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stochastic elements are involved. Deterministic simulations
use fixed, non-random values to specify the model and
We present a brief overview of several of the basic output particular variant of the system under investigation. Because
analysis techniques for evaluating stochastic dynamic simu- there is no randomness, the output is also fixed for any
lations. This tutorial is intended for those with little previous  specific set of inputs. Rerunning the simulation with the
exposure to the topic, for those in need of a refresher course, same input factors will give the same result, so output
and especially for those who have never heard of output analysis is concerned with uncovering the fixed input/output
analysis. We discuss the reasons why simulation output relationship. The second is the classstétic simulation
analysis differs from that taught in basic statistics courses, modelswhere the analyst essentially uses random sampling
and point out how to avoid common pitfalls that may lead over input distributions to perform numerical integration of
to erroneous results and faulty conclusions. a static system. Both of these modeling approaches are
certainly legitimate uses of simulation, but fall outside the
scope of this tutorial.

The world is full of uncertainty, and most (if not all)
The process of building, validating, verifying and using realistic simulation models will incorporate some random-
a simulation model for decision-making can be arduous. ness as well as some element of time elapsing. We therefore
You've spent a great deal of time and effort in several dis- focus onstochastic, dynamic simulation modetsough-
tinctly different tasks: working with the decision-makers out the rest of this paper. Such models can be used to
who will be the end users of the simulation results, determin- examine a diverse set of applications. For example, the
ing what data to collect to create reasonable distributions for simulation may have been designed to model the operation
various model components, coding and verifying the sim- of a customer service center, traffic patterns over a particular
ulation model, validating its behavior. After you've taken location grid, hospital facilities utilization, waiting times for
such care in these earlier stages of the simulation process,customers arriving at a service center, the number of cars
you owe it to yourself to analyze the output properly—if not, passing through an intersection duria 5 minute period,
you've negated much of your effort. Fortunately, the output the efficacy of various strategies in combat warfare, the
analysis stage is generally much less time-consuming than impact of changes in layout and equipment on production
the earlier modeling and coding stages because the simula-throughput, and more.
tion model is now working for you. Matters are facilitated Within the class of stochastic simulation models, one
as simulation software companies continue to improve the further distinction is necessary: simulations can be either

ABSTRACT

1 INTRODUCTION

output analysis capabilities of their packages. It can also
be fascinating to discover the patterns and complexities of
the simulation model’s behavior under one (or more) sce-
narios. Output analysis will allow you and the end-user to
effectively gain insights into the model’s performance, and
so lead to better decisions.

Before going further, there are two types of simulations
that we will not be discussing in any detail. The first is
the class of deterministic simulation modeln which no
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terminating (sometimes calledinite) or nonterminatingin
nature. Terminating simulations are those in which there
is a natural event which specifies when the simulation is
complete. Examples include events such as the time at
which a satellite experiences catastrophic failure, the time
at which a retail establishment finishes for the day (it is past
closing time and no customers remain), the completion of a
construction project or the end of a fixed-term contract for
supplying a good or service. Many times these termination
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events are stochastic, rather than deterministic. While a Appropriateness means more than one thing. First,

bank's door may state that the closing time is 6:00 p.m. do you have the ‘right’ output measure? Consider a bank

on weekdays, if any customers arrive just before 6:00 their manager, who has commissioned a simulation study because
service will extend slightly beyond the official close of the she is concerned about customer waiting times when new
day. Nonterminating simulations are those for which no services are offered. Possible quantities of interest include:

natural terminating event exists. These could include the

operation of a manufacturing facility if work in process e expected customer time in system

remains on the shop floor. Even if the factory closes during e expected customer waiting time (prior to ser-
the evening, we can treat its hours of operation as a long vice)

nonterminating simulation. Some nonterminating simulated e probability that waiting time exceeds 10 min-
systems exhibisteady-statdoehavior, which means that in utes

variance of customer waiting time
variance of customer service time
probability of 1 to 3 minute service times
probability of 15 or more customers in line

the long run, the distribution of the output measure is
independent of time. If the output has a fixed mean value
and covariance structure, we say that ivisakly stationary
Suppose that a stochastic, dynamic simulation model
has been successfully developed and validated. Running

this simulation model will generate a stream of output. This [© Name a few. Each of these measures is appropriate for
output might be indexed by time, e.g., the model’s output answering a question, but the questions differ. For example,

might be the number of patients checked into the hospital 'f the managerisreally interested in the number of ‘unhappy’
at midnight on successive days. Alternatively, the output Customers who must wait longer than a specified amount
might be indexed by count, such as the service time for of time to receive service, then good information on the
successive customers who depart from a system. In either €XPected service time — or even the expected waiting time

case, you must decide how to generate and analyze the — Will not provide her with the information she needs. Ifyou
Outpl,Jt. check to make sure that the decision-maker understands the

We address this via the ABC’s of output analysis. In implications of using several possible performance measures,
Sections 2, 3 and 4 we describe some basic concepts that ard?€fore arriving at an agreement of which one(s) to use, you
important for simulators to understand in order to conduct MaY @void a great deal of hassle in the future. _
output analysis properly. In Section 5 we briefly mention Thus, the first (and most important) issue in selecting
extensions related to these basics, as well as some other moré? OUtput measure is insuring that it answers the right

advanced or more specialized output analysis techniques. duestion. If there are noticeable constraints on computing
Our goal is not to present full details of the methods, but time or budget, you may also wish to consider whether or not

to leave the reader with an appreciation for the topics. YOUTe collecting the output measure directly. For example,
More complete discussions and additional references can the customer time in the system is equal to the sum of the
be found in simulation texts, such as Banks, Carson and {ime spent awaiting service and the time spent receiving
Nelson (1996), Bratley, Fox and Schrage (1987), Fishman Service. If your interest is primarily in waiting time, it

(1978), Law and Kelton (1991), Nelson (1995), Thesen and will be more efficient to report and evaluate waiting time
Travis (1992), as well as in Alexopoulos and Seila (1998) directly than to estimate the expected total time, the expected

Kelton (1997) or other papers cited in this tutorial. service time, and use these to estimate the expected waiting
time. This is often less of an issue now than in the past,
2  THE A'S: PREPARING FOR ANALYSIS since successive generation of CPUs have cut computing

time requirements geometrically. However, since decision-
2.1 Application-Appropriate makers ha\{e rgsppnded to 'the inc'reased computing power
Output Measures by demanding insights for increasingly complex systems,
and since answers to important questions are often needed

One pitfall that may arise in analyzing simulation output is  Yesterday,’ the problem is not Iikely to go away completely.
a lack of a clear understanding of what question is being We simulators should be thankful: as we're better able to

asked. Presumably, as the simulation model was built the SUPPOIt effective decision-making, our jobs may become
end-users’ needs and interests were considered. However,MO'€ interesting and more secure!

it is not uncommon for a model to be developed and built .

for one purpose and then subsequently expanded or used to2-2 Autocorrelation Awareness

address another question of interest. While it may sound . , ) ,
simple, make surdefore you go any farthethat you're One qualitative difference between generating output via

using output measures which are appropriate for answering simulation and collecting data in traditional statistical sam-
the questions at hand! pling applications (e.g., surveys, agricultural experiments)
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is the high degree of serial autocorrelation that is typically

normally distributed, then (as you'll shortly see), the rest

seen in simulation output streams. Queueing systems — of the analysis won't be difficult.

a common class of problems modeled via discrete-event
simulation — are notorious for exhibiting this type of be-
havior. For example, consider a fast food restaurant with a
single drive-thru window. If one car must wait a long time
before receiving their order because they joined the end of
a long queue, then it is likely that cars arriving just before
or just after this car will also experience longer waits. Con-
versely, if a car arrives and the driver immediately places
an order, then it is likely that the next car arriving will
experience at most a short delay. While this relationship
is not deterministic, it will reveal itself as a series of posi-
tively autocorrelated data: cars arriving in close proximity
to one another are more likely to exhibit similar waiting
times than those arriving far apart. (Negatively correlated

