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ABSTRACT

We present a brief overview of several of the basic outp
analysis techniques for evaluating stochastic dynamic sim
lations. This tutorial is intended for those with little previou
exposure to the topic, for those in need of a refresher cou
and especially for those who have never heard of out
analysis. We discuss the reasons why simulation out
analysis differs from that taught in basic statistics cours
and point out how to avoid common pitfalls that may lea
to erroneous results and faulty conclusions.

1 INTRODUCTION

The process of building, validating, verifying and usin
a simulation model for decision-making can be arduo
You’ve spent a great deal of time and effort in several d
tinctly different tasks: working with the decision-make
who will be the end users of the simulation results, determ
ing what data to collect to create reasonable distributions
various model components, coding and verifying the si
ulation model, validating its behavior. After you’ve take
such care in these earlier stages of the simulation proc
you owe it to yourself to analyze the output properly—if no
you’ve negated much of your effort. Fortunately, the outp
analysis stage is generally much less time-consuming t
the earlier modeling and coding stages because the sim
tion model is now working for you. Matters are facilitate
as simulation software companies continue to improve
output analysis capabilities of their packages. It can a
be fascinating to discover the patterns and complexities
the simulation model’s behavior under one (or more) s
narios. Output analysis will allow you and the end-user
effectively gain insights into the model’s performance, a
so lead to better decisions.

Before going further, there are two types of simulatio
that we will not be discussing in any detail. The first
the class of (deterministic simulation models, in which no
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stochastic elements are involved. Deterministic simulatio
use fixed, non-random values to specify the model a
particular variant of the system under investigation. Beca
there is no randomness, the output is also fixed for a
specific set of inputs. Rerunning the simulation with th
same input factors will give the same result, so outp
analysis is concerned with uncovering the fixed input/outp
relationship. The second is the class ofstatic simulation
models, where the analyst essentially uses random samp
over input distributions to perform numerical integration
a static system. Both of these modeling approaches
certainly legitimate uses of simulation, but fall outside th
scope of this tutorial.

The world is full of uncertainty, and most (if not all
realistic simulation models will incorporate some random
ness as well as some element of time elapsing. We there
focus onstochastic, dynamic simulation modelsthrough-
out the rest of this paper. Such models can be used
examine a diverse set of applications. For example,
simulation may have been designed to model the opera
of a customer service center, traffic patterns over a particu
location grid, hospital facilities utilization, waiting times fo
customers arriving at a service center, the number of c
passing through an intersection during a 5 minute period,
the efficacy of various strategies in combat warfare, t
impact of changes in layout and equipment on product
throughput, and more.

Within the class of stochastic simulation models, o
further distinction is necessary: simulations can be eith
terminating(sometimes calledfinite) or nonterminatingin
nature. Terminating simulations are those in which the
is a natural event which specifies when the simulation
complete. Examples include events such as the time
which a satellite experiences catastrophic failure, the ti
at which a retail establishment finishes for the day (it is p
closing time and no customers remain), the completion o
construction project or the end of a fixed-term contract f
supplying a good or service. Many times these terminat
4
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events are stochastic, rather than deterministic. While
bank’s door may state that the closing time is 6:00 p.m
on weekdays, if any customers arrive just before 6:00 the
service will extend slightly beyond the official close of the
day. Nonterminating simulations are those for which n
natural terminating event exists. These could include th
operation of a manufacturing facility if work in process
remains on the shop floor. Even if the factory closes durin
the evening, we can treat its hours of operation as a lo
nonterminating simulation. Some nonterminating simulate
systems exhibitsteady-statebehavior, which means that in
the long run, the distribution of the output measure
independent of time. If the output has a fixed mean valu
and covariance structure, we say that it isweakly stationary.

Suppose that a stochastic, dynamic simulation mod
has been successfully developed and validated. Runn
this simulation model will generate a stream of output. Th
output might be indexed by time, e.g., the model’s outp
might be the number of patients checked into the hospi
at midnight on successive days. Alternatively, the outp
might be indexed by count, such as the service time f
successive customers who depart from a system. In eith
case, you must decide how to generate and analyze
output.

