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ABSTRACT

Discrete-event simulation models typically have stochas
components that mimic the probabilistic nature of the syste
under consideration. Successful input modeling require
close match between the input model and the true underly
probabilistic mechanism associated with the system. T
general question considered here is how to model an elem
(e.g., arrival process, service times) in a discrete-event s
ulation given a data set collected on the element of intere
For brevity, it is assumed that data is available on the asp
of the simulation of interest. It is also assumed that ra
data is available, as opposed to censored data, grouped d
or summary statistics. Most simulation texts (e.g., Law a
Kelton 1991) have a broader treatment of input modelin
than presented here. Nelson et al. (1995) and Nelson
Yamnitsky (1998) survey advanced techniques.

1 COLLECTING DATA

There are two approaches that arise with respect to
collection of data. The first is the classical approach, whe
a designed experiment is conducted to collect the data. T
second is the exploratory approach, where questions
addressed by means of existing data that the modeler
no hand in collecting. The first approach is better in term
of control and the second approach is generally better
terms of cost.

Collecting data on the appropriate elements of the s
tem of interest is one of the initial and pivotal steps i
successful input modeling. An inexperienced modeler, f
example, collects wait times on a single-server queue wh
waiting time is the performance measure of interest. A
though these wait times are valuable for model validatio
they do not contribute to the input model. The approp
ate data to collect for an input model for a single-serv
queue are typically arrival and service times. An analys
of sample data collected on a queue is given in sectio
3.1 and 3.2.
le
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Even if the decision to sample the appropriate eleme
is made correctly, Bratley, Fox, and Schrage (1987) wa
that there are several things that can be “wrong” about t
data set. Vending machine sales will be used to illustra
the difficulties.

• Wrong amount of aggregation. We desire to
model daily sales, but have only monthly sales.

• Wrong distribution in time. We have sales for
this month and want to model next month’s
sales.

• Wrong distribution in space. We want to model
sales at a vending machine in location A, but
only have sales figures on a vending machine
at location B.

• Censored data. We want to modeldemand,
but we only havesales data. If the vend-
ing machine ever sold out, this constitutes a
right-censored observation. The reliability and
biostatistical literature contains techniques for
accommodating censored data sets.

• Insufficient distribution resolution. We want
the distribution of number of soda cans sold
at a particular vending machine, but our data
is given in cases, effectively rounding the data
up to the next multiple of 24.

2 INPUT MODELING TAXONOMY

Figure 1 contains a taxonomy whose purpose is to illustra
the scope of potential input models that are available
simulation analysts. There is certainly no uniqueness in t
branching structure of the taxonomy. The branches und
stochastic processes, for example, could have beenstate
followed by time, rather thantime followed by state, as
presented.

Examples of specific models that could be placed o
the branches of the taxonomy appear at the far right
the diagram. Mixed, univariate, time-independent inpu
models have “empirical/trace-driven” given as a possib
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Bivariate exponential(λ1, λ2, λ12)

Figure 1:  A Taxonomy for Input Models
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Simulation

model. All of the branches include this particular mod
A trace-driveninput model simply generates a process t
is identical to the collected data values so as not to
on a parametric model. A simple example is a seque
of arrival times collected over a 24-hour time period. T
trace-driven input model for the arrival process is genera
by having arrivals occur at the same times as the obse
values.

The upper half of the taxonomy contains models that
independent of time. These models could have been c
Monte Carlo models. Models are classified by wheth
there is one or several variables of interest, and whe
the distribution of these random variables is discrete, c
tinuous, or contains both continuous and discrete elem
Examples of univariate discrete models include the binom
distribution and a degenerate distribution with all of its m
at one value. Examples of continuous distributions incl
the normal distribution and an exponential distribution w
a random parameter3 (see, for example, Martz and Walle
1982). B́ezier curves (Flanigan–Wagner and Wilson 19
offer a unique combination of the parametric and nonp
metric approaches. An initial distribution is fitted to t
data set, then the modeler decides whether difference
tween the empirical and fitted models represent samp
variability or an aspect of the distribution that should
included in the input model.