3 THE B’'S: BREAD-AND-BUTTER
TECHNIQUES

3.1 Bias Removal

Often, queueing system simulations begin from a state which
is easy to visualize and convenient to program. For ex-
ample, consider the so-called ‘empty and idle state’ for a
hospital: there are no patients, no outstanding laboratory or
diagnostic tests to be conducted, no broken equipment, but
a full complement of hospital staff stand ready to perform
their duties. As we start running the simulation, we gener-
ate entities and activities: hospital staff schedules, patient

output streams sometimes occur, but far less frequently than arrivals, patient medical care needs, equipment and supplies

positively correlated output.)
The netimpact of correlation in simulation output is that
you need to generatewhole lotof information in order to

arrive or are utilized, and so forth. These in turn interact
within the simulation, creating bottlenecks, scheduling con-
flicts, routing and capacity problems, and a host of other

get a reasonable picture of the system behavior. You cannot changes in the system state. Eventually the impacts of the

treat successive output values as independent observations—unrealistic initial conditions wash out.

if you do, particularly for short output streams, you're likely

We say that the
system has ‘warmed up’ and the hospital operates under its

to vastly underestimate the system variance and, perhaps,steady-state distribution.

provide a biased estimate of the system mean. This can lead

to unpleasant surprises when the system is implemented.
2.3 Averages and Aggregation

You wouldn’t feel comfortable predicting the outcome of
an election after surveying one prospective voter, so you
shouldn’t feel comfortable reporting one number from a
simulation as “the answer.” This is true even if that number
is itself a summary obtained from a large sample, such
as the average waiting time of the bank’s first 100 (or
even 1,000) customers, or the total number of customers
arriving during the day. As we show in Section 4, the right
way to summarize simulation output involves appropriately
conveying information about both the center and the spread
of the output measure’s distribution. This typically means
constructing interval estimates, rather than simply point
estimates, of the underlying ‘true’ performance.

Despite the fact that a single averaged or aggregated
value will not suffice for purposes of simulation output

Initialization biasrefers to the fact that if most (or all)
the output stream is generated during the warm-up period,
then averages or other summary measures of these data
may dramatically overestimate or underestimate the steady-
state performance. One way to counteract initialization
bias is to start the system under steady-state conditions.
Unfortunately, we may not know what these conditions are
until after we've run the simulation and done some output
analysis, so convenience may drive us to use a simple (albeit
unrealistic) starting state. Initialization bias problems can
still be avoided if you delete any data obtained during the
warm-up period prior to further analysis. Determining the
length of the warm-up period is not a science, but several
graphical and numerical methods have been proposed and
tested.

The main idea: you only want ‘good data’ that ac-
curately represents the performance of the system. This
means — once again — you must be sure that your analy-
sis matches the question of interest. If you are studying the
operation of a bank, with working hours 9:00 a.m. to 6:00

analysis, averages and aggregates still play important roles p.m., then you have a terminating simulation for whaih

as steps along the way. So, while the waiting times of

of the data are useful. If you want to know the average

successive customers may be highly correlated, the averagenumber of customers served during a day, it would be wrong

waiting times from one day to the next should be indepen-
dent. If the aggregation or averaging involves a large initial
sample, then it is more likely that the distribution of the
resulting summary measure will be normally distributed.
If you examine the right output measure, and deal with

to throw out data at the beginning of the day because the
bank started out empty. On the other hand, if our interest
is in steady-state utilizations within the hospital, then you
should discard the initial transient or warm-up period be-
cause empty-and-idle conditions are completely unrealistic

data summaries that look independent and perhaps evenassumptions.
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3.2 Basic Replications For nonterminating simulations, the savings in total run
length can be substantial if you use batch means instead of

Perhaps the simplest output analysis technique to explain using the basic replication/deletion method. This is partic-

is one in which the simulation is treated (almost) as any ularly true if the warm-up perioa is long. For example,

other basic experimental unit for statistical sampling pur- supposew = 3,000 and you want 20 (approximately) in-

poses. If you have independent observations of some output dependent groups of data made uplp000 observations

measure, then you will be able to use standard statistical each. If you used basic replication/deletion, you'd need to

methods to generate confidence intervals for its expected generate a total of = 20(3, 000+ 1, 000) = 80, 000 ob-

value. Consider first a terminating simulation, such as a servations, and you'd end up throwing 75% of these away.

