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ABSTRACT Even if the decision to sample the appropriate element
is made correctly, Bratley, Fox, and Schrage (1987) warn

Discrete-event simulation models typically have stochastic that there are several things that can be “wrong” about the

components that mimic the probabilistic nature of the system data set. Vending machine sales will be used to illustrate

under consideration. Successful input modeling requires a the difficulties.

close match between the input model and the true underlying

probabilistic mechanism associated with the system. The e Wrong amount of aggregation. We desire to
general question considered here is how to model an element model daily sales, but have only monthly sales.
(e.g., arrival process, service times) in a discrete-event sim- e Wrong distribution in time. We have sales for
ulation given a data set collected on the element of interest. this month and want to model next month’s
For brevity, it is assumed that data is available on the aspect sales.
of the simulation of interest. It is also assumed that raw e Wrongdistribution in space. We wantto model
data is available, as opposed to censored data, grouped data, sales at a vending machine in location A, but
or summary statistics. Most simulation texts (e.g., Law and only have sales figures on a vending machine
Kelton 1991) have a broader treatment of input modeling at location B.
than presented here. Nelson et al. (1995) and Nelson and e Censored data. We want to modégmand
Yamnitsky (1998) survey advanced techniques. but we only havesalesdata. If the vend-
ing machine ever sold out, this constitutes a
1 COLLECTING DATA right-censored observation. The reliability and
biostatistical literature contains techniques for
There are two approaches that arise with respect to the accommodating censored data sets.
collection of data. The first is the classical approach, where e Insufficient distribution resolution. We want
a designed experiment is conducted to collect the data. The the distribution of number of soda cans sold
second is the exploratory approach, where questions are at a particular vending machine, but our data
addressed by means of existing data that the modeler had is given in cases, effectively rounding the data
no hand in collecting. The first approach is better in terms up to the next multiple of 24.
of control and the second approach is generally better in
terms of cost. 2 INPUT MODELING TAXONOMY

Collecting data on the appropriate elements of the sys-

tem of interest is one of the initial and pivotal steps in Figure 1 contains a taxonomy whose purpose is to illustrate

successful input modeling. An inexperienced modeler, for the scope of potential input models that are available to

example, collects wait times on a single-server queue when simulation analysts. There is certainly no uniqueness in the

waiting time is the performance measure of interest. Al- branching structure of the taxonomy. The branches under

though these wait times are valuable for model validation, stochastic processe$or example, could have beestate

they do not contribute to the input model. The appropri- followed by time rather thantime followed by state as

ate data to collect for an input model for a single-server presented.

gueue are typically arrival and service times. An analysis Examples of specific models that could be placed on

of sample data collected on a queue is given in sections the branches of the taxonomy appear at the far right of

3.1 and 3.2. the diagram. Mixed, univariate, time-independent input
models have “empirical/trace-driven” given as a possible
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Simulation Input Modeling

model. All of the branches include this particular model. 3 EXAMPLES

A trace-driveninput model simply generates a process that

is identical to the collected data values so as not to rely Two simple examples illustrate the types of decisions that
on a parametric model. A simple example is a sequence often arise in input modeling. The first example determines
of arrival times collected over a 24-hour time period. The an input model for service times and the second example
trace-driven input model for the arrival process is generated determines an input model for an arrival process.

by having arrivals occur at the same times as the observed

values. 3.1 Service Time Model

The upper half of the taxonomy contains models that are
independent of time. These models could have been called Consider a data set of = 23 service times collected to
Monte Carlo models. Models are classified by whether determine an input model in a discrete-event simulation of
there is one or several variables of interest, and whether a queuing system. The service times in seconds are
the distribution of these random variables is discrete, con-
tinuous, or contains both continuous and discrete elements. 105.84  28.92 98.64 55.56 128.04 45.60
Examples of univariate discrete models include the binomial ~ 67.80 105.12 48.48 51.84 173.40 51.96
distribution and a degenerate distribution with all of its mass 54.12 68.64 93.12 6888 8412 68.64
at one value. Examples of continuous distributions include 4152 127.92 4212 17.88 33.00.
the normal distribution and an exponential distribution with ) , ) .