Examples ofk-variable multivariate input models (Joh
son 1987, Wilson 1997) include a sequence ofk independent
binomial random variables, a multivariate normal distrib
tion with meanµ and variance-covariance matrix6 and a bi-
variate exponential distribution (Barlow and Proschan 19

The lower half of the taxonomy contains stochastic p
cess models. These models are often used to solve prob
at the system level, in addition to serving as input mod
for simulations with stochastic elements. Models are c
sified by how time is measured (discrete/continuous),
state space (discrete/continuous) and whether the mod
stationary in time. For Markov models, the discrete-sta
continuous-state branch typically determines whether th
model will be called a “chain” or a “process”, and the s
tionary/nonstationary branch typically determines whet
the model will be preceded with the term “homogeneo
or “nonhomogeneous”. Examples of discrete-time stoch
tic processes include homogeneous, discrete-time Ma
chains (Ross 1997) and ARIMA time series models (Box
Jenkins 1976). Since point processes are counting proce
they have been placed on the continuous-time, discrete-s
branch.

In conclusion, modelers are too often limited to u
variate, stationary models since software is typically writ
for fitting distributions to these models. Successful in
modeling requires knowledge of the full range of possi
probabilistic input models.
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3 EXAMPLES

Two simple examples illustrate the types of decisions th
often arise in input modeling. The first example determine
an input model for service times and the second examp
determines an input model for an arrival process.

3.1 Service Time Model

Consider a data set ofn = 23 service times collected to
determine an input model in a discrete-event simulation o
a queuing system. The service times in seconds are

105.84 28.92 98.64 55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

[Although these service times come from the life testin
literature (Lawless 1982, p. 228), the same principles app
to both input modeling and survival analysis.]

The first step is to assess whether the observatio
are independent and identically distributed (iid). The dat
must be given in the order collected for independence
be assessed. Situations where the iid assumption wouldnot
be valid include:

• A new teller has been hired at a bank and the 23
service times represent a task that has a steep
learning curve. The expected service time is
likely to decrease as the new teller learns how
to perform the task more efficiently.

• The service times represent 23 completion
times of a physically demanding task during
an 8-hour shift. If fatigue is a significant fac-
tor, the expected time to complete the task is
likely to increase with time.

If a simple linear regression of the observation numbers r
gressed against the service times shows a significant nonz
slope, then the iid assumption is probably not appropriat

Assume that there is a suspicion that a learning curv
is present. An appropriate hypothesis test is

H0 : β1 = 0

H1 : β1 < 0

associated with the linear model (Neter, Wasserman, a
Kutner 1989)

Y = β0 + β1X + ε,

whereX is the observation number,Y is the service time,β0
is the intercept,β1 is the slope, andε is an error term. Figure
2 shows a plot of the(xi, yi) pairs fori = 1, 2, . . . , 23, along
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Figure 2:  Service Time Vs. Observation Number

with the estimated regression line. Thep-value associated
with the hypothesis test is 0.14, which is not enough evide
to conclude that there is a statistically significant learni
curve present. Thep-value may, however, be small enoug
to warrant further data collection.

There are a number of other graphical and statisti
methods for assessing independence. These include ana
of the sample autocorrelation function associated with
observations and a scatterplot of adjacent observations.
this particular example, assume that we are satisfied
the observations are truly iid in order to perform a classi
statistical analysis.

The next step in the analysis of this data set includ
plotting a histogram and calculating the values of som
sample statistics. A histogram of the observations is sho
in Figure 3. Although the data set is small, a skewed be
shaped pattern is apparent. The largest observation lie
the far right-hand tail of the distribution, so care must
taken to assure that it is representative of the population.
sample mean, standard deviation, coefficient of variati
and skewness are

x̄ = 72.22 s = 37.49
s

x̄
= 0.52

1

n

n∑
i=1

(
xi − x̄

s

)3

= 0.88.

Examples of the interpretations of these sample statis
are:

• A coefficient of variations/x̄ close to 1, along
with the appropriate histogram shape, indicates
that the exponential distribution is a potential
input model.
17
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Figure 3:  Histogram of Service Times

• A sample skewness close to 0 indicates that a
symmetric distribution (e.g., a normal distri-
bution) is a potential input model.

The next decision that needs to be made is whethe
parametric or nonparametric input model should be use
One simple nonparametric model would repeatedly sel
one of the service times with probability1/23. The small
size of the data set, the tied value, 68.64 seconds, a
the observation in the far right-hand tail of the distribution
173.40 seconds, tend to indicate that a parametric analys
more appropriate. For this particular data set, a parame
approach is chosen.