single day of operations at a bank, where initialization bias In contrast, if you used batch means you’d need to generate

is not an issue. The basic replication method consists of only n = 3, 000+ 20(1, 0000 = 23, 000 observations and

getting independent output streams by making several runs you'd only discard 13% of the data.

with different random number seeds. Output from a single

run can then be averaged or aggregated to yietingle 4 THE C'S: CONVEYING THE RESULTS

output value, such as the mean waiting time or the total

number of customers served during that run. Note that if 4.1 Confidence

the output of interest is the time until termination, or the

number of events (such as sales) before termination, then As mentioned earlier, point estimates are not useful for

the run’s output is already in the form of a single number. decision-making purposes. Suppose that after any necessary

For nonterminating simulations this technique is often truncation, you haves summary values. Let’s call these

called the replication/deletion method, because each replica- Y1, Y, ..., Y,, although you should remember that these

tion’s warm-up period must be deleted before the summary might be percentiles, or variances, or summary statistics

output value for that replication is computed. In practice, otherthan sample averages. (These arise froeplications

it is easier to implement the replication/deletion method if under the replication/deletion method, @atches under

the same truncation point is used for all replications. It is the method of batch means.) L&tdenote the standard

also easier to explain if round numbers are used: managersdeviation of these’;, and letty_q/2.,—1 denote the value

may readily accept a statement such as ‘from each run, we from the distribution corresponding to an upper-tail area

eliminated the firstl, 000 observations (or 100 simulated of «/2. Then al00(1 — @)% confidence interval for the

hours of output)’ if you explain the initialization bias prob-  true expected performance is

lem. However, they may become suspicious and believe

you're manipulating the results if you make a statement like 1A S

‘we eliminated the first 933 observations (or 102.81 hours n Z Y+ tl—a/Z:n—lﬁ-

of output).’ =1

3.3 Batch Means For this interval to be valid, th&’;'s should be essen-

tially independent, and either normally distributed (perhaps
Another common approach used to achieve near-indepen- because they are averages or aggregates of a large number

dence between summary output values is the method of batch ©f Faw output values), or elseshould be sufficiently large
means. This essentially takes the output stream and chops itthat the central limit theorem applies. Remember that the
up into batches of equal size. Then a single summary output total data collection effort may be huge, even if the degrees

measure—often the mean—is computed for each batch. If Of freedom are small. For example, if we have taken 5
the batch size is sufficiently large, then the batch means Patches ofl5, 000 observations each, then we have only
will be approximately independent of one another. four degrees of freedom — nd#, 999 or 74, 999,

There are several methods that one can use to determine  FOr afixed total computational effort, there is a trade-off
a batch size, though for a moderately busy queueing system Petween the number of runs (or batches) and the run length
it's not unreasonable to have around 1,000 departures per (OF batch size) required, even if initialization bias is not
batch. If you've already calculated the length of the warm- an issue. For illustration purposes, suppose we're dealing
up period, then this may give you a conservative estimate of With batch means. If the batch size is large, tfgrthe
the necessary batch size. In practice, many analysts chooseStandard deviation of the batch means, will be low because
a large batch size, perhaps a convenient round number, andth® Y:'s will be tend to be quite close to their expected

then delete the first batch or batches from consideration to Valué (and, serendipidously, more likely to be normally
alleviate initialization bias. The pre-specified batch size is distributed). However, the small number of batches means

used unless it appears (from graphical or statistical analysis) thatthe denominatay» will be small and the-value will be
to be problematically small. larger, together acting to increase the width of the confidence
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interval. On the other hand, if many short runs are made,
then the¢-value shrinks to the normal distribution value
and./n is large, but at the same timemay be extremely
high if little averaging occurs within the batch. The same
trade-off holds conceptually if you use the basic replication
or replication/deletion approach. Both long runs and many
runs are desirable, but if you've got constraints on time or
budget you can't have both.