We address this via the ABC’s of output analysis. I
Sections 2, 3 and 4 we describe some basic concepts that
important for simulators to understand in order to condu
output analysis properly. In Section 5 we briefly mentio
extensions related to these basics, as well as some other m
advanced or more specialized output analysis techniqu
Our goal is not to present full details of the methods, bu
to leave the reader with an appreciation for the topic
More complete discussions and additional references c
be found in simulation texts, such as Banks, Carson a
Nelson (1996), Bratley, Fox and Schrage (1987), Fishm
(1978), Law and Kelton (1991), Nelson (1995), Thesen an
Travis (1992), as well as in Alexopoulos and Seila (1998
Kelton (1997) or other papers cited in this tutorial.

2 THE A’S: PREPARING FOR ANALYSIS

2.1 Application-Appropriate
Output Measures

One pitfall that may arise in analyzing simulation output i
a lack of a clear understanding of what question is bein
asked. Presumably, as the simulation model was built t
end-users’ needs and interests were considered. Howe
it is not uncommon for a model to be developed and bu
for one purpose and then subsequently expanded or use
address another question of interest. While it may sou
simple, make surebefore you go any fartherthat you’re
using output measures which are appropriate for answer
the questions at hand!
25
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Appropriateness means more than one thing. Firs
do you have the ‘right’ output measure? Consider a ban
manager, who has commissioned a simulation study becau
she is concerned about customer waiting times when ne
services are offered. Possible quantities of interest includ

• expected customer time in system
• expected customer waiting time (prior to ser-

vice)
• probability that waiting time exceeds 10 min-

utes
• variance of customer waiting time
• variance of customer service time
• probability of 1 to 3 minute service times
• probability of 15 or more customers in line

to name a few. Each of these measures is appropriate
answering a question, but the questions differ. For exampl
if the manager is really interested in the number of ‘unhappy
customers who must wait longer than a specified amou
of time to receive service, then good information on the
expected service time — or even the expected waiting tim
— will not provide her with the information she needs. If you
check to make sure that the decision-maker understands
implications of using several possible performance measure
before arriving at an agreement of which one(s) to use, yo
may avoid a great deal of hassle in the future.

Thus, the first (and most important) issue in selectin
an output measure is insuring that it answers the righ
question. If there are noticeable constraints on computin
time or budget, you may also wish to consider whether or no
you’re collecting the output measure directly. For example
the customer time in the system is equal to the sum of th
time spent awaiting service and the time spent receivin
service. If your interest is primarily in waiting time, it
will be more efficient to report and evaluate waiting time
directly than to estimate the expected total time, the expect
service time, and use these to estimate the expected wait
time. This is often less of an issue now than in the pas
since successive generation of CPUs have cut computi
time requirements geometrically. However, since decision
makers have responded to the increased computing pow
by demanding insights for increasingly complex systems
and since answers to important questions are often need
‘yesterday,’ the problem is not likely to go away completely
We simulators should be thankful: as we’re better able t
support effective decision-making, our jobs may becom
more interesting and more secure!

2.2 Autocorrelation Awareness

One qualitative difference between generating output vi
simulation and collecting data in traditional statistical sam
pling applications (e.g., surveys, agricultural experiments
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ABC’s of Ou

is the high degree of serial autocorrelation that is typicall
seen in simulation output streams. Queueing systems
a common class of problems modeled via discrete-eve
simulation — are notorious for exhibiting this type of be-
havior. For example, consider a fast food restaurant with
single drive-thru window. If one car must wait a long time
before receiving their order because they joined the end
a long queue, then it is likely that cars arriving just befor
or just after this car will also experience longer waits. Con
versely, if a car arrives and the driver immediately place
an order, then it is likely that the next car arriving will
experience at most a short delay. While this relationsh
is not deterministic, it will reveal itself as a series of posi
tively autocorrelated data: cars arriving in close proximit
to one another are more likely to exhibit similar waiting
times than those arriving far apart. (Negatively correlate
output streams sometimes occur, but far less frequently th
positively correlated output.)