a random parametet (see, for example, Martz and Waller [Although these service times come from tho I|.fe testing
1982). Bezier curves (Flanigan—-Wagner and Wilson 1993) literature (Lawless 1982, p. 228), the same principles apply
offer a unique combination of the parametric and nonpara- (© POth input modeling and survival analysis.] _
metric approaches. An initial distribution is fitted to the The first step is to assess whether the observations
data set, then the modeler decides whether differences be-2'€ independent and identically distributed (iid). The data
tween the empirical and fitted models represent sampling Must be given in the order collected for independence to
variability or an aspect of the distribution that should be be assos;ed. Situations where the iid assumption wmild
included in the input model. be valid include:

Examples ok-variable multivariate input models (John-
son 1987, Wilson 1997) include a sequenck midependent
binomial random variables, a multivariate normal distribu-
tion with meanu and variance-covariance matiixand a bi-
variate exponential distribution (Barlow and Proschan 1981).

The lower half of the taxonomy contains stochastic pro-
cess models. These models are often used to solve problems
at the system level, in addition to serving as input models
for simulations with stochastic elements. Models are clas-
sified by how time is measured (discrete/continuous), the
state space (discrete/continuous) and whether the model is

stationary in time. For Markov models, the discrete-staté/ |t 5 gimple linear regression of the observation numbers re-
continuous-state branch typically determines whetherthe o564 against the service times shows a significant nonzero
model will be called a “chain” or a “process”, and the sta-  gjope, then the iid assumption is probably not appropriate.
tlonary/nonst_atlonary branch t_yp|cally determines whether Assume that there is a suspicion that a learning curve
the model will be preceded with the torm “homogeneous” is present. An appropriate hypothesis test is

or “nonhomogeneous”. Examples of discrete-time stochas-

e Anewteller has been hired at a bank and the 23
service times represent a task that has a steep
learning curve. The expected service time is
likely to decrease as the new teller learns how
to perform the task more efficiently.

The service times represent 23 completion
times of a physically demanding task during
an 8-hour shift. If fatigue is a significant fac-
tor, the expected time to complete the task is
likely to increase with time.

tic processes include homogeneous, discrete-time Markov Ho:BL=0

chains (Ross 1997) and ARIMA time series models (Box and

Jenkins 1976). Since point processes are counting processes, Hy:B1<0

they have been placed on the continuous-time, discrete-space ) ) .

branch. associated with the linear model (Neter, Wasserman, and

In conclusion, modelers are too often limited to uni- Kutner 1989)
varia}to, stat.ion.ary'models since software is typically Written Y = Bo+ X +e,
for fitting distributions to these models. Successful input
modeling requires knowledge of the full range of possible whereX is the observation numbe¥, is the service timegg
probabilistic input models. is the interceptp; is the slope, andis an error term. Figure
2 shows a plot of théx;, y;) pairsfori =1, 2, ..., 23, along
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Figure 2: Service Time Vs. Observation Number Figure 3: Histogram of Service Times
with the estimated regression line. Thevalue associated e A sample skewness close to O indicates that a
with the hypothesis testis 0.14, which is not enough evidence symmetric distribution (e.g., a normal distri-
to conclude that there is a statistically significant learning bution) is a potential input model.
curve present. The-value may, however, be small enough o )
to warrant further data collection. The next decision that needs to be made is whether a

There are a number of other graphical and statistical paramgtric or nonparame_tric input model should be used.
methods for assessing independence. These include analysi$One simple nonparametric model would repeatedly select
of the sample autocorrelation function associated with the ©ne of the service times with probabilify23. The small
observations and a scatterplot of adjacent observations. ForSize of the data set, the tied value, 68.64 seconds, and
this particular example, assume that we are satisfied that the observation in the far right-hand tail of the distribution,
the observations are truly iid in order to perform a classical 173.40 seconds, tend to indicate that a parametric analysis is
statistical analysis. more appropriate. For this particular data set, a parametric

