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ABSTRACT value that offers an improvement in the objective function.

Although many optimization algorithms have been
Multivariate stochastic optimization plays a major role in developed that assume a deterministic setting and that
the analysis and control of many real-world systems. In assume information is available on the gradient of the loss
almost all large-scale practical optimization problems, it function with respect to the parameters being optimized,
is necessary to use a mathematical algorithm that our focus here is on the stochastic setting where only
iteratively seeks out the solution because an analytical measurements of the loss function are available (i.e., no
(closed-form) solution is rarely available. In the above gradient information). (We will, however, present in
spirit, the “simultaneous perturbation stochastic Section 6 an adaptive method that applies in both the
approximation (SPSA)” method for difficult multivariate  gradient-free and gradient-based cases.) This interest in
optimization problems has been developed. SPSA hasalgorithms without direct gradient information has been
recently attracted considerable international attention in motivated, for example, by problems in the adaptive
areas such as statistical parameter estimation, feedbackcontrol and statistical identification of complex systems,
control, simulation-based optimization, signal and image the optimization of processes by large Monte Carlo
processing, and experimental design. The essential simulations, the training of recurrent neural networks, the
feature of SPSHA which accounts for its power and recovery of images from noisy sensor data, and the design
relative ease of implementatidris the underlying of complex queuing and discrete-event systems. Rather,
gradient approximation that requires only two these algorithms are based on @pproximationto the
measurements of the objective function regardless of the gradient formed from (generally noisy) measurements of
dimension of the optimization problem. This feature the loss function.

allows for a significant decrease in the cost of More specifically, the goal is to minimize a loss

optimization, especially in problems with a large number functionL(6) over® O R°, p = 1. The SPSA algorithm

of variables to be optimized. works by iterating from an initial guess of the optirfal
where the iteration process depends on the above-

1 INTRODUCTION mentioned “simultaneous perturbation” approximationto
the gradient g(6) = 0L/06. We assume that

This paper is an introduction to the simultaneous measurementg(8) of the loss function are available at
perturbation stochastic approximation (SPSA) algorithm any value o®:

for stochastic optimization of multivariate systems.

Optimization algorithms play a critical role in the design, y(6) = L(8) + noise
analysis, and control of most physical and nonphysical
systems and are in widespread use in the simulation |5 some cases, exact loss function measurements will

community. Before presenting the SPSA algorithm, we pe ayailable; this corresponds to tiese= 0 setting. Note
present some general background on the stochasticihatno direct measurements (with or without noise) of the

optimization context of interest here. _ . . gradientg(®) are assumed available. This measurement
The mathematical representation of most optimization formylation is identical to that of the Kiefer-Wolfowitz

problems is the minimization (or maximization) of some fiyite-gifference SA algorithm (Kiefer and Wolfowitz,
scalar-valued objective function with respect to a vector of 1952 and Blum 1954). In cases where more than one

adjustable parameters. The optimization algorithm is a point satisfiesg() = 0, then the algorithm may only