As an alternative to formal statistical inference, some
clever graphical displays can be used to describe simulation
output. A well-constructed picture may easily be worth
a thousand words if it reveals clear patterns that might
go undetected if only standard numerical summaries were
used. Several graphical techniques for describing simulation
output are described in more detail by Grier (1992).

Animation has become increasingly popular, and many
simulation software companies now have built-in animation
capabilities in their packages. Animation can be useful
for identifying incomplete model specifications (such as
forklift trucks running through each other in production
facilities) and for some other purposes, notably that of
improving the buy-in of decision-makers on the model's
logic, construction, and ultimate utility. However, it isn't
worthwhile to get the decision-maker to ‘believe in’ your
simulation model if you don’t bother to use this model to
obtain comprehensive results. A short time spent watching
a visual animation of part of the system is no substitute for
a valid statistical analysis: because of the autocorrelation
and initialization issues—or random chance—you may be
observing the system in highly unusual states. Human
judgement is easily swayed by occurrences which may be
visually striking, but have minimal real impact.

The usefulness of the confidence interval for decision-
making purposes will, as in basic statistics, depend on its
width and the level of confidenc&00(1 — «). Even if
you're using graphical displays as the primary method for
conveying the results, rather than formal statistical inference,
you should be fairly certain that you've captured the essential
characteristics of the output. How can you achieve this
confidence? As we describe in the next section, you can
take explicit control of the simulation run conditions.

4.2 Control

What if you construct your confidence interval and find that
it is narrower than some desired precision? What if your
histograms or dot plots look essentially the same if you
base them on only half of the output data? No problem —

you may have wasted some computer CPU cycles, but your

results should be useful to the decision-maker. However, if
you spent a great deal of unneeded time collecting simulation
output data, then you might want to look more carefully at

control issues before beginning your next analysis.
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On the other hand, perhaps your confidence intervals are
too wide or your graphical displays are difficult to interpret.
Then the decision-maker may not have the information they
need to arrive at a good decision. For example, suppose
the marketing department has shown that a new policy of
“on time or half price" will be profitable only if fewer than
1% of production orders are not filled by their due date. A
simulation model of the manufacturing facility, including
forecasts of (random) customer demand, is created. If a
confidence interval for the expected proportion of late orders
is [0.003 0.004], then the simulation results show that the
new policy is profitable. If the confidence interval for the
expected proportion of late orders [i8.013 0.018], then
the new policy appears unprofitable. But if the confidence
interval is[0.003 0.018] then the decision-maker does not
have sufficient evidence to make a judgment on the prof-
itability issues. This interval is too wide to address the
problem at hand. You can ‘fix’ this problem by collecting
more output data and redoing the analysis.

Remember that not all problems in interpreting simula-
tion output relate to the statistical analysis. If a very narrow
interval covered this breakpoint, then the problem may be
best answered by revisiting the model specifications. The
decision-maker might wish to check the model assumptions
for correctness, check the so-called break-even point for
accuracy, or run the simulation using other potential de-
mand patterns to develop best case, worst case, and baseline
scenarios.

The confidence interval width is essentially under your
control, since (formally or informally) you set how many runs
to make. If you're studying a nonterminating simulation,
you also control the total sample size, with the caveat that the
runs (or batches) should be long enough for you to deal with
any initialization effects. For the method of batch means,
you'll need to set the batch size and number of batches
before making the final run. From a practical perspective,
unless you're willing to make a really long run and hope
that it yields a suitable number of batches, you may want
to conduct a pilot run in order to ballpark a desirable batch
size. It is easy to add additional runs under the the basic
replication or replication/deletion method, although a pilot
run is still beneficial to assess whether or not initialization
bias is a problem. Whether the unit of analysis is a run or
a batch, the most important rule is: THE NUMBER 1 IS
TOO LOW! You are exposing yourself and your client to
great danger if you rely on aingle summary valugom
simulation output, even if you let the computer run a long
time to get this value.