The next step in the analysis of this data set includes @Pproach is chosen.
plotting a histogram and calculating the values of some There are dozens of choices for a univariate para-
sample statistics. A histogram of the observations is shown Metric model for the service times. These include general
in Figure 3. Although the data set is small, a skewed bell- families of scalar distributions, modified scalar distributions
shaped pattern is apparent. The largest observation lies in and commonly—used parametnc dlstrlbutlons_(see Schmeiser
the far right-hand tail of the distribution, so care must be 1990). Since the data is drawn from a continuous popula-
taken to assure that it is representative of the population. The tion and the support of the distribution is positive, a time-
sample mean, standard deviation, coefficient of variation, independent, univariate, continuous input model is chosen.

and skewness are The shape of the histogram indicates that the gamma, inverse
Gaussian, log normal, and Weibull distributions (Lawless
F=7222 $=3749 S _052 1982) are good candidates. The Weibull distribution is an-
; 3 x alyzed in detail here. Similar approaches apply to the other
1 (Xi - X> _ 0.88 distributions.
n = s o Parameter estimates for the Weibull distribution can

be found by least squares, the method of moments, and
Examples of the interpretations of these sample statistics maximum likelihood. Due to desirable statistical properties,
are: maximum likelihood is emphasized here. The Weibull

o o distribution has probability density function
e A coefficient of variatiors /x close to 1, along

with the appropriate histogram shape, indicates F(x) = A pex o= 30"
that the exponential distribution is a potential
input model.

x>0,
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Simulation Input Modeling

where ) is a positive scale parameter amds a positive
shape parameter. Leg, xo, ..., x, denote the data values.
The likelihood function is

n n k=1
LOw i) =[] ) = 2" [sz} e im0,
i=1 i=1
The log likelihood function is

n
nlogk +knlogi + (k — 1) Zlogx,-
i=1
n
—)J‘fo.
i=1

The 2 x 1 score vector has elements

n
k=1 K
hBE
i=1

logL(X, «)

Kn

dlog LA, k)
— = <

oA

and

dlogL(r, k) _n

n n
” +nlogr+ > logx; — Y (Ax)* logax;.

K i=1 i=1
When these equations are equated to zero, the simultane-
ous equations have no closed-form solution for the MLEs

A andk:
% — K)\.K_l Z:l:l.xlk = O
% +nlogr+ i logx; — Y 71 (Ax;)* logrx; = 0.

To reduce the problem to a single unknown, the first equation
can be solved foi in terms ofx yielding
n

1/k
A= <_) .
Y xf

Law and Kelton (1991, p. 334) give an initial estimate #or
and Qiao and Tsokos (1994) present a fixed-point algorithm
for calculating the maximum likelihood estimatdrsndi.
Their algorithm is guaranteed to converge for any positive
initial estimate fork for a complete data set.

The score vector has a mean ©@fand a variance-
covariance matrix (A, ) given by the2 x 2 Fisher infor-

gl | £ ]]

dl | ]

—92log L(,k)
912
—32log L(1,k)
Ok I

—92log L(%,«)
OAOK
—32log L(1 k)
A2

I(A,K)=|:
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The observed information matrix

—8%logL(i,&)  —d2logL(hR)
oAy a2 ANIK
O k) = —32logL(A,&) —d%logL(hk) |’
dK oA A2

can be used to estimafdA, «).

For the 23 service times, the fitted Weibull distribution
has maximum likelihood estimatods= 0.0122 and & =
2.10. The log likelihood function evaluated at the maximum
likelihood estimators idogL(i, k) = —113691 Figure
4 shows the empirical cumulative distribution function (a
step function with a step of heighit/n at each data point)
along with the Weibull fit to the data.
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Figure 4: Empirical and Fitted Cumulative Distribution
Functions for the Service Times

The observed information matrix is

681, 000
875

875

06, &) = [ 10.4

revealing a positive correlation between the elements of
the score vector. We now consider interval estimators for
A andk. Using the fact that the likelihood ratio statistic,
2llog L(x, ©)—log L(x, k)], is asymptotically 2 distributed

in n with 2 degrees of freedom and thf”f,o.os =599 a
95% confidence region for the parameters isiatnd «
satisfying

2[—113691— logL(%, k)] < 5.99.