The net impact of correlation in simulation output is tha
you need to generatea whole lotof information in order to
get a reasonable picture of the system behavior. You cann
treat successive output values as independent observation
if you do, particularly for short output streams, you’re likely
to vastly underestimate the system variance and, perha
provide a biased estimate of the system mean. This can le
to unpleasant surprises when the system is implemented

2.3 Averages and Aggregation

You wouldn’t feel comfortable predicting the outcome o
an election after surveying one prospective voter, so yo
shouldn’t feel comfortable reporting one number from
simulation as “the answer.” This is true even if that numbe
is itself a summary obtained from a large sample, suc
as the average waiting time of the bank’s first 100 (o
even 1,000) customers, or the total number of custome
arriving during the day. As we show in Section 4, the righ
way to summarize simulation output involves appropriatel
conveying information about both the center and the spre
of the output measure’s distribution. This typically mean
constructing interval estimates, rather than simply poin
estimates, of the underlying ‘true’ performance.

Despite the fact that a single averaged or aggregat
value will not suffice for purposes of simulation outpu
analysis, averages and aggregates still play important ro
as steps along the way. So, while the waiting times o
successive customers may be highly correlated, the avera
waiting times from one day to the next should be indepen
dent. If the aggregation or averaging involves a large initia
sample, then it is more likely that the distribution of the
resulting summary measure will be normally distributed
If you examine the right output measure, and deal wit
data summaries that look independent and perhaps ev
26
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normally distributed, then (as you’ll shortly see), the res
of the analysis won’t be difficult.

3 THE B’S: BREAD-AND-BUTTER
TECHNIQUES

3.1 Bias Removal

Often, queueing system simulations begin from a state whic
is easy to visualize and convenient to program. For ex
ample, consider the so-called ‘empty and idle state’ for a
hospital: there are no patients, no outstanding laboratory o
diagnostic tests to be conducted, no broken equipment, b
a full complement of hospital staff stand ready to perform
their duties. As we start running the simulation, we gener
ate entities and activities: hospital staff schedules, patien
arrivals, patient medical care needs, equipment and suppli
arrive or are utilized, and so forth. These in turn interac
within the simulation, creating bottlenecks, scheduling con
flicts, routing and capacity problems, and a host of othe
changes in the system state. Eventually the impacts of th
unrealistic initial conditions wash out. We say that the
system has ‘warmed up’ and the hospital operates under i
steady-state distribution.

Initialization biasrefers to the fact that if most (or all)
the output stream is generated during the warm-up period
then averages or other summary measures of these da
may dramatically overestimate or underestimate the stead
state performance. One way to counteract initialization
bias is to start the system under steady-state condition
Unfortunately, we may not know what these conditions are
until after we’ve run the simulation and done some outpu
analysis, so convenience may drive us to use a simple (albe
unrealistic) starting state. Initialization bias problems can
still be avoided if you delete any data obtained during the
warm-up period prior to further analysis. Determining the
length of the warm-up period is not a science, but severa
graphical and numerical methods have been proposed a
tested.

The main idea: you only want ‘good data’ that ac-
curately represents the performance of the system. Th
means — once again — you must be sure that your analy
sis matches the question of interest. If you are studying th
operation of a bank, with working hours 9:00 a.m. to 6:00
p.m., then you have a terminating simulation for whichall
of the data are useful. If you want to know the average
number of customers served during a day, it would be wron
to throw out data at the beginning of the day because th
bank started out empty. On the other hand, if our interes
is in steady-state utilizations within the hospital, then you
should discard the initial transient or warm-up period be
cause empty-and-idle conditions are completely unrealisti
assumptions.
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3.2 Basic Replications

Perhaps the simplest output analysis technique to exp
is one in which the simulation is treated (almost) as a
other basic experimental unit for statistical sampling pu
poses. If you have independent observations of some ou
measure, then you will be able to use standard statist
methods to generate confidence intervals for its expec
value. Consider first a terminating simulation, such as
single day of operations at a bank, where initialization b
is not an issue. The basic replication method consists
getting independent output streams by making several r
with different random number seeds. Output from a sing
run can then be averaged or aggregated to yield asingle
output value, such as the mean waiting time or the to
number of customers served during that run. Note tha
the output of interest is the time until termination, or th
number of events (such as sales) before termination, t
the run’s output is already in the form of a single numb

For nonterminating simulations this technique is oft
called the replication/deletion method, because each rep
tion’s warm-up period must be deleted before the summ
output value for that replication is computed. In practic
it is easier to implement the replication/deletion method
the same truncation point is used for all replications. It
also easier to explain if round numbers are used: mana
may readily accept a statement such as ‘from each run,
eliminated the first1, 000 observations (or 100 simulate
hours of output)’ if you explain the initialization bias prob
lem. However, they may become suspicious and beli
you’re manipulating the results if you make a statement l
‘we eliminated the first 933 observations (or 102.81 hou
of output).’

