Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

JAVABEAN-BASED SIMULATION WITH A DECISION MAKING BEAN

Miki Fukunari
Yu-liang Chi
Philip M. Wolfe

Department of Industrial and Management Systems Engineering
Arizona State University
PO Box 875906, Tempe, AZ, 85287-5906, U.S.A.

ABSTRACT simulation modules. Nodes communicate with each other
as a simulation progresses, and they're combined by an
In this paper a methodology is introduced to ease web- event mechanism. In the JBDS, graphics assists in defining
based simulation development: component-based relationships among nodes.
development with a decision making bean. Component- Lance and Wolfe (Sherry and Wolfe 1996) introduced
based development, which permits use of drag and dropthe Operational Procedure Table (OPT) which combines
development, can reduce development time significantly State and Process models into a single model in tabular
since it requires no coding. Also, a decision making bean format. An OPT has two sections; scenario and behavior. A
simplifies definition of logical relationships among scenario is a combination of conditions to be satisfied for
components. This paper introduces the JavaBeans Discretean event to occur and a behavior is a combination of
Simulation (JBDS) system which contains a library of actions to be invoked corresponding to the scenario. A
basic components for simulation models with a decision decision making bean uses an OPT representation to define
making bean. With JBDS, a user can easily perform ‘what- complex relationships among nodes. Since the table
if analysis by changing component’s attributes or interpretation is easy to design and read, decision making
relationships among components, since a user can visuallynodes are useful for constructing a set of decision making

change bean attributes in a bean builder tool. logic and for making presentations to users. Also, this table
representation simplifies checking for all possible
1 INTRODUCTION combinations of conditions (completeness) and for only

one action for one combination of conditions (consistency).
Java was introduced in late 1995. It gathered a lot of It means that logic errors are easier to identify. Thus,
attention due to powerful features such as platform- decision making nodes can improve design efficiency and
independence and Internet-capability. Since Java is ancommunication with users and other designers.
object-oriented programming language, a Java class can be JBDS has a set of common libraries of simulation
reused. Software reusability speeds development time. Thiscomponents. This visual programming system can reduce
reusability is further enhanced by Java component the complexity of simulation model development using
technology, JavaBeans, which was released with Java 1.1lvisual representation and development. The reminder of
in early 1997. Components are self-contained elements ofthe paper describes JavaBeans, the JBDS structure and its
software that can be controlled dynamically and assembledimplementation.
to form applications. Thus, a user does not need to write
code. Component-based simulation has many advantages?2 JAVABEANS
such as reusability of components and simplicity of
development due to visual programming. Some object- The JavaBeans specification defines a JavaBean as a
oriented or component-based simulation languages havereusable software component that can be manipulated
been developed using C++ or Java. Healy and Kilgore visually in a builder tool. JavaBeans are appropriate for
(1997) developed JavaBeans-based Silk. Several benefitscomponents that can be visually manipulated while Java
can be derived from using JavaBeans such as platform-classes are appropriate for providing functionality to
neutral, Internet-capable, and visual programming. programmers. Thus, in the JBDS, nodes are JavaBeans;
JavaBeans Discrete Simulation (JBDS) uses JavaBeans asonsequently, they can be manipulated in a builder tool to
simulation nodes as well as Java classes as commondevelop simulation models.

1699

Fukunari, Chi and Wolfe

The three most important elements of a JavaBean are3.3 Nodes
the set of properties it exposes, the set of methods it allows
other components to call, and the set of events it fires. Nodes may be categorized three ways: basic nodes,
Properties are attributes of a bean. A user can set propertycontroller node, and decision making nodes.
values using a visual development tool. The event is
comprised of three parts; an event source, an event listener3.3.1 Basic Nodes
and an event object. The event model facilitates
communication between beans through the mechanism of At present, four types of basic nodes have been developed:
firing and receiving an event. When an event source fires
an event, event listeners for the event receive the event andL. Create Node; Entities are created with this node. A
invokes the method associated with the event. This event create node can specify the distribution of the time
model separates an event source from an event listener. An between arrivals, the maximum number of entity
event source and an event listener can be connected at run- creations and the first time of creation.
time. This dynamic binding supports independent
development of components and applications. 2. Terminate Node; Entities are terminated with this