The 95% confidence region is shown in Figure 5. The
line « = 1 is not interior to the region, indicating that the
exponential distribution is not an appropriate model for this
particular data set.
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Figure 5: 95% Confidence Region Based on the Likelihood Figure 6: A P—P Plot for the Service Times Using the
Ratio Statistic Weibull Model

As further proof thatc is significantly different from tic corresponds to g-value of approximately 0.15 (Law
1, the standard errors of the distribution of the parameter and Kelton 1991, page 391), so the Weibull distribution
estimators can be computed by using the inverse of the provides a reasonable model for these service times. The

observed information matrix Kolmogorov—Smirnov test statistic values for several mod-
els are shown below, including four that are superior to the
010 #) = [0-00000165 —0-000139:| Weibull with respect to fit.
’ —0.000139 0.108
o _ . . _ Model Test statistic
This is the asymptotic variance-covariance matrix for the Exponential 0.301
parameter estimators and«. The standard errors of the Weibull 0.152
parameter estimators are the square roots of the diagonal Gamma 0.123
elements Inverse Gaussian  0.099
Arctangent 0.093
o; =0.00128 6; = 0.329 Log normal 0.090
Thus an asymptotic 95% confidence interval fois Many of the discrete-event simulation packages ex-
hibited at theWinter Simulation Conferenceave the ca-
2.10-(1.96)(0.329 <« < 2.10+ (1.96)(0.329 pability of determining maximum likelihood estimators for
several popular parametric distributions. If the package also
or performs a goodness-of-fit test such as the Kolmogorov—

Smirnov or chi-square test, the distribution that best fits the

146 <k <274, data set can quickly be determined.

sincezp,025 = 1.96. Since this confidence interval does not P-P and Q-Q plots can also be used to assess model
contain 1, the inclusion of the Weibull shape parameter ~ adequacy. A P—P plot, for example, is a plot of the fitted
is justified. cumulative distribution function at théh order statistia;),

The model adequacy should now be assessed. Since thei.e., ﬁ(x(,»)), versus the adjusted empirical cumulative dis-
chi-square goodness-of-fit test has arbitrary interval limits, it tribution function, i.e.F(x)) = % fori=1,2,...,n.
should not be applied to small data sets (e:g= 23). The A plot where the points fall close to a line indicates a good

Kolmogorov—Smirnov, Cramer—von Mises, or Anderson— fit. For the 23 service times, a P-P plot for the Weibull fit is
Darling goodness-of-fit tests (Lawless 1982) are appropri- shown in Figure 6, along with a line connecting (0, 0) and
ate here. The Kolmogorov—Smirnov test statistic for this (1, 1). P-P plots should be constructed for all competing
data set with a Weibull fit is 0.152, which measures the models.

maximum vertical difference between the empirical and

fitted cumulative distribution functions. This test statis-
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Simulation Input Modeling

3.2 Arrival Time Model 0 A

Accurate input modeling requires a careful evaluation of

whether a stationary (no time dependence) or nonstationary %1 g

model is appropriate. Arrivals to a lunch wagon are used

to illustrate the types of modeling decisions that need to be 1

made.
Arrival times to a lunch wagon between 10:00 AM o7

and 2:30 PM are collected on three days. The realizations

were generated from a hypothetical arrival process given by 2

Klein and Roberts (1984). A total af = 150arrival times

were observed, including; = 56, np = 42 andng = 52 10 1

on thek = 3 days. Defining(0, 4.5] be the time interval

of interest (in hours) the three realizations are 01 ‘ ‘ ‘ ‘ t
0.2152 0.3494 0.3943 ... 4.175 4.248, 0 ! 2 3 4
0.3927 0.6211 0.7504 ... 4.044 4.374, Figure 7: Point and 95% Confidence Interval Estimators