step-by-step procedurg . .for changing the adjustable converge to a local minimum (however, as a consequence
parameters from some initial guess (or set of guesses) to a
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of the basic recursive form of the algorithm, there is 2 FINITE DIFFERENCE AND SIMULTANEOUS
generally not a risk of converging to a maximum or PERTURBATION STOCHASTIC
saddlepoint ofL(B), i.e., another point wherg(8) may APPROXIMATION
equal zero). Section 5 will briefly discuss modifications to
the basic SPSA algorithm to allow it to search for the As motivated above, we now assume that no direct mea-
global solution among multiple local solutions and to find surements oDL/08 are assumed available (the Robbins-
solutions in the presence of explicit or implicit constraints Monro stochastic gradient framework is considered in
on feasibled. Section 6). This section will describe the finite-difference
Overall, gradient-free stochastic algorithms exhibit SA (FDSA) and simultaneous perturbation SA (SPSA)
convergence properties similar to the gradient-based algorithms. Although the emphasis of this paper is SPSA,
stochastic algorithms (e.g., Robbins-Monro 1951, the FDSA discussion is included for comparison because
stochastic approximation, i.e., R-M SA) while requiring FDSA is a classical method for stochastic optimization
only loss function measurements. The gradient-based (Kiefer and Wolfowitz 1952, and Blum 1954).
algorithms rely on direct measurements of the gradient of The SPSA and FDSA procedures are in the general
the loss function with respect to the parameters being recursive SA form:
optimized. These measurements typically yield an A . .
unbiased estimatef the gradient. A main advantage of the 0,..=0,-a.0.(8,) , (1)
gradient-free algorithms is that they do not require the
detailed knowledge of the functional relationship between
the parameters being adjusted (optimized) and the loss N
function being minimized that is required in gradient-based iterate 6, based on the above-mentioned measurements of
algorithms. Such a relationship can be notoriously difficult the |oss function. Under appropriate conditions, the
to develop in some areas (e.g., simulation-based jieration in (1) will converge t6* in some stochastic sense
optimization and nonlinear feedba_ck cor!tr(_)ller design) (usually “almost surely [a.s.])) (see, e.g., Fabian 1971,
while in other areas (such as recursive statistical parameterksnner and Clark 1978, or Kushner and Yin 1997).
estimation), there may be large computational savings in g egsential part of (1) is the gradient approximation
calculatl_ng a IOSS. function relative to tha§ required in d,(8,) . We discuss below the two forms of interest here.
colcuaing o radent On he afer hand, 1 SO SE5€5Lctc, be some (usualy smal) posie rumber. One-idec
9 gradient approximations involve loss measuremgfis )

advantage, including infinitesimal perturbation analysis . . : ) .

. . L . . + - -

(IPA) for simulation-based optimization of discrete event and_y(ek_ perturbatior) while two-sided gradient approxi
mations involve measurements of the forf®, + pertur-

systems (Fu and Hu 1997) and backpropagation for neural, . L
network training. bation). .The two general forms of gr.adlent approximations
Section 2 summarizes the problem setting and fOr use in FDSA and SPSA, respectively, are:

describes SPSA and the related finite-difference algorithm. Finite-difference where each component od, is
Section 3 discusses some of the theory associated with thgyerturbed one-at-a-time and corresponding measurements
convergence and efficiency of SPSA. Section 4 provides a yy are obtained; each component of the gradient estimate is
pointer to a step-by-step guide to implementation that is fomeq by differencing the correspondig@) values and
aimed at helping the reader code the algorithm for his or y,op gividing by a difference interval. This is the standard
her s_pecmc appllcatlon. Section 5 _d|scusses _SOME kiefer-Wolfowitz approach to approximating gradient
extensions to the basic SPSA algorithm. Section 6 \eciors and is motivated directly from the definition of a
summarizes some relatively recent results on a second-gragient as a vector pfpartial derivatives, each constructed
order (adaptive) version of SPSA that emulates for ;g e jimit of the ratio of a change in the function value over

stochastic problems the Newton-Raphson algorithm of 5 c4rresponding in one component of the argument vector.
deterministic optimization. This adaptive SPSA approach The two-sided FD approximation is given by

applies in either the conventional setting where only loss
function measurements are available (i.e., no gradient or A ~
Hessian information) or in the stochastic gradient EY(GH ce) -~ YO —ce)
(Robbins-Monro) setting where direct unbiased gradient 2c,
measurements are available. This paper does not present a

numerical study of SPSA as such studies are available in § (é )=
many of the references (see, e.g., Spall 1992; Chin 1997; KAk
Fu and Hill 1997; or Spall and Cristion 1994, 1998). Some

additional recent applications of SPSA are summarized in

Spall (1998a).

where @k(ék ) is the estimate of the gradiegi) at the
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(ék + Ckep) - Y(ék - Ckep)g
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where g denotes a vector with a one in tﬁbplace and

zeros elsewhere (an obvious analogue holds for the one-

sided version in Blum, 1954; likewise for the SP form
below).