A builder tool provides a mechanism to introspect node. This node gathers all sets of information
beans in order to expose their properties, methods, and associated with entities that have reached the terminate
events. This introspection mechanism allows a user to node. A statistics output associated with a terminate
manipulate a bean’s appearance and behavior at run-time node can be invoked at run-time.
in a builder tool. A user just needs to understand each
bean’s capability and how to operate a builder tool. Then a 3. Activity Node; This node defines the distribution of
user can create an application with little knowledge of Java the service time and number of servers.
by changing property values, and connecting beans at run-

time through pre-defined events. 4. Queue Node; This node manages entities waiting for a
service resource. Entities wait in this node in FIFO
3 JAVABEANS DISCRETE SIMULATION (JBDS) order. Statistics associated with a queue node can be

invoked at run-time.
The JBDS system is structured into three basic elements;
entity, event, and nodes. 3.3.2 Controller Node

3.1 Entity This node manages the simulation schedule by organizing

future events. Nodes which create future events, such as
In the JBDS, entities are Java classes. Entities movecreate and activity nodes, communicate with a controller
through nodes passing information. Each entity node passing future-event information. The controller node
encapsulates data such as identifier, arrival/leaving timesinvokes scheduled events according to current simulation
and attributes. Entities usually are created, moved throughtime. Also, it manages global variables such as number in
nodes following an event mechanism, and then destroyedqueue and simulation time. This node controls global
when they leave. variables by communicating with other nodes.

3.2 Event 3.3.3 Decision Making Node

Events are Java classes utilized by nodes. Events in JBDSThis node manages decision making logic. Logic can be
take care of communication between nodes. When an eventrepresented in tabular format when a simulation model
occurs, a system state changes. Entities move throughinvolves a conditional or probabilistic decision. The JBDS
states as an event occurs. JBDS has four events that deahas several variable keywords, such as attribute, current
with communication and scheduling. For example, in basic time, number in queue, etc. Using these keywords, a user
communication, the Simulation Event is invoked which can define logical relationships among nodes using a
passes entity information to a next node when necessarydecision making node.
conditions are satisfied. Events communication can be The logical relationships among nodes can be
defined by connecting nodes in a builder tool since nodes represented as an OPT in two sections: scenario and
communicate with each other by firing and receiving behavior. A decision making node uses this table
events. representation. Figure 1 depicts that a decision making
node after defining the logical relationships. In the left
column, a user can define variables to be checked, which
are keywords in the JBDS. For example, QUE(1)

1700

JavaBean-Based Simulation with a Decision Making Bean

represents the number in queue node 1, DEST is a place tadjustment. Following adjustment, the items are returned
which an entity is routed, and ATR(1) is the first attribute for reinspection. The inspection time is a function of the
of an entity. In the second column, values for the variable number of items waiting for inspection and the number
can be defined. For example, the first row in the Figure 1 waiting for adjustment (see Figure 1 where ATR(1) is the
defines the condition of QUE(X 5. In the other columns inspection time).
(right from the leftmost two columns), the user can set

possible combinations of conditions to be checked for the

scenario section and possible combinations of actions to be

invoked for the behavior section. For example, an entity is Adjustor
assigned value of 6 time units as the first attribute and then QQ
is routed to queue node 1 if QUE(¥) 5. The OPT Arrival of items Inspecio / Queue for Adjustor

representation simplifies the design of logical relationships
among nodes since this tabular format is easy to read and —> Q O—>

design. As a result, complex simulation models can Queue for Inspector
developed in less time. Also, this table representation Packing
simplifies completeness and consistency checking. Figure 2 An Inspector/Adjuster Network Model
Decision making nodes can be a significant aid in
modeling decision making logic. In a builder tool, a user can see a list of all nodes, drag
and drop them into the design window, connect them so
Scenario Section that they communicate with each other, and define their
«variablﬁ-\'— value—>|<—<:ombinaﬂons—> A properties. This system has two decision making nodes.
[o i =l = One decision making node occurs before the inspector

File Ecit

queue (see Figure 1). The other decision making node

C EEEEES o e . occurs after the inspector activity (see Figure 3). The
- =l fj}vj{ j decision making node in the Figure 3 specifies that an
=g *|ves =l|ves = i - - . e
— ﬁj,‘ =l entity is routed to queue node 2 .Wlth probgplllty 0.3 and
[UE@ =1 e =l = =] routed to the terminate node 2 with probability 0.7. After
T N - L - defining all relationships among nodes, the simulation
z [e L =00 =] model developed is shown in Figure 4. Since all
[DEaT QUE(T) [res =llves =1 = =]
=T Bl B—El5 development is made in a visual programming manner, it is
simple and easy to design.