for the Cumulative Intensity Function
and

of arriving customers per day. K (¢) is linear, a station-
0.4499 05495 0.6921 ... 3.643 4.357. ary model is appropriate. Since people are more likely to
arrive to the lunch wagon between 12:G0<2) and 1:00
One preliminary statistical issue concerning this datais (; = 3) than at other times and the cumulative intensity
whether the three days represent processes drawn from thefunction estimator has as-shape, a nonstationary model
same population. External factors such as the weather, day s indicated. More specifically, a nonhomogeneous Poisson
of the week, advertisement, and workload should be fixed. process will be used to model the arrival process.
For this particular example, we assume that these factors The next question to be determined is whether a para-
have been fixed and the three processes are representativgnetric or nonparametric model should be chosen for the
of the population of arrival processes to the lunch wagon. process. Figure 7 indicates that the intensity function in-
The input model for the process comes from the lower creases initially, remains fairly constant during the noon
branch (stochastic processes) of the taxonomy in Figure hour, then decreases. This may be difficult to model para-
1. Furthermore, the arrival times constitute realizations of me[rica”y, SO a nonparametric approach, possib|y using
a continuous-time, discrete-state stochastic process, so the (1) in Figure 7 might be appropriate.
remaining question concerns whether or not the process is There are many potential parametric models for non-
stationary. stationary arrival processes. Since the intensity function
If the process proves to be stationary, the techniques s analogous to the hazard function for time-independent
from the previous example, such as drawing a histogram, models, an appropriate 2-parameter distribution to consider
and choosing a parametric or nonparametric model for the would be one with a hazard function that increases initially,
interarrival times, are appropriate. This results in a Poisson then decreases. A |og-|ogistic process, for examp|e, with
or renewal process. On the other hand, if the process is intensity function (Lawless 1982)
nonstationary, a nonhomogeneous Poisson process might be
an appropriate input model. A nonhomogeneous Poisson ()L
process is governed by an intensity functibtr) which MO=Tro0 1T 0,
gives an arrival rate [e.gA(2) = 10 means that the arrival
rate is 10 customers per hour at time 2] that can vary with for » > 0 andx > 0, would certainly be appropriate. A
time. more general EPTF (exponential-polynomial-trigonometric
Figure 7 contains a plot of the empirical cumulative in-  function) model is given by Lee, Wilson and Crawford
tensity function estimator suggested by Leemis (1991) forthe (1991) with intensity function
three realizations. The solid line denotes the point estima-
tor for the cumulative intensity function (r) = fé Mr)dT m )
and the dashed lines denote 95% confidence intervals.  A(f) = eXp|:Zaitl + v sin(wt +¢):| 1>0.
The cumulative intensity function estimator at time 4.5 i=0
is 150/3 = 50, the point estimator for the expected number
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The trigonometric function is capable of modeling the in- APPL is capable of handling symbolic parameters, in
tensity function that increases, then decreases. addition to the numeric parameters from the previous exam-
In all of the parametric models, the likelihood function ple. LetX have the triangular distribution with parameters

for the vector of unknown parametetts= (61,62, ..., 6)) a, b, andc. Find the CDF ofX.
from a single realization 010, c] is The APPL code to determine the CDF is

n ¢ > X := TriangularRV(a, b, c);

L) = [H k(ti):| exp[—/o k(t)dt:| . > CDF(X);
i=1
which yields
Maximum likelihood estimators can be determined by max-
imizing L(0) or its logarithm with respect to all unknown 0 x<a
parameters. Confidence intervals for the unknown param- (x — a)?
eters can be found in a similar manner to the service time Cc—a)b—a) a<x<b
example. Flx) = (c — x)
_— b<x<c
(c—a)(c—b)

4 SOFTWARE 1 X>c
The typical input modeling software is capable of fitting The uniform and triangular distributions have been used

several distributions to a data set and evaluating goodness ofjn the previous examples. Cases will arise where a non-

fit. A symbolic, Maple-based probability package named standard distribution will be needed, as illustrated in this