Simultaneous perturbationhas all elements oﬁk
randomly perturbed together (“simultaneously”) to obtain
two measurementg(D), but each component ojk(ék iS)

formed from a ratio involving the difference in the two
corresponding measurements and the individual
components in the perturbation vector. For two-sided SP,
we have

Dipn
5
n n 20
~ A 0,+cA)-y0O,-cA)O. O
gk(ek): y( k k k) y( k k k)D D, (2)
2¢c, 0 0
o. 0
%yl a
p [
where the distribution of the user-specified

p-dimensional random perturbation vectak, = (A,
Akz,...,Akp)T, satisfies conditions discussed in Section 3
(superscript T” denotes vector transpose).

3 BASIC ASSUMPTIONS AND
SUPPORTING THEORY

Spall (1988, 1992) presents conditions for convergence of
the SPSA iterate é(k - 0* a.s.) using the differential

equation approach discussed in Ljung (1977) and Kushner
and Clark (1978) in the context of the R-M algorithm.
Because of the different form of the input, the conditions
here are somewhat different from those of the R-M
approach. In particular, we must impose conditionbath

gain sequencesyand cy), the distribution of,, and the
statistical relationship of\ to the measuremengl) (the

R-M algorithm does not, in its basic form, haveca

sequence). These conditions ensure convergenée tf a

minimizing point 6* Alternative conditions for
convergence of SPSA have been presented in Wang and
Chong (1996), Dippon and Renz (1997) (Dippon and Renz
also present an asymptotic normality result under
conditions slightly different from those given below),
Chen, et al. (1999), and Gerencsér (1999).

Although the convergence result for SPSA is of some
independent interest, the most interesting theoretical results
in Spall (1992), and those that most justify the use of
SPSA, are the asymptotic efficiency conclusions that
follow from an asymptotic normality result. This result

Note that the number of loss function measurements f4|16\s from conditions given in Spall (1992) showing that

y(0) needed in each iteration of FDSA grows wthvhile
with SPSA onlytwo measurements are neededependent
of p since the numerator is the same inpptomponents.

(An approach in the same spirit as SPSA, called random

directions SA, is discussed in Polyak and Tsypkin 1973,
and Kushner and Clark 1978, but it is shown in Spall 1992,
1998b, and Chin 1997, that SPSA will generally have a
lower asymptotic mean-square error than random
directions SA for the same number of measuremg(ils

since the random directions approach relies fourth

moments of its perturbation distribution versus just the

K28, - 69 O o Nw =) ask> o,  (3)

where [ ﬁﬁ'—» denotes convergence in distributifihz>

0, 1 andZ are a mean vector and covariance matrix. Here,
W depends on both the Hessian and the third derivatives of
L(B) at 6* and >~ depends on the Hessian matrix 6t
(Note that in generalt # 0 is in contrast to many well-
known asymptotic normality results in estimation,

second moments for SPSA.) The measurement savings pefncluding those for the R-M algorithm. As with the R-M

iteration, of course, provides thmotential for SPSA to
achieve large savings (over FDSA) in the total number of
measurements required to estim@tehenp is large. This
potential is only realized if the number of iterations
required for effective convergence @b does not increase

case, the asymptotic distribution result (3) allows one to
determine optimal gain decay rates, i.e., rates that provide
the maximum value of/2. This maximum value iB/2 =

1/3. Hence the fastest possible rate at which the ér,{er
0* will go to zero isk ™ (so that the quantity on the left-

in a way to cancel the measurement savings per gradient,sng side of (3) is properly “balanced” when considering

approximation at each iteration. Section 3 will discuss this
efficiency issue further, demonstrating when this potential
can be realized by establishing the fundamental result:

Under reasonably general conditions, SPSA 4dnd
FDSA achieve the same level of statistical accuracylfor
a given number of iterations although SPSA usef p
times fewer function evaluations than FDSA (sifjce
each gradient approximation uses only 1/p the numper
of function evaluations).
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K¥2 = K“® multiplier). This contrasts with the fastest
allowable rate ok™? for the R-M SA algorithm. Hence,
one measure of the value of the gradient information in R-
M is the increase in rate of convergence. (Kleinman, et al.,
1999 discusses one case where it also possible tokgét a
rate of convergence in SPSA through the use of common
random numbers in a simulation-based optimization
context.)