There are dozens of choices for a univariate par
metric model for the service times. These include gene
families of scalar distributions, modified scalar distribution
and commonly-used parametric distributions (see Schme
1990). Since the data is drawn from a continuous popu
tion and the support of the distribution is positive, a time
independent, univariate, continuous input model is chos
The shape of the histogram indicates that the gamma, inve
Gaussian, log normal, and Weibull distributions (Lawles
1982) are good candidates. The Weibull distribution is a
alyzed in detail here. Similar approaches apply to the oth
distributions.

Parameter estimates for the Weibull distribution ca
be found by least squares, the method of moments, a
maximum likelihood. Due to desirable statistical propertie
maximum likelihood is emphasized here. The Weibu
distribution has probability density function

f (x) = λκκxκ−1e−(λx)κ

x ≥ 0,



Simulation Input Modeling

.

a
E

i

h

iv

a

of
or
,

e

is
whereλ is a positive scale parameter andκ is a positive
shape parameter. Letx1, x2, . . . , xn denote the data values
The likelihood function is

L(λ, κ) =
n∏

i=1

f (xi) = λnκκn

[
n∏

i=1

xi

]κ−1

e−∑n
i=1(λxi )

κ

.

The log likelihood function is

logL(λ, κ) = n logκ + κn logλ + (κ − 1)

n∑
i=1

logxi

−λκ
n∑

i=1

xκ
i .

The 2 × 1 score vector has elements

∂ logL(λ, κ)

∂λ
= κn

λ
− κλκ−1

n∑
i=1

xκ
i

and

∂ logL(λ, κ)

∂κ
= n

κ
+ n logλ +

n∑
i=1

logxi −
n∑

i=1

(λxi)
κ logλxi .

When these equations are equated to zero, the simult
ous equations have no closed-form solution for the ML
λ̂ and κ̂:

κn
λ

− κλκ−1∑n
i=1 xκ

i = 0

n
κ

+ n logλ +∑n
i=1 logxi −∑n

i=1(λxi)
κ logλxi = 0.

To reduce the problem to a single unknown, the first equat
can be solved forλ in terms ofκ yielding

λ =
(

n∑n
i=1 xκ

i

)1/κ

.

Law and Kelton (1991, p. 334) give an initial estimate forκ

and Qiao and Tsokos (1994) present a fixed-point algorit
for calculating the maximum likelihood estimatorsλ̂ andκ̂.
Their algorithm is guaranteed to converge for any posit
initial estimate forκ for a complete data set.

The score vector has a mean of0 and a variance-
covariance matrixI (λ, κ) given by the2 × 2 Fisher infor-
mation matrix

I (λ, κ) =
[

E
[−∂2 logL(λ,κ)

∂λ2

]
E
[−∂2 logL(λ,κ)

∂κ∂λ

] E
[−∂2 logL(λ,κ)

∂λ∂κ

]
E
[−∂2 logL(λ,κ)

∂κ2

]
]

.

1
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The observed information matrix

O(λ̂, κ̂) =
[ −∂2 logL(λ̂,κ̂)

∂λ2

−∂2 logL(λ̂,κ̂)
∂κ∂λ

−∂2 logL(λ̂,κ̂)
∂λ∂κ

−∂2 logL(λ̂,κ̂)

∂κ2

]
,

can be used to estimateI (λ, κ).
For the 23 service times, the fitted Weibull distribution

has maximum likelihood estimatorŝλ = 0.0122 and κ̂ =
2.10. The log likelihood function evaluated at the maximum
likelihood estimators islogL(λ̂, κ̂) = −113.691. Figure
4 shows the empirical cumulative distribution function (
step function with a step of height1/n at each data point)
along with the Weibull fit to the data.

0 50 100 150

0.0

0.2
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0.6

0.8

1.0

Weibull fit

Empirical estimator

t

F(t)

Figure 4:   Empirical and Fitted Cumulative Distribution
Functions for the Service Times

The observed information matrix is

O(λ̂, κ̂) =
[

681, 000
875

875
10.4

]
,

revealing a positive correlation between the elements
the score vector. We now consider interval estimators f
λ and κ. Using the fact that the likelihood ratio statistic
2[logL(λ̂, κ̂)−logL(λ, κ)], is asymptoticallyχ2 distributed
in n with 2 degrees of freedom and thatχ2

2,0.05 = 5.99, a
95% confidence region for the parameters is allλ and κ

satisfying

2[−113.691− logL(λ, κ)] < 5.99.