3.3 Batch Means

Another common approach used to achieve near-indep
dence between summary output values is the method of b
means. This essentially takes the output stream and cho
up into batches of equal size. Then a single summary ou
measure—often the mean—is computed for each batch
the batch size is sufficiently large, then the batch mea
will be approximately independent of one another.

There are several methods that one can use to determ
a batch size, though for a moderately busy queueing sys
it’s not unreasonable to have around 1,000 departures
batch. If you’ve already calculated the length of the war
up period, then this may give you a conservative estimate
the necessary batch size. In practice, many analysts ch
a large batch size, perhaps a convenient round number,
then delete the first batch or batches from consideration
alleviate initialization bias. The pre-specified batch size
used unless it appears (from graphical or statistical analy
to be problematically small.
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For nonterminating simulations, the savings in total ru
length can be substantial if you use batch means instead
using the basic replication/deletion method. This is partic
ularly true if the warm-up periodw is long. For example,
supposew = 3, 000 and you want 20 (approximately) in-
dependent groups of data made up of1, 000 observations
each. If you used basic replication/deletion, you’d need t
generate a total ofn = 20(3, 000+ 1, 000) = 80, 000 ob-
servations, and you’d end up throwing 75% of these awa
In contrast, if you used batch means you’d need to genera
only n = 3, 000+ 20(1, 000) = 23, 000 observations and
you’d only discard 13% of the data.

4 THE C’S: CONVEYING THE RESULTS

4.1 Confidence

As mentioned earlier, point estimates are not useful fo
decision-making purposes. Suppose that after any necess
truncation, you haven summary values. Let’s call these
Y 1, Y 2, . . . , Y n, although you should remember that thes
might be percentiles, or variances, or summary statisti
other than sample averages. (These arise fromn replications
under the replication/deletion method, orn batches under
the method of batch means.) LetS denote the standard
deviation of theseY i , and lett1−α/2;n−1 denote the value
from the t distribution corresponding to an upper-tail area
of α/2. Then a100(1 − α)% confidence interval for the
true expected performance is

1

n

n∑

i=1

Y ± t1−α/2;n−1
S√
n

.

For this interval to be valid, theY i ’s should be essen-
tially independent, and either normally distributed (perhap
because they are averages or aggregates of a large num
of raw output values), or elsen should be sufficiently large
that the central limit theorem applies. Remember that th
total data collection effort may be huge, even if the degree
of freedom are small. For example, if we have taken
batches of15, 000 observations each, then we have only
four degrees of freedom — not14, 999 or 74, 999.

For a fixed total computational effort, there is a trade-of
between the number of runs (or batches) and the run leng
(or batch size) required, even if initialization bias is no
an issue. For illustration purposes, suppose we’re deali
with batch means. If the batch size is large, thenS, the
standard deviation of the batch means, will be low becau
the Y i ’s will be tend to be quite close to their expected
value (and, serendipidously, more likely to be normally
distributed). However, the small number of batches mea
that the denominator

√
n will be small and thet-value will be

larger, together acting to increase the width of the confiden
27
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interval. On the other hand, if many short runs are ma
then thet-value shrinks to the normal distribution valu
and

√
n is large, but at the same timeS may be extremely

high if little averaging occurs within the batch. The sam
trade-off holds conceptually if you use the basic replicati
or replication/deletion approach. Both long runs and ma
runs are desirable, but if you’ve got constraints on time
budget you can’t have both.

As an alternative to formal statistical inference, som
clever graphical displays can be used to describe simula
output. A well-constructed picture may easily be wor
a thousand words if it reveals clear patterns that mig
go undetected if only standard numerical summaries w
used. Several graphical techniques for describing simula
output are described in more detail by Grier (1992).

