (i.e., the

gradient approximation from y(⋅) measurements in the
gradient-free case or the direct observation as in th

Robbins-Monro gradient-based case), fk : R p p× →
{ Positive definite p × p matrices} is a mapping designed to
cope with possible nonpositive-definiteness of Hk , and üHk

is a per-iteration estimate of the Hessian discussed belo
Eqn. (5a) is a stochastic analogue of the well-know
Newton-Raphson algorithm of deterministic search an
optimization. Eqn. (5b) is simply a recursive calculation o
the sample mean of the per-iteration Hessian estimate
Initialization of the two recursions is discussed in

Subsection 6.2 below. Since )ˆ( kkG θ  has a known form,

the parallel recursions in eqns. (5a,b) can be implement
once üHk  is specified. The remainder of this section will
focus on two specific implementations of the ASP
approach above: 2SPSA (2nd-order SPSA) for applications
in the gradient-free case and 2SG (2nd-order stochastic
gradient) for applications in the Robbins-Monro gradient
based case.

We now present the per-iteration Hessian estimate üHk .

As with the “basic” first-order SPSA algorithm, let kc be a

positive scalar (decaying to 0 for formal convergence) an
∆k ∈ Rp be a user-generated mean-zero random vecto
conditions on ck, ∆k, and other relevant quantities are given
in Spall (1999). These conditions are close to those of bas
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SPSA (e.g., ∆k being a vector of independent Bernoulli ±1
random variables satisfies these conditions, but a vecto
uniformly or normally distributed random variables doe
not). Examples of valid gain sequences are given below
will prove convenient to work with a “vector-divide”
operation where the ij th element of the resulting matrix
corresponds to the ratio of the j th element of the numerator
row vector to the i th element of the denominator column
vector. Applying the vector-divide operator, the formul
for estimating the Hessian at each iteration is:


















∆

δ+
∆

δ=
T

kk

T
k

kk

T
k

k c

G
  

c

G
H

222
1ˆ  ,                       (6)

where

)ˆ()ˆ( )1()1(
kkkkkkkkk cGcGG ∆−θ−∆+θ=δ  ,

and )1(
kG (·) may or may not equal Gk(⋅) depending on the

setting. In particular, for 2SPSA, there are advantages
using a one-sided gradient approximation in order to
reduce the total number of function evaluations (vs. t
two-sided form usually recommended for Gk(⋅)) while for

2SG, usually )1(
kG (·) = Gk(⋅). Note that all elements of kθ̂

are varied simultaneously (and randomly) in forming kĤ ,

as opposed to the finite-difference forms in, e.g., Fabi
(1971) and Ruppert (1985), where the elements of θ are
changed deterministically one at a time. The symmetrizi
operation in (6) is convenient in the optimization cas
being emphasized here to maintain a symmetric Hess
estimate in finite samples. In the general root-finding ca
where H(θ) represents a Jacobian matrix, the symmetrizi
operation should not be used since the Jacobian is 
necessarily symmetric.

While the ASP structure in (5a,b) and (6) is gener
we will largely restrict ourselves in our choice of Gk(⋅) (and

)1(
kG (·)) in the remainder of the discussion in order 

present concrete theoretical and numerical results. 
2SPSA, we will consider the simultaneous perturbati

approach for generating Gk(⋅) and )1(
kG (·) while for 2SG we

will suppose that Gk(⋅) = )1(
kG (·) is an unbiased direct

measurement of g(⋅) (i.e., Gk(⋅) = )1(
kG (·) = g(⋅) + mean-

zero noise). The rationale for basic SPSA in the gradien
free case was discussed above. In the gradient-based c
SG methods include as special cases the well-kno
approaches mentioned in Section 1 (backpropagation, e
SG methods are themselves special cases of the gen
Robbins-Monro root-finding framework and, in fact, mos
of the results here can apply in this root-finding setting 
well.
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For 2SPSA, the core gradient approximation Gk( kθ̂ ) is

taken as )ˆ(ˆ kkg θ  in eqn. (2), requiring two measurements

of L(·), )ˆ( kkk cy ∆+θ  and )ˆ( kkk c y ∆−θ . In addition to this

gradient approximation, these two measurements a
employed toward generating the one-sided gradie

approximations )ˆ()1(
kkkk cG ∆±θ  used in forming kĤ . Two

additional measurements )
~~ˆ( kkkkk ccy ∆+∆±θ are used in

generating the one-sided approximations as follows:

G c
y c c y c

ck k k k
k k k k k k k k

k

k

k

kp

( )
( ü )

( ü ~ ~
) ( ü )

~

~

~

.

.