The 95% confidence region is shown in Figure 5. Th
line κ = 1 is not interior to the region, indicating that the
exponential distribution is not an appropriate model for th
particular data set.
8



emis

od

ter
the

he

ona

ot
r

e th
, it

n–
ri-
is

he
nd
s-

e

-

o
–

el
Le

0 1 2 3 4

0.0

0.005

0.010

0.015

0.020

OOOOOOOO

λ

κ

Figure 5:  95% Confidence Region Based on the Likeliho
Ratio Statistic

As further proof thatκ is significantly different from
1, the standard errors of the distribution of the parame
estimators can be computed by using the inverse of
observed information matrix

O−1(λ̂, κ̂) =
[

0.00000165
−0.000139

−0.000139
0.108

]
.

This is the asymptotic variance-covariance matrix for t
parameter estimatorŝλ and κ̂. The standard errors of the
parameter estimators are the square roots of the diag
elements

σ̂
λ̂

= 0.00128 σ̂κ̂ = 0.329.

Thus an asymptotic 95% confidence interval forκ is

2.10− (1.96)(0.329) < κ < 2.10+ (1.96)(0.329)

or

1.46 < κ < 2.74,

sincez0.025 = 1.96. Since this confidence interval does n
contain 1, the inclusion of the Weibull shape parameteκ

is justified.
The model adequacy should now be assessed. Sinc

chi-square goodness-of-fit test has arbitrary interval limits
should not be applied to small data sets (e.g.,n = 23). The
Kolmogorov–Smirnov, Cramer–von Mises, or Anderso
Darling goodness-of-fit tests (Lawless 1982) are approp
ate here. The Kolmogorov–Smirnov test statistic for th
data set with a Weibull fit is 0.152, which measures t
maximum vertical difference between the empirical a
fitted cumulative distribution functions. This test stati
19
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Figure 6:   A P–P Plot for the Service Times Using the
Weibull Model

tic corresponds to ap-value of approximately 0.15 (Law
and Kelton 1991, page 391), so the Weibull distribution
provides a reasonable model for these service times. Th
Kolmogorov–Smirnov test statistic values for several mod-
els are shown below, including four that are superior to the
Weibull with respect to fit.

Model Test statistic
Exponential 0.301

Weibull 0.152
Gamma 0.123

Inverse Gaussian 0.099
Arctangent 0.093
Log normal 0.090

Many of the discrete-event simulation packages ex
hibited at theWinter Simulation Conferencehave the ca-
pability of determining maximum likelihood estimators for
several popular parametric distributions. If the package als
performs a goodness-of-fit test such as the Kolmogorov
Smirnov or chi-square test, the distribution that best fits the
data set can quickly be determined.

P–P and Q–Q plots can also be used to assess mod
adequacy. A P–P plot, for example, is a plot of the fitted
cumulative distribution function at theith order statisticx(i),
i.e., F̂ (x(i)), versus the adjusted empirical cumulative dis-
tribution function, i.e.F̃ (x(i)) = i−0.5

n
, for i = 1, 2, . . . , n.

A plot where the points fall close to a line indicates a good
fit. For the 23 service times, a P–P plot for the Weibull fit is
shown in Figure 6, along with a line connecting (0, 0) and
(1, 1). P–P plots should be constructed for all competing
models.
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3.2 Arrival Time Model

Accurate input modeling requires a careful evaluation
whether a stationary (no time dependence) or nonstatio
model is appropriate. Arrivals to a lunch wagon are us
to illustrate the types of modeling decisions that need to
made.

Arrival times to a lunch wagon between 10:00 A
and 2:30 PM are collected on three days. The realizat
were generated from a hypothetical arrival process given
Klein and Roberts (1984). A total ofn = 150 arrival times
were observed, includingn1 = 56, n2 = 42 and n3 = 52
on thek = 3 days. Defining(0, 4.5] be the time interval
of interest (in hours) the three realizations are

0.2152 0.3494 0.3943 . . . 4.175 4.248,

0.3927 0.6211 0.7504 . . . 4.044 4.374,

and

0.4499 0.5495 0.6921 . . . 3.643 4.357.