Animation has become increasingly popular, and ma
simulation software companies now have built-in animati
capabilities in their packages. Animation can be use
for identifying incomplete model specifications (such
forklift trucks running through each other in productio
facilities) and for some other purposes, notably that
improving the buy-in of decision-makers on the mode
logic, construction, and ultimate utility. However, it isn
worthwhile to get the decision-maker to ‘believe in’ you
simulation model if you don’t bother to use this model
obtain comprehensive results. A short time spent watch
a visual animation of part of the system is no substitute
a valid statistical analysis: because of the autocorrelat
and initialization issues—or random chance—you may
observing the system in highly unusual states. Hum
judgement is easily swayed by occurrences which may
visually striking, but have minimal real impact.

The usefulness of the confidence interval for decisio
making purposes will, as in basic statistics, depend on
width and the level of confidence100(1 − α). Even if
you’re using graphical displays as the primary method
conveying the results, rather than formal statistical inferen
you should be fairly certain that you’ve captured the essen
characteristics of the output. How can you achieve t
confidence? As we describe in the next section, you
take explicit control of the simulation run conditions.

4.2 Control

What if you construct your confidence interval and find th
it is narrower than some desired precision? What if yo
histograms or dot plots look essentially the same if y
base them on only half of the output data? No problem
you may have wasted some computer CPU cycles, but y
results should be useful to the decision-maker. Howeve
you spent a great deal of unneeded time collecting simula
output data, then you might want to look more carefully
control issues before beginning your next analysis.
2
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On the other hand, perhaps your confidence intervals
too wide or your graphical displays are difficult to interpre
Then the decision-maker may not have the information th
need to arrive at a good decision. For example, supp
the marketing department has shown that a new policy
“on time or half price" will be profitable only if fewer than
1% of production orders are not filled by their due date.
simulation model of the manufacturing facility, including
forecasts of (random) customer demand, is created. I
confidence interval for the expected proportion of late orde
is [0.003, 0.004], then the simulation results show that th
new policy is profitable. If the confidence interval for th
expected proportion of late orders is[0.013, 0.018], then
the new policy appears unprofitable. But if the confiden
interval is [0.003, 0.018] then the decision-maker does no
have sufficient evidence to make a judgment on the pr
itability issues. This interval is too wide to address th
problem at hand. You can ‘fix’ this problem by collectin
more output data and redoing the analysis.

Remember that not all problems in interpreting simul
tion output relate to the statistical analysis. If a very narro
interval covered this breakpoint, then the problem may
best answered by revisiting the model specifications. T
decision-maker might wish to check the model assumptio
for correctness, check the so-called break-even point
accuracy, or run the simulation using other potential d
mand patterns to develop best case, worst case, and bas
scenarios.

The confidence interval width is essentially under yo
control, since (formally or informally) you set how many run
to make. If you’re studying a nonterminating simulation
you also control the total sample size, with the caveat that
runs (or batches) should be long enough for you to deal w
any initialization effects. For the method of batch mean
you’ll need to set the batch size and number of batch
before making the final run. From a practical perspectiv
unless you’re willing to make a really long run and hop
that it yields a suitable number of batches, you may wa
to conduct a pilot run in order to ballpark a desirable bat
size. It is easy to add additional runs under the the ba
replication or replication/deletion method, although a pil
run is still beneficial to assess whether or not initializatio
bias is a problem. Whether the unit of analysis is a run
a batch, the most important rule is: THE NUMBER 1 I
TOO LOW! You are exposing yourself and your client t
great danger if you rely on asingle summary valuefrom
simulation output, even if you let the computer run a lon
time to get this value.

While sample size is controllable in statistical samplin
in general, as a simulation analyst you have more cont
over experimental conditions than, say, someone perform
experiments on a physical system. You can specify t
random number seeds used to generate the output for e
of the simulation runs. You can control the simulatio
8
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model’s initial conditions. You can control the levels fo
various parameters embedded in the simulation mode
assess its performance under different conditions.