While sample size is controllable in statistical sampling
in general, as a simulation analyst you have more control
over experimental conditions than, say, someone performing
experiments on a physical system. You can specify the
random number seeds used to generate the output for each
of the simulation runs. You can control the simulation
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model’s initial conditions. You can control the levels for
various parameters embedded in the simulation model to
assess its performance under different conditions.

With this additional level of control comes the oppor-
tunity to evaluate the output more efficiently or in greater
depth. These simulation-specific controllable factors can
be used to plan your data collection effort. For example,

consider the bank simulation where each run generates out-

put for a single day of operation. Distinct random number

The selection and ranking approach is useful for com-
paring distinct systems or systems characterized by distinct
protocols, such operating performance of queueing networks
under FIFO or LIFO priority queues, or different layouts
of a manufacturing facility. If, however, different system
configurations result from changing levels of some quantita-
tive variables, then response surface methodology is another
alternative. Response surface metamodels seek to approx-
imate the simulation input/output relationship analytically,

seeds will mean the output data are independent from run to as in a polynomial regression model for the relationship be-
run. Alternatively, if your random variables are generated tween parameter settings (over limited ranges) and the mean
by inversion, you could pair runs by generating a random performance of the simulation. Regression-based response
number stream for the one run, and using #mithetic surface metamodels in the simulation arena are discussed
stream for the second run. The antithetic stream essentially in Hood and Welch (1993), Kleijnen (1987, 1998) and
generates a low value whenever the original random number chapter 12 of Law and Kelton (1991). Frequency domain
stream generates a high value, and vice versa. Under suchapproaches have been examined by Schruben and Cogliano
a sampling scheme, you are insuring that you investigate (1987) and Morrice and Schruben (1993); see Sanchez et
the system under a variety of different scenarios. al. (1999) for references to recent work in this area. Barton

As we discuss in the next section, exercising your (1998) has detailed references regarding a broad range of
control over the simulation may be particularly beneficial response surface metamodels, which include structures that
when you are making comparisons. may be more suitable than polynomial regression models for
the highly non-linear structures that may arise in complex
stochastic simulations.

When used in conjunction with robust design approach,
At times, the purpose of preparing a simulation model is not response surface metamodels can identify systems which are
to assess the capability of a single system, but to compare relatively insensitive to uncontrollable uncertainties
one or more systems to a standard level of performance, (such as customer demand rates) or deviations of system
to compare several systems to one another, or to determinedecision factor levels from planned values. For details and
how the performance of one system changes according related references, see Sanchez (1994), or Sanchez et al.
to particular variants of operating conditions. Appropriate (1996, 1998). Saltelli (1999) explores the dynamics of
output analysis tools have been developed for all these cases,changing sources of variation for complex systems.
although many of these questions are difficult and there is
still room for further work.

Hypothesis tests, confidence intervals, or multiple com-
parison procedures can be used when comparing systems to aVe have just touched on some of the aspects of output
pre-determined standard. When comparing several systemsanalysis for stochastic simulation models. A rich body of
to one anotheselection and ranking procedurean be used literature exists on extensions or alternatives to the topics
to specify ‘good’ or ‘best’ systems, while allowing the an- described earlier. We present a very brief summary of
alyst to make an intuitively appealing probability guarantee some of these topics, along with references for the reader
about the selection process. For example, you might focus interested in further details.
on choosing the system with the highest mean: a selection Another output analysis technique which has received
method could guarantee that the best system will be cho- attention in the literature is the regenerative method. This
sen with high probability provided the difference between approach seeks to gainindependence by bunching the data in
the true best and second-best exceeds some pre-specifiec different way: the output stream begins a megenerative
“smallest practical difference.” Subset selection procedures cyclewhenever it returns to a particular state. For example,
are good screening methods if you're investigating a large an M/M/1 queue regenerates each time the system is empty
number of systems and wish to identify those which merit and idle with an operational server. Regenerative cycles
further investigation Multiple comparison proceduresug- are often easy to detect and conceptually pleasant, but
ment the selection and ranking approaches by providing the analysis is not without difficulties. Planning the runs
estimates of the true performance measures in addition to is harder, since the time between cycles is random and
determining the selected system or group of systems. For generally not knowra priori. The choice of a regenerative
more on selection and multiple comparison procedures, see state is not straightforward: easy ones to describe, such as
chapter 10 of Law and Kelton (1991), Goldsman and Nelson empty-and-idle, may occur only rarely, and the estimates of
(1999), Matejcik and Nelson (1995) or Nakayama (1997). mean performance are only asymptotically unbiased. This
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5 BEYOND THE BASICS
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means even with long runs you have no guarantee that the tems to system configurations. It is also useful for opti-
desired estimation precision will be attainable. mization, where the analyst seeks to identify the input factor