One preliminary statistical issue concerning this dat
whether the three days represent processes drawn from
same population. External factors such as the weather,
of the week, advertisement, and workload should be fix
For this particular example, we assume that these fac
have been fixed and the three processes are represen
of the population of arrival processes to the lunch wag

The input model for the process comes from the low
branch (stochastic processes) of the taxonomy in Fig
1. Furthermore, the arrival times constitute realizations
a continuous-time, discrete-state stochastic process, s
remaining question concerns whether or not the proces
stationary.

If the process proves to be stationary, the techniq
from the previous example, such as drawing a histogr
and choosing a parametric or nonparametric model for
interarrival times, are appropriate. This results in a Poiss
or renewal process. On the other hand, if the proces
nonstationary, a nonhomogeneous Poisson process mig
an appropriate input model. A nonhomogeneous Pois
process is governed by an intensity functionλ(t) which
gives an arrival rate [e.g.,λ(2) = 10 means that the arriva
rate is 10 customers per hour at time 2] that can vary w
time.

Figure 7 contains a plot of the empirical cumulative
tensity function estimator suggested by Leemis (1991) for
three realizations. The solid line denotes the point esti
tor for the cumulative intensity function3(t) = ∫ t

0 λ(τ)dτ

and the dashed lines denote 95% confidence interv
The cumulative intensity function estimator at time 4
is 150/3 = 50, the point estimator for the expected numb
of
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Figure 7:   Point and 95% Confidence Interval Estimato
for the Cumulative Intensity Function

of arriving customers per day. If̂3(t) is linear, a station-
ary model is appropriate. Since people are more likely
arrive to the lunch wagon between 12:00 (t = 2) and 1:00
(t = 3) than at other times and the cumulative intensit
function estimator has anS-shape, a nonstationary mode
is indicated. More specifically, a nonhomogeneous Poiss
process will be used to model the arrival process.

The next question to be determined is whether a par
metric or nonparametric model should be chosen for th
process. Figure 7 indicates that the intensity function in
creases initially, remains fairly constant during the noo
hour, then decreases. This may be difficult to model par
metrically, so a nonparametric approach, possibly usin
3̂(t) in Figure 7 might be appropriate.

There are many potential parametric models for non
stationary arrival processes. Since the intensity functio
is analogous to the hazard function for time-independe
models, an appropriate 2-parameter distribution to consid
would be one with a hazard function that increases initiall
then decreases. A log-logistic process, for example, wi
intensity function (Lawless 1982)

λ(t) = λκ(λt)κ−1

1 + (λt)κ
t > 0,

for λ > 0 and κ > 0, would certainly be appropriate. A
more general EPTF (exponential-polynomial-trigonometr
function) model is given by Lee, Wilson and Crawford
(1991) with intensity function

λ(t) = exp

[
m∑

i=0

αit
i + γ sin(ωt + φ)

]
t > 0.
20



Leemis

y

g

r

s

in
m-
s

ed
n-
is

f

n

The trigonometric function is capable of modeling the in
tensity function that increases, then decreases.

In all of the parametric models, the likelihood function
for the vector of unknown parametersθ = (θ1, θ2, . . . , θp)

from a single realization on(0, c] is

L(θ) =
[

n∏
i=1

λ(ti)

]
exp

[
−
∫ c

0
λ(t)dt

]
.

Maximum likelihood estimators can be determined by max
imizing L(θ) or its logarithm with respect to all unknown
parameters. Confidence intervals for the unknown param
eters can be found in a similar manner to the service tim
example.

4 SOFTWARE

The typical input modeling software is capable of fitting
several distributions to a data set and evaluating goodness
fit. A symbolic, Maple-based probability package name
APPL, developed by Glen and Leemis (1999), is briefl
illustrated here to show the modeling flexibility gained by
using a computer algebra system. The package allows
user to define and manipulaterandom variables, as opposed
to numerical procedures applied to data. The packa
allows a user to calculate expected values, distribution
of order statistics, distributions of sums of independen
random variables, etc. The following seven paragraph
contain examples that illustrate the use of the language.