With this additional level of control comes the oppo
tunity to evaluate the output more efficiently or in grea
depth. These simulation-specific controllable factors c
be used to plan your data collection effort. For examp
consider the bank simulation where each run generates
put for a single day of operation. Distinct random numb
seeds will mean the output data are independent from ru
run. Alternatively, if your random variables are generat
by inversion, you could pair runs by generating a rand
number stream for the one run, and using theantithetic
stream for the second run. The antithetic stream essent
generates a low value whenever the original random num
stream generates a high value, and vice versa. Under
a sampling scheme, you are insuring that you investig
the system under a variety of different scenarios.

As we discuss in the next section, exercising yo
control over the simulation may be particularly benefic
when you are making comparisons.

4.3 Comparisons

At times, the purpose of preparing a simulation model is
to assess the capability of a single system, but to comp
one or more systems to a standard level of performan
to compare several systems to one another, or to determ
how the performance of one system changes accord
to particular variants of operating conditions. Appropria
output analysis tools have been developed for all these ca
although many of these questions are difficult and ther
still room for further work.

Hypothesis tests, confidence intervals, or multiple co
parison procedures can be used when comparing system
pre-determined standard. When comparing several syst
to one another,selection and ranking procedurescan be used
to specify ‘good’ or ‘best’ systems, while allowing the an
alyst to make an intuitively appealing probability guarant
about the selection process. For example, you might fo
on choosing the system with the highest mean: a selec
method could guarantee that the best system will be c
sen with high probability provided the difference betwe
the true best and second-best exceeds some pre-spe
“smallest practical difference.” Subset selection procedu
are good screening methods if you’re investigating a la
number of systems and wish to identify those which me
further investigation.Multiple comparison proceduresaug-
ment the selection and ranking approaches by provid
estimates of the true performance measures in additio
determining the selected system or group of systems.
more on selection and multiple comparison procedures,
chapter 10 of Law and Kelton (1991), Goldsman and Nels
(1999), Matejcik and Nelson (1995) or Nakayama (199
29
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The selection and ranking approach is useful for co
paring distinct systems or systems characterized by dist
protocols, such operating performance of queueing netwo
under FIFO or LIFO priority queues, or different layou
of a manufacturing facility. If, however, different system
configurations result from changing levels of some quanti
tive variables, then response surface methodology is ano
alternative. Response surface metamodels seek to app
imate the simulation input/output relationship analytical
as in a polynomial regression model for the relationship b
tween parameter settings (over limited ranges) and the m
performance of the simulation. Regression-based respo
surface metamodels in the simulation arena are discus
in Hood and Welch (1993), Kleijnen (1987, 1998) an
chapter 12 of Law and Kelton (1991). Frequency doma
approaches have been examined by Schruben and Cog
(1987) and Morrice and Schruben (1993); see Sanche
al. (1999) for references to recent work in this area. Bart
(1998) has detailed references regarding a broad rang
response surface metamodels, which include structures
may be more suitable than polynomial regression models
the highly non-linear structures that may arise in compl
stochastic simulations.

When used in conjunction with robust design approa
response surface metamodels can identify systems which
relatively insensitive to uncontrollable uncertaintie
(such as customer demand rates) or deviations of sys
decision factor levels from planned values. For details a
related references, see Sanchez (1994), or Sanchez e
(1996, 1998). Saltelli (1999) explores the dynamics
changing sources of variation for complex systems.

5 BEYOND THE BASICS

We have just touched on some of the aspects of out
analysis for stochastic simulation models. A rich body
literature exists on extensions or alternatives to the top
described earlier. We present a very brief summary
some of these topics, along with references for the rea
interested in further details.

Another output analysis technique which has receiv
attention in the literature is the regenerative method. T
approach seeks to gain independence by bunching the da
a different way: the output stream begins a newregenerative
cyclewhenever it returns to a particular state. For examp
an M/M/1 queue regenerates each time the system is em
and idle with an operational server. Regenerative cyc
are often easy to detect and conceptually pleasant,
the analysis is not without difficulties. Planning the run
is harder, since the time between cycles is random a
generally not knowna priori. The choice of a regenerative
state is not straightforward: easy ones to describe, suc
empty-and-idle, may occur only rarely, and the estimates
mean performance are only asymptotically unbiased. T
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ABC’s of O

means even with long runs you have no guarantee that
desired estimation precision will be attainable.