The regenerative method and the output analysis ap- settings that optimize some performance measure. Other re-
proaches of Section 3 seek to aggregate data in such asearchersaddressthe optimization problem in different ways.
way as to treat summaries of portions of the total output One idea s to use gradient estimation techniques in conjunc-
as independent for purposes of analysis. There are othertion with steepest ascent (for maximization problems) or
output analysis techniques that take different approaches. steepest descent (for minimization problems). Techniques
In time-series analysjsthe correlated, nonstationary sim-  such as adapting stochastic programming methods are under
ulation output series is treated just like a time series of investigation. For more on experimental design and opti-
economic data, such as stock prices or new business startsmization in the simulation context, see chapter 13 of Banks,
over time. Then a time-series model (such as an ARMA Carson and Nelson (1996), Cheng and Lamb (1998), Fu
model) is fit to the data, and the fitted model is used for (1994), Fu and Hu (1997), chapter 12 of Law and Kelton
inference. Thespectral analysis methodirectly estimates (1991), Kleijnen (1987, 1998), Sanchez et al. (1996, 1998),
the correlation structure of the process, and uses this in turn Tew and Wilson (1994); or the tutorial by Kelton (1999)
to form a variance estimate for statistical analysis. In the that also appears in these proceedings.
standardized time seriespproach, a process version of the Finally, you may find that in order to utilization your
central limit theorem is applied to “standardize” the output simulation most effectively you will examine several per-
series, and appropriate methods for statistically analyzing formance measures rather than just one. Your simulation
this standardized series have been worked out. More on model can generate many output streams from each run,
these topics and the methods of Section 3 can be found in and these streams are likely to be related to one another in
chapter 12 of Banks, Carson and Nelson (1996), chapter 3 some way. For example, large customer waiting times are
of Bratley, Fox and Schrage (1987), chapters 2, 3 and 5 of likely to be associated with long waiting lines. This means
Fishman (1978), chapter 7 of Khoshnevis (1994), Kleijnen you really have a vector of output measures. Multivariate
(1987), chapter 9 of Law and Kelton (1991), Lewis and Orav statistics may be useful for simultaneous estimation and
(1989), chapter 6 of Ripley (1987), and chapter 6 of Thesen for gaining insight into the relationships between output
and Travis (1992). More recently, Bayesian approaches to measures. For details and further references, see Charnes
simulation output analysis have been proposed. See Chick (1991) or Law and Kelton (1991).
(1997) or Cheng (1998) for examples and further references.

Appropriate planning is much more efficient than trial- 6 CONCLUSIONS
and-error for assessing the system performance under dif-
ferent scenarios. This means that you may benefit from the Although a ‘veritable plethora’ of output analysis techniques
use of variance reduction or experimental design techniques, exists, the ABC’s described in this tutorial illustrate that by
particularly in cases where it is expensive or time-consuming paying attention to a few basic principles, you will be able
to generate the simulation output. Resulting gains in effi- to conduct a useful, valid output analysis. This is a great
ciency will allow you to either construct narrower confidence way to get the most from your simulation model! Whether
intervals for output measures for the same amount of data, the ultimate purpose of the simulation modeling process
or to complete the simulation runs more quickly for a partic- is to provide insights into model behavior or to answer
ular desired level of confidence. Many variance reduction specific questions, output analysis is the bridge between the
(or variance reallocation) techniques have been proposed model-building and the decision-making processes.
to increase the efficiency of estimating mean performance.
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