Spall (1992, Sect. 4) uses the asymptotic normality
result in expression (3) (together with a parallel result for
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FDSA) to establish the relative efficiency of SPSA. This
efficiency depends on the shapd ¢(8), the values for &}
and {cJ, and the distributions of the &} and

measurement noise termss(k*) . JThere is no single

Some extensions to the basic SPSA algorithm above
are reported in the literature. For example, its use in
feedback control problems, where the loss function
changes with time, is given in Spall and Cristion (1994,
1998). The 1998 reference is the most complete

expression that can be used to characterize the relativemethodological and theoretical treatment. Ane
efficiency. However, as discussed in Spall (1992, Sect. 4) neasurement form of the SP gradient approximation is

and Chin (1997), in most practical problems, SPSA will be
asymptotically more efficient than FDSA. In particular, by
equating the  asymptotic  mean-squared

E@|ék— o

’ @ in SPSA and FDSA, we find

no.of y(8) valuesn SPSA 1

no.of y(B) valuesn FDSA - p

(4)

considered in Spall (1997). Although it is shown in this
reference that the standard two-measurement form will

€Irors ysually be more efficient (in terms of total number of loss

function measurements to obtain a given level of accuracy
in the 6 iterate), there may be advantages to the one-
measurement form in real-time operations, such as
feedback control, where the underlying system dynamics
may change too rapidly to get a credible gradient estimate
with two successive measurements. The Spall and Cristion
(1994) reference also reports on a gradient smoothing idea

as the number of loss measurements in both proceduresanalogous to “momentum” in the neural network

gets large. Hence, expression (4) implies that difeld
saving per iteration (gradient approximation) translates
directly into ap-fold savings in the overall optimization
process.

4 PRACTICAL IMPLEMENTATION OF SPSA

Spall (1998c) provides a convenient step-by-step summary

for implementation of SPSA. This summary includes
simple MATLAB code for implementing the steps. Also

included are practical guidelines in choosing the gain
sequencesy = a/(A+k+1)" andg, = c/(k+1)’ with a, c, A,

a, andy being non-negative constants.

5 OPTIMAL PERTURBATION DISTRIBUTION,;
APPLICATIONS IN CONTROL SYSTEMS,;
GLOBAL, DISCRETE, AND CONSTRAINED

OPTIMIZATION

literature) that may help reduce noise effects and enhance
convergence (and also gives guidelines for how the
smoothing should be reduced over time to ensure
convergence). Alternatively, it is possible to average
several SP gradient approximations at each iteration to
reduce noise effects (at the cost of additional function
measurements); this is discussed in Spall (1992).
Implementations of SPSA falobal minimization are
discussed in Chin (1994) and Maryak and Chin (1999).
The Chin approach is based on a step-wise (slowly
decaying) sequencecy (and possibly a) and the
Maryak/Chin approach is based on the principle of injected
Monte Carlo noise in the right-hand side of the basic SPSA
updating step. This latter approach is a common way of
converting SA algorithms to global optimizers (e.g., Yin,
1999). Discrete optimization problems (whérenay take
on discrete or combined discrete/continuous values) are
discussed in Gerencsér, et al. (1999). The discrete SPSA
relies on a fixed-gain (constaat andcy) version of the

Sadegh and Spa” (1998) consider the prob|em of Choosingstandard SPSA method. The loss function is assumed to be

the best distribution for th&, vector. Based on asymptotic
distribution results, it is shown that the optimal distribution
for the components of\, is symmetric Bernoulli. This
simple distribution has also proven effective in many
finite-sample practical and simulation examples. The
recommendation in the algorithm description mentioned in
Section 4 follows from these findings. It should be noted,

however, that other distributions are sometimes desirable.
Since the user has full control over this choice and since

the generation of\, represents a trivial cost towards the
optimization, it may be worth evaluating other possibilities
in some applications. For example, Maeda and De
Figueiredo (1997) used a symmetric two-part uniform
distribution, i.e., a uniform distribution with a section