.
~

1

1
1

2
1

1

θ
θ θ

± =
± + − ±

























−

−

−

∆
∆ ∆ ∆

∆
∆

∆

  (7)

with 
~

(
~

,
~

,....,
~

)∆ ∆ ∆ ∆k k k kp
T= 1 2  generated in the same

statistical manner as ∆ k , but independently of ∆ k  (in

particular, choosing 
~∆ ki  as independent Bernoulli ±1

random variables is a valid—but not necessary—choice
and with kc~ satisfying conditions similar to ck (although the

numerical value of kc~ may be best chosen larger than ck;

see Subsection 6.2).
Let us summarize some examples of gains that satis

the conditions in Spall (1999) for convergence an
asymptotic normality of 2SPSA and 2SG. For bot
implementations, we can take ak and ck in the form given in
Section 3 (condition (vi)). For 2SPSA, we also hav

0~,)1/(~~ >+= γ ckcck . With these gain forms, examples of

specific coefficient values for 2SPSA are: α = 0.602, γ =
0.101 or α = 1, γ = 1/6. For 2SG, ½ < α ≤ 1 is valid
together with 0 < γ < ½.

Some discussion is included in Spall (1999) providin

some informal motivation for the kĤ  form in eqn. (6).

This discussion shows that the Hessian estimate is 

unbiased estimate to within )( 2
kcO . This reference also

includes some more rigorous discussion on the form of t
estimate and its effect on the convergence properties 
ASP.

6.2 Implementation Aspects of ASP

The two recursions in (5a,b) are the foundation for the AS
approach. However, as is typical in all stochasti
algorithms, the specific implementation details ar
important. Eqns. (5a,b) do not fully define these detail
Five useful guidelines are given in Spall (1999).

,
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6.3 Theory on Convergence and Efficiency of ASP

Spall (1999) presents some asymptotic theory showing

a.s. convergence of kθ̂ and kH  to θ* and H(θ*),

respectively, in both the 2SPSA and 2SG settings. Furt
conditions are shown for asymptotic normality of a

appropriately normalized estimate kθ̂ . The asymptotic

normality results are then used to analyze the asympt
efficiency of the general ASP approach. To summar

these asymptotic efficiency results, let ∗
SPSARMS  and

∗
SGRMS  represent the best possible root-mean square erro

of the normalized kθ̂  when using the SPSA (gradient-free

and SG (gradient-based) approach. These require a ch
of gain sequences that use, respectively, exact informa
on the third and second derivatives of L(θ) (Dippon and
Renz, 1997). This information, of course, is genera

unavailable. Hence, ∗
SPSARMS  and ∗

SGRMS  represent ideal

values that will usually be unobtainable in practice. Letti
RMS2SPSA and RMS2SG denote the limiting RMS errors for
the normalized 2SPSA and 2SG estimates when ak = 1/(k +
1), we find:

2<
∗
SPSA

2SPSA

RMS

RMS
  and  1=

∗
SG

2SG

RMS

RMS
. (8)

The interpretation of (8) is that for the SPSA setting, t
2SPSA algorithm can produce an estimate that has
asymptotic RMS error no more than twice the err
possible from the best possible (infeasible) algorithm. F
the SG setting, the 2SG algorithm produces an error tha
asymptotically equal to the best possible. Numeric
studies in Spall (1999) show the power of the ASP (2SP
and 2SG) approach. Luman (1999) applies 2SPSA i
simulation-based optimization approach and demonstra
the improvement possible over basic SPSA when ther
very different scaling of the elements in θ (i.e., an
illustration of the value of the above-mentioned transfo
invariance property).

7 CONCLUDING REMARKS

Relative to standard deterministic methods, stocha
optimization considerably broadens the range of pract
problems for which one can find rigorous optim
solutions. Algorithms of the stochastic optimization typ
allow for the effective treatment of problems in areas su
as network analysis, simulation-based optimization, patt
recognition and classification, neural network trainin
image processing, and nonlinear control. It is expected 
the role of stochastic optimization will continue to grow 
modern systems increase in complexity and as popula
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growth and dwindling natural resources force trade-of
that were previously unnecessary.

The SPSA algorithm has proven to be an effectiv
stochastic optimization method. Its primary virtues are (
relative ease of implementation and lack of need for lo
function gradient, (ii) theoretical and experimental suppo
for relative efficiency, (iii) robustness to noise in the los
measurements, and (iv) empirical evidence of ability to fin
a global minimum when multiple (local and global) minima
exist. Except as discussed in Section 5, SPSA is primar
limited to continuous-variable problems. Numerica
comparisons with techniques such as the (Kiefer-Wolfowit
finite-difference method, simulated annealing, genet
algorithms, and random search have supported the claim
SPSA’s effectiveness in a wide range of practical problem
Theoretical evidence also supports the relative efficiency 
SPSA in comparison to other popular approaches (Spall,
al. 1999). The rapidly growing number of application
throughout the world provide further evidence of th
algorithm’s effectiveness. To add to the effectiveness, the
have been some extensions of the basic idea, includin
stochastic analogue of the fast deterministic Newto
Raphson (second-order) algorithm, adaptations for real-tim
(control) implementations, and versions for some types 
constrained, global, and discrete optimization problem
While much work continues in extending the basic algorith
to a broader range of real-world settings, SPSA addresse
wide range of difficult problems and should likely be
considered for many of the stochastic optimizatio
challenges encountered in practice.
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