Let X1, X2, . . . , X10 be independent and identically
distributed U(0,1) random variables. Find

Pr

(
4 <

10∑
i=1

Xi < 6

)
.

The typical approaches to a question of this type are cent
limit theorem, which is approximate, and Monte Carlo sim
ulation, which, although it converges to the exact solution
requires custom coding and each additional digit of accura
requires a 100-fold increase in computational effort. Th
APPL code to solve this problem is

> n := 10;
> X := UniformRV(0, 1);
> Y := SumIID(X, n);
> CDF(Y, 6) - CDF(Y, 4);

which yields

655177

907200
,

or approximately 0.722. The central limit theorem yield
approximately 0.727.
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APPL is capable of handling symbolic parameters,
addition to the numeric parameters from the previous exa
ple. LetX have the triangular distribution with parameter
a, b, andc. Find the CDF ofX.

The APPL code to determine the CDF is

> X := TriangularRV(a, b, c);
> CDF(X);

which yields

F(x) =




0 x ≤ a

(x − a)2

(c − a)(b − a)
a < x ≤ b

1 − (c − x)2

(c − a)(c − b)
b < x ≤ c

1 x > c

The uniform and triangular distributions have been us
in the previous examples. Cases will arise where a no
standard distribution will be needed, as illustrated in th
example. Let the random variableT have hazard function
(Lawless 1982)

hT (t) =
{

λ 0 < t < 1
λt t ≥ 1

for λ > 0. Find the survivor function (the complement o
the CDF).

The APPL code requires inputting the hazard functio
for T as a list of three lists

> assume(lambda > 0);
> T := [[t -> lambda, t -> lambda * t],

[0, 1, infinity],
[‘Continuous‘, ‘HF‘]];

> SF(T);

which yields the survivor function

ST (t) =
{

e−λt 0 < t < 1

e−λ(t2+1)/2 t ≥ 1.

Let X ∼ U(1, 3) and Y ∼ U(1, 2). Assume thatX
andY are independent. Find the distribution ofV = XY .

The APPL code to solve this problem is

> X := UniformRV(1, 3);
> Y := UniformRV(1, 2);
> V := Product(X, Y);
1
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which returns the probability density function ofV as

fV (v) =




1
2 logv 1 < v ≤ 2

1
2 log 2 2< v ≤ 3

1
2 log(6/v) 3 < v < 6.

More complicated distributions that the uniform can be inp
in a similar manner.

The Kolmogorov–Smirnov test statistic in the all p
rameters known case has a piecewise polynomial CDF,
is referred to here as a KS random variable. LetX be a KS
random variable withn = 6. LetY be a KS random variable
with n = 4. Assuming thatX andY are independent, find

V ar [max{X, Y }] .

The APPL code to solve this problem is

> X := KSRV(6);
> Y := KSRV(4);
> Z := Maximum(X, Y);
> Variance(Z);

which yields the variance as exactly

1025104745465977580000192015279

83793210145582989309719976345600
,

or approximately0.0122337.
Maximum likelihood estimators can also be solved f

in APPL. Consider the following sample from an inver
Gaussian population

1, 2, 3, 4, 5.

Find the maximum likelihood estimators forλ andµ.
Using the APPL procedure MLE

> X := InverseGaussianRV(lambda, mu);
> hat := MLE(X, [1, 2, 3, 4, 5],

[lambda, mu]);

The variablehat is assigned the list[300/37, 3] cor-
responding to the MLEs

λ̂ = 300

37
and µ̂ = 3.

Consider the service times given in section 3.1. Inste
of fitting the Weibull distribution, fit the reciprocal of an
exponential random variable.
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The APPL statements required to find the distributio
of the reciprocal of an exponential random variable and fi
the MLE for the unknown parameter are

> data := [105.84, 28.92, ..., 33.00];
> X := ExponentialRV(lambda);
> g := [[x -> 1 / x], [0, infinity]];
> Y := Transform(X, g);
> lamhat := MLE(Y, data, [lambda]);

which derives the PDF ofY to be

fY (y) = λ

y2
e−λ/y y > 0

and calculates the MLÊλ = 55.06. The functiong is used
to find the distribution ofY = g(X) = 1/X.

APPL is a symbol-based probability language capab
of performing calculations that aid input modeling. Curre
development in APPL includes the extension of the langua
to discrete random variables.
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