APPL, developed by Glen and Leemis (1999), is briefly example. Let the random variable have hazard function
illustrated here to show the modeling flexibility gained by (Lawless 1982)

using a computer algebra system. The package allows a
user to define and manipulat@ndom variablesas opposed A O0<r<1
to numerical procedures applied to data. The package h (1) :{ At t>1
allows a user to calculate expected values, distributions
of order statistics, distributions of sums of independent for » > 0. Find the survivor function (the complement of
random variables, etc. The following seven paragraphs the CDF).
contain examples that illustrate the use of the language. The APPL code requires inputting the hazard function
Let X1, X2, ..., X10 be independent and identically for T as a list of three lists
distributed U(0,1) random variables. Find
> assume(lambda > 0);

10 > T = [t -> lambda, t -> lambda * t],
Pr<4 <) Xi< 6). [0, 1, infinity],
i=1 [‘Continuous*, ‘HF];

. . : > SK(T);
The typical approaches to a question of this type are central

limit theorem, which is approximate, and Monte Carlo sim-  which yields the survivor function
ulation, which, although it converges to the exact solution,
requires custom coding and each additional digit of accuracy e

requires a 100-fold increase in computational effort. The Sr(t) = { e~ M13+D)/2
APPL code to solve this problem is

—ht O<t<1

t> 1.

Let X ~ U((,3) andY ~ U(1,2). Assume thatX
andY are independent. Find the distribution Bf= XY.
The APPL code to solve this problem is

n := 10;

X UniformRV(0, 1);
Y = SumliD(X, n);
C

DF(Y, 6) - CDF(Y, 4); > X := UniformRV(1, 3);
_ _ > Y := UniformRV(1, 2);
which yields > V := Product(X, Y);
655177
907200

or approximately 0.722. The central limit theorem yields
approximately 0.727.
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which returns the probability density function gfas

%logv l<v<2
frw)y={ 1log2 2<v<3
%Iog(G/v) 3<v <6

More complicated distributions that the uniform can be input
in a similar manner.

The Kolmogorov—Smirnov test statistic in the all pa-
rameters known case has a piecewise polynomial CDF, and
is referred to here as a KS random variable. kKebe a KS
random variable withh = 6. LetY be a KS random variable
with n = 4. Assuming thatX andY are independent, find

Var [max{X, Y}].

The APPL code to solve this problem is

> X := KSRV(6);

> Y = KSRV(4);

> Z = Maximum(X, Y);
> Variance(Z);

which yields the variance as exactly

1025104745465977580000192015279
83793210145582989309719976345600

or approximately0.0122337

Maximum likelihood estimators can also be solved for
in APPL. Consider the following sample from an inverse
Gaussian population

1,2,34,5.

Find the maximum likelihood estimators farand .
Using the APPL procedure MLE

> X InverseGaussianRV(lambda, mu);
> hat

MLE(X, [1, 2, 3, 4, 5],
[lambda, mu));

The variablehat is assigned the ligt300/37, 3] cor-

responding to the MLEs

300

3.
37

A= and Q=
Consider the service times given in section 3.1. Instead
of fitting the Weibull distribution, fit the reciprocal of an

exponential random variable.

22

The APPL statements required to find the distribution
of the reciprocal of an exponential random variable and find
the MLE for the unknown parameter are

data
X

= [105.84, 28.92, ..., 33.00];
ExponentialRV(lambda);

g [[x -> 1/ x], [0, infinity]];

Y Transform(X, g);

lamhat MLE(Y, data, [lambdal);

V V V VYV

which derives the PDF of to be

A
fry) = ;e—“y y>0

and calculates the MLE = 55.06. The functiong is used
to find the distribution oftY = g(X) = 1/X.

APPL is a symbol-based probability language capable
of performing calculations that aid input modeling. Current
development in APPL includes the extension of the language
to discrete random variables.
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