Behavior Section | | 5 CONCLUSION

Figure 1 Decision Making Node The JBDS system has demonstrated the feasibility of
- component-based simulation development using a table
3.4 Trace Capability representation to define decision making logic. A user can

i rapidly develop models with user-friendly graphical
The trace feature of JBDS lets a user examine the ygnresentation instead of writing programs. The JBDS
movement of entities through the system. After a geyeloped in this study may be accessed at (URL:
simulation run, data associated with an entity, such as py.pwolfe.eas.asu.edu/sim.html). Since Java has robust
arrival time, leaving time, etc. can be shown by invoking cross-platform capabilities, JBDS can be used in a

trace output in a terminate node at run-time. Using this gisgributed environment to develop complex simulation
data, the JBDS can trace a detailed history of all entity ,qqels.

movements.
4 JBDS IMPLEMENTATION

The JBDS can be implemented using any JavaBeans visual
builder tool. This research was performed using the Beans
Development Kit (BDK) by Sun Microsystems. An
inspector/adjuster network model (Pritsker 1995, p.131)
was simulated (see Figure 2) to illustrate the system. In this
example, 70 percent of the items inspected are routed
directly to packing and 30 percent of the items require

1701

Fukunari, Chi

[=3 Decision Making (2) mEE
File Edit
Scenario | PROB | 03 [res =] =]
|07 | =llves =]
Behavior | DEST | auED [res =] =]
| TER(Z | =llves =]

Figure 3 Decision Making Node

[BeanBox
File Edit “iew Help

Ecm)
Srv Noz 0

QuEE)
Length; 0
TERQ)

Entities; 0
TIS; 0

O]

QUE()
Length; 0

TER(L)
Entities; 0
TIS; 0

Ecr(z)
Stv No: 0

ICRE(I)

Figure 4 Simulation Application

As future work, the decision making bean will be

enhanced to include logical completeness and consistency="9IN€ering at

checking. In addition, more generalized and flexible
components will be developed. The potential advantages,
such as cross-platform and easy-to-design capability of this
approach are very significant.

REFERENCES

Englander, R. 199Developing Java Bean®©'Reilly & ,
Inc.

Flanagan, D. 1997ava in a Nutshell2" ed. O'Reilly &
Associates, Inc.

Healy, K. J., and R. A. Kilgore. 1997. Silk a Java-based
process simulation languageroceedings of the 1997
Winter Simulation Conferencé75-482.

Howell, F., and R. McNab. 1998. A discrete event
simulation package for Javal998 International
Conference on Web-Based Modeling & Simulation

Kelton, W. D., R. P. Sadowski, and D. A. Sadowski. 1998.
Simulation with ArenaThe McGraw-Hill Companies,
Inc.

Khoshnevis, B. 1994.Discrete systems simulation
McGraw-Hill, Inc.

Kilgore, R., and K. Healy. 1998. Java, enterprise
simulation and the Silk simulation languagE998
International Conference on Web-Based Modeling &
Simulation

1702

and Wolfe

Oaks, S., and H. Wong. 199Java ThreadsO'Reilly &
Associates, Inc.

Pritsker, A. A. B. 1995Introduction to simulation and
SLAM II. 4" ed. New York: John Wiley & Sons, Inc.

Pritsker, A. A. B., J. J. O'Reilly, and D. K. LaVval. 1997.
Simulation with Visual SLAM and AweSiNew York:
John Wiley & Sons, Inc.

Shlaer, S., and S. J. Mellor. 199@bject lifecycles:
modeling the world in statesNew Jersey: Prentice-
Hall, Inc.

Sherry, L., and P. M. Wolfe. 1996. The Operational
Procedure Table: a formalized approach to business
process specificationlEC Proceedings

Vanhelsuwe, L. 199'Mastering JavaBeanSYBEX, Inc.

AUTHOR BIOGRAPHIES

MIKI FUKUNARI received a BS in Physics from Tokyo
Metropolitan University. Currently, she is a Master student
in Industrial Engineering at Arizona State University. Her
research field includes Component-Based Software
Development, Simulation Modeling Methodology, and
Distributed System.

YU-LIANG CHI received a BS and Master of
Management Information System at Taiwan. He also has
Master of Computer Science from Arizona State
University. Currently, he is a Ph.D. student in Industrial
ASU. His research field includes
Distributed System, Networking and Object-Oriented
Technology.

PHILIP M WOLFE received a BS in Industrial
Engineering and a BS in business administration from the
University of Missouri. He also has Masters and Ph.D.
degrees in Industrial Engineering from Arizona State
University. Currently, He is a professor in the Dept. of
I&QMSE at Arizona State University. The majority of his
work, teaching experiences, and research interests are
related to Information Technology and Decision Support
Systems.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