convex and, in the process of optimization, is temporarily
extended to a unique, continuous convex function. The
(unique) continuous extension is then used to form a
gradient approximation, which is used in a fixed-gain SA
algorithm. The parameter estimates produced are
constrained to lie on the discrete-valued grid. The problem
of constrained (equality and inequality) optimization with
SPSA is considered in Sadegh (1997) and Fu and Hill
(1997) using a projection approach. While the projection
approach has an elegant mathematical form and may be
easy to implement, it is quite restricted in the types of
constraints that can be practically handled. (Essentially, the
constraints must be represented explicithfim a “nice”

way so as to facilitate the mapping of a constraint violation

removed near 0 (to preserve the finiteness of inverse in 6 to the nearest valid point. In practice this usually boils

moments), in an application for robot control.
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by particular constants.) An alternative approach to second-order optimal convergence for SA is reported in
constrained optimization is given in Wang and Spall Ruppert (1991) and Polyak and Juditsky (1992) based on
(1999). This approach is based on altering the loss functionthe idea of iterate averaging. However, as discussed in
to include a penalty term. In particular, at iteratior.(6) Maryak (1997), Dippon and Renz (1997), and Spall (1999),

is replaced by a modified loss function this approach may not provide optimal asymptotic
convergence in the gradient-free settamgd may perform
L(8) + rP(8) , relatively poorly in practical finite-sample problems. The
algorithm here is in the spirit of adaptive (matrix) gain SA
whereryis an increasing sequence of positive scalare( algorithms such as those considered in Benveniste et al.

©) and P(6) is a penalty function that takes on (usually (1990, Chaps. 3-4) in that a matrix gain is estimated
large) positive values when the constraints are violated. In concurrently with an estimate of the parameters of interest.
many practical problems constraints are only implicié,in It differs, however, in the relative lack of prior information

and the penalty function approach is well-suited to handle required (especially in the gradient-free case) and in the
such cases (e.g., if it is required that B(8) < 1 for some small number of loss and/or gradient measurements needed

iteration.

The second-order ASP approach is composed of two
parallel recursions: one fd and one for the Hessian of
L(8). The two core recursions are, respectively,

6 ADAPTIVE SIMULTANEOUS . =

functionh()}, thenP(8) can be chosen to penalize values of per
8 such that(B) is outside of [0, 1] without specifying any
explicit constraints on the componentHnf

PERTURBATION APPROACH 81=6,-a,H*G,(8,), H,=f, (), (5a)
6.1 Introduction and Basic Algorithm A = k ﬁk—1+ 1 |_A|k, k=0 1 2, (5b)
k+1 k+1

Based on the simultaneous perturbation idea, this section

presents a general adaptive_ SA algorithm_ that is b_ased oN gy here a, is a non-negative scalar gain coefficient,
simple method for estimating the Hessian matrix while

concurrently estimating the primary parameters of interest Gk(ék) is the input information related gﬁék 0.e., the
(). This adaptive approach produces a stochastic analoguegradient approximation frony() measurements in the

to the deterministic Newton-Raphson algorithirence gradient-free case or the direct observation as in the
producing a recursion that is optimal or near-optimal in its i ) _ pX p
rate of convergence and asymptotic error (see SubsectionROPPINs-Monro  gradient-based casef,: R -

6.3). The approach applies in both the gradient-free setting{Positive definitgp x p matrice$ is a mapping designed to
stressed above and in the root-finding/stochastic gradient- cope with possible nonpositive-definitenessf and H,
based (Robbins-Monro) setting. Like the standard (first- s a per-iteration estimate of the Hessian discussed below.
order) SPSA algorithm, t_he algorithm requires only a small Eqgn. (5a) is a stochastic analogue of the well-known
number of loss function (or gradient, if relevant) Newton-Raphson algorithm of deterministic search and
measurements per iteration—independent of the problem gptimization. Eqn. (5b) is simply a recursive calculation of
dimension—to adaptively estimate the Hessian and the sample mean of the per-iteration Hessian estimates.

parameters of primary interest. o Initialization of the two recursions is discussed in
Before the approach is presented, it is useful to

contrast it with other second-order SA approaches. A more Subsection 6.2 below. Sincg, (8, has a known form,
complete discussion on related work is given in Spall the parallel recursions in egns. (5a,b) can be implemented
(1999). In the gradient-free setting, Fabian (1971) forms once H, is specified. The remainder of this section will
estimates of the gradient and Hessian for a Newton- focus on two specific implementations of the ASP
Raphson-type SA algorithm by using, respectively, a finite- approach above: 2SPSA tdrder SPSA) for applications
difference approximation and a set of differences of finite- in the gradient-free case and ZSG‘d{(Qrder stochastic

difference  approximations. ~ This leads  tdO(p?) gradient) for applications in the Robbins-Monro gradient-
measurements &f(-) per update of the estimate, which is based case.
extremely costly whep is large. Ruppert (1985) assumes We now present the per-iteration Hessian estirkite

that direct measurements of the gradign} are available, ; Whacin? firat. :
as in the Robbins-Monro algorithm. He then forms a As with the “basic” first-order SPSA algorithm, let be a

Hessian estimate by taking a finite difference of gradient POSitive scalar (decaying to O for formal convergence) and
measurements; hencé&)(p) measurements ofy(:) are A« O R’ be a user-generated mean-zero random vector;

required for each update step in estimathgA type of conditions orgy, 4, and other relevant quantities are given
in Spall (1999). These conditions are close to those of basic
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SPSA (e.g.A« being a vector of independent Bernoulli +1 For 2SPSA, the core gradient approximat@6, ) is
random variables satisfies these conditions, but a vector of

uniformly or normally distributed random variables does taken asg, (8, )in eqn. (2), requiring two measurements
not). Examples of valid gain sequences are given below. It of L(), y(ék+CkAk) and y(ék_CkAk ). In addition to this

will prove convenient to work with a “vector-divide” . S
operation where thg" element of the resuling matrix gradient approximation, these two measurements are

corresponds to the ratio of tiltelement of the numerator ~ €MPloyed toward generating the one-sided gradient

row vector to theé™ element of the denominator column approximationsG.” (ékickAk Jused in forming:lk. Two
vector. Applying the vector-divide operator, the formula

for estimating the Hessian at each iteration is: additional measurementy/(8, £ A +GA, afe used in

generating the one-sided approximations as follows:

. OxAT T g
A= oG, (6) Biag
BQCKAK (WA H ELT(lZ B Ko

A B, e A +TA ) - yB £ o. o

where GO 8, cpn =L O E bk ka W-yO bl O
k O 0

5 6 0.0

3G, =GP (B, +c A, )-GP(B,-¢c.A,) , S

kp O

and G (-) may or may not equ# (] depending on the

setting. In particular, for 2SPSA, there are advantages to o - )
using a one-sided gradient approximation in order to Stafistical manner ad\,, but independently of, (in
reduce the total number of function evaluations (vs. the particular, choosingA, as independent Bernoulli *1

with Zk=(5k1,5k2,....,5kp)T generated in the same

two-sided form usually recommended 16¢(0) while for random variables is a valid—but not necessary—choice),
2SG, usuallyG® () = G([). Note that all elements d, and with ¢, satisfying conditions similar tg, (although the

are varied simultaneously (and randomly) in formiHg, numerical value ofC, may be best chosen larger than

as opposed to the finite-difference forms in, e.g., Fabian S&€ Subsection 6.2). _ _
(1971) and Ruppert (1985), where the element§ afe Let us summarize some examples of gains that satisfy

the conditions in Spall (1999) for convergence and

changed deterministically one at a time. The symmetrizing . _
asymptotic normality of 2SPSA and 2SG. For both

operation in (6) is convenient in the optimization case ¢ k ) . _
being emphasized here to maintain a symmetric Hessian!MPlémentations, we can takgandc in the form given in
estimate in finite samples. In the general root-finding case, S€ction 3 (condition (vi)). For 2SPSA, we also have
whereH(8) represents a Jacobian matrix, the symmetrizing C =C/(k+1)",C>0. With these gain forms, examples of
operation should not be used since the Jacobian is notspecific coefficient values for 2SPSA ame:= 0.602,y =

necessarily symmetric. _ _ 0.101 ora = 1,y = 1/6. For 2SG, % < < 1 is valid
While the ASP structure in (5a,b) and (6) is general, {ogether with 0 < Y.
we will largely restrict ourselves in our choice@{[)l (and Some discussion is included in Spall (1999) providing

G () in the remainder of the discussion in order to some informal motivation for théd, form in eqn. (6).

present concrete theoretical and numerical results. For This discussion shows that the Hessian estimate is an
2SPSA, we will consider the simultaneous perturbation unbiased estimate to withi©(c2). This reference also

; @, i ) . . .
approach for generatirg(land G,” () while for 2SG we includes some more rigorous discussion on the form of the

will suppose thatG() = G (-) is an unbiased direct estimate and its effect on the convergence properties of

measurement of(l)] (i.e., G() = G (-) = g() + mean- ASP.

zero noisg The rationale for basic SPSA in the gradient- g 2 |mplementation Aspects of ASP
free case was discussed above. In the gradient-based case,

SG methods include as special cases the well-known The two recursions in (5a,b) are the foundation for the ASP
approaches mentioned in Section 1 (backpropagation, etc.).approach. However, as is typical in all stochastic
SG methods are themselves special cases of the generajigorithms, the specific implementation details are
Robbins-Monro root-finding framework and, in fact, most important. Eqns. (5a,b) do not fully define these details.

of t”he results here can apply in this root-finding setting as Fjve useful guidelines are given in Spall (1999).
well.
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6.3 Theory on Convergence and Efficiency of ASP growth and dwindling natural resources force trade-offs
that were previously unnecessary.
Spall (1999) presents some asymptotic theory showing the The SPSA algorithm has proven to be an effective
a.s. convergence Ofék and H, to 6* and H(6%), stochastic optimi;ation methqd. Its primary virtues are (i)
relative ease of implementation and lack of need for loss
'function gradient, (ii) theoretical and experimental support
" for relative efficiency, (iii) robustness to noise in the loss
appropriately normalized estimaté,. The asymptotic measurements, and (iv) empirical evidence of ability to find
normality results are then used to analyze the asymptotic @ global minimum when multiple (local and global) minima
efficiency of the general ASP approach. To summarize exist. Except as discussed in Section 5, SPSA is primarily

: L limited to continuous-variable problems. Numerical
these asymptotic efficiency results, |€6RM and . ; ; ; :
ymp y Sesn comparisons with techniques such as the (Kiefer-Wolfowitz)

RMS;; represent thiéest possibleoot-mean square error  finite-difference method, simulated annealing, genetic
of the normalizecﬁk when using the SPSA (gradient-free) algorlt,hms, an_d randor_n SeafCh have supporte_d the claims of
. ) . SPSA's effectiveness in a wide range of practical problems.
and SG (gradient-based) approach. These require a choicerpeqretical evidence also supports the relative efficiency of
of gain sequences that use, r_espectlvely, ex_act informationgpga in comparison to other popular approaches (Spall, et
on the third and second derivatives ldB) (Dippon and al. 1999). The rapidly growing number of applications
Renz, 1997). This information, of course, is generally throughout the world provide further evidence of the
unavailable. HenceRMS;.s, and RMS); represent ideal algorithm’s effectiveness. To add to the effectiveness, there
values that will usually be unobtainable in practice. Letting have been some extensions of the basic idea, including a
RMSspsaand RMSsg denote the limiting RMS errors for ~ stochastic analogue of the fast deterministic Newton-

respectively, in both the 2SPSA and 2SG settings. Further
conditions are shown for asymptotic normality of an

the normalized 2SPSA and 2SG estimates vehenl/(k + Raphson (second-order) algorithm, adaptations for real-time
1), we find: (control) implementations, and versions for some types of
constrained, global, and discrete optimization problems.
RMS,cpss RMS,q. While much work continues in extending the basic algorithm
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