The regenerative method and the output analysis
proaches of Section 3 seek to aggregate data in suc
way as to treat summaries of portions of the total out
as independent for purposes of analysis. There are o
output analysis techniques that take different approac
In time-series analysis, the correlated, nonstationary sim
ulation output series is treated just like a time series
economic data, such as stock prices or new business s
over time. Then a time-series model (such as an ARM
model) is fit to the data, and the fitted model is used
inference. Thespectral analysis methoddirectly estimates
the correlation structure of the process, and uses this in
to form a variance estimate for statistical analysis. In
standardized time seriesapproach, a process version of th
central limit theorem is applied to “standardize” the outp
series, and appropriate methods for statistically analyz
this standardized series have been worked out. More
these topics and the methods of Section 3 can be foun
chapter 12 of Banks, Carson and Nelson (1996), chapt
of Bratley, Fox and Schrage (1987), chapters 2, 3 and 5
Fishman (1978), chapter 7 of Khoshnevis (1994), Kleijn
(1987), chapter 9 of Law and Kelton (1991), Lewis and Or
(1989), chapter 6 of Ripley (1987), and chapter 6 of The
and Travis (1992). More recently, Bayesian approache
simulation output analysis have been proposed. See C
(1997) or Cheng (1998) for examples and further referenc

Appropriate planning is much more efficient than tria
and-error for assessing the system performance under
ferent scenarios. This means that you may benefit from
use of variance reduction or experimental design techniq
particularly in cases where it is expensive or time-consum
to generate the simulation output. Resulting gains in e
ciency will allow you to either construct narrower confiden
intervals for output measures for the same amount of d
or to complete the simulation runs more quickly for a part
ular desired level of confidence. Many variance reduct
(or variance reallocation) techniques have been propo
to increase the efficiency of estimating mean performan
The simplest of these is to usecommon random numbe
streamswhen comparing two or more systems. To tho
familiar with experimental design terminology, this is
form of blocking in order to better estimate the differen
in performance attributable to the alternative systems, ra
than that due to stochastic (random) error. A host of crea
methods for variance reduction/reallocation have appea
in the literature; see chapter 2 of Bratley, Fox and Schr
(1987), chapter 3 of Fishman (1978), Kleijnen (1987), cha
ter 11 of Law and Kelton (1991), L’Ecuyer (1994), Lew
and Orav (1989), Nelson (1992) or chapter 5 of Ripl
(1987).

Experimental design can be particularly beneficial wh
the overall purpose is to perform comparisons of many s
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tems to system configurations. It is also useful for opti-
mization, where the analyst seeks to identify the input facto
settings that optimize some performance measure. Other r
searchers address the optimization problem in different ways
One idea is to use gradient estimation techniques in conjunc
tion with steepest ascent (for maximization problems) or
steepest descent (for minimization problems). Technique
such as adapting stochastic programming methods are und
investigation. For more on experimental design and opti-
mization in the simulation context, see chapter 13 of Banks
Carson and Nelson (1996), Cheng and Lamb (1998), Fu
(1994), Fu and Hu (1997), chapter 12 of Law and Kelton
(1991), Kleijnen (1987, 1998), Sanchez et al. (1996, 1998)
Tew and Wilson (1994); or the tutorial by Kelton (1999)
that also appears in these proceedings.

Finally, you may find that in order to utilization your
simulation most effectively you will examine several per-
formance measures rather than just one. Your simulatio
model can generate many output streams from each run
and these streams are likely to be related to one another
some way. For example, large customer waiting times are
likely to be associated with long waiting lines. This means
you really have a vector of output measures. Multivariate
statistics may be useful for simultaneous estimation and
for gaining insight into the relationships between output
measures. For details and further references, see Charn
(1991) or Law and Kelton (1991).

6 CONCLUSIONS

Although a ‘veritable plethora’ of output analysis techniques
exists, the ABC’s described in this tutorial illustrate that by
paying attention to a few basic principles, you will be able
to conduct a useful, valid output analysis. This is a grea
way to get the most from your simulation model! Whether
the ultimate purpose of the simulation modeling process
is to provide insights into model behavior or to answer
specific questions, output analysis is the bridge between th
model-building and the decision-making processes.
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