Proceeding of the 1998 Winter Simulation Confeence

D.J. Mederos, E.F. Watson J.S Carsamn and M.S Manivannan eds.

ARCHITECTUR E FOR A NON-DETERMINISTI C SIMUL ATION MACHINE

Marc Bumble
Lee Coraor

Compute Sciene and Engineering
The Pennswania Stat University
Universily Park, PA 16801 U.S.A.

ABSTRACT

Causaliy constraing of randan discree simulation make
parallé ard distributed processig difficult. Methods of
applying reconfigural@ logic to implemen and accelerate
simulation servie evert queus are presentd which
proces simulation events a a rate of one evert per
80 nanoseconds The evert generato presentd in our
previous work (Bumble and Corao 199§ is also capable
of sustainimy the 80rs clock rate providing overal speedup
rates which depem on the softwae comparisa scenario.
The softwale comparisa cited in this work provides a 2
orde of magnituak speedup The speedp facta varies with
the size of the softwae event queue Field Programmable
Gatk Arrays (FPGA9 are usa to implemen and ted the
servie quete design.

1 INTRODUCTION

Using reconfigural# logic, this study explores a metha of
acceleratig randon discree simulation Randan discrete
simulatian is inherenty serid in natue due to its causality
(Nicol 1996 constraints However, the benefis of faster
simulation execution make parallelisn a very attractve
pursuit Faste simulatiors could beneft traffic engineers
in accommodatig emeagercy change to metropolitan
traffic models Analogots applicatiors exist for simulating
aerospae traffic and telephor networks.

The bast randan simulation modé is illustrated in
Figure 1. The modé applies to both time and event-
driven simulation. The simulato is divided into the
Event Generatq the Event Queue the Schedule and
the Simulation Time Clock. The Event Generato creates
randon events accordilg to a use selectd statistical
distribution. Event arnd their attributes are placeal in the
Evert Queue The Schedule steps through the Event
Quete in chronologich orde accordig to the global

1599

Random
Event T Number
Generator Generator

! Event Queue

Simulation
Time Clock

Scheduler

Figure 1. Simulato Model

Simulation Time Clock, attemptirg to allocae resource to
ead event If the resource are availablg the evert can
execute If not, the evert is blocked.

Onre of the goabk of discree simulatin researh is
to speedp simulatiors by processig evens in parallel.
Causaliy constraing force ead evert to execut in the
simulation environment accordirg to the resuls of the
eventspredecesso An evert which alters stak information
upon which the next evert dependsmug be executal before
the dependenh event. Simulatiors are characterizé as
being eithe conservatie or optimistic The consevatve
approab prohibits simulatiors from executirg the next
evert until all evens with earlie time-stamg have been
executed Optimistic simulatos allow events to execute
out of orde, but maintah enoudn stae information so
tha the simulatilm can retum (rollback) to an earlier
checkpoint In optimistic simulation straggle events with
earlie timestampg creae causaliy errors forcing rollbacks.
The simulation mug then undo the effects of any incorrect
computatios (Nicol 1996 resettig the simulatin state
variables and time clock to their checkpointd values.

Bumbk and Coraor

The simulata presentd in this study is a consevative
simulata.

1.1 Methodology

Simulation speedp is accomplishd via two independent
enhancementsThe first accelerate randan event gene-
ation The secom facilitates faste handling of service
events generatd by scheduld ariival events.

The first enhancemednaccomplishe evert generation
speedp by translatirg sore simulatin loop softwake into
paralle| systolic and reconfigural® logic. Reconfigurable
logic permits various statisticd distribution modek to be
compiled from softwae into hardwae implementations.
Existing hardwae may be reuse instea of requiring a
variety of Application Specift Integrated Chips (ASICs).
Reconfigural# logic is required by this approach as
it is impossibé to anticipat every statistich model
which a use¢ might desire. The reconfigural@ logic
can further accommodat use preference by allowing the
implementatio of table generatd statistica distributions.

Typicd simulatiors contan dat dependecy between
contiguows evert arrivals ard betwea evert ariivals and
their servie durations Ead arrival is calculatel as a
randan offset from the previous arrival time. Event
servie duratiors are calculatel as randon offsets from
that events arrival time. Becausg the randam arrival and
servie offsets are not themseles dependenon anything,
evernt generatio can be accelerated. Data dependecy
amorg event arises when the randan offsets are added
to the previous events arrival time.

The Evert Generato computs evert arrival times,
servie times ard resoure requiremerd with sorre partial
parallelism By carefuly maintainirg the flow of data
throuch hardwae which calculates the sub-portios of
eath event the propose desiqn alleviates sone of the
data dependecy constraints The resultirg evert objects
are storal in the Event Quele which is accessild to the
schedulig software.

The secom simulation enhancemenemploys a split
evert queue The quele stores the events in two separate
queuesthe arrival and servie queues The split queues
are implemente as hardware with the servie quele able
to selec¢ its minimum timestamp A further enhancement
allows the ariival quele to eliminat impoten events An
arrival evert is considerd to be impotent if the event
requires unavailable resourcesand no servie evert will
occu in time to repleni$ the needé resources The event
can be eliminated without schedule intervention.

In the gener& simulation mode| arrival events which
are producel in time orde by the event generatq are
addeal directly into the Evert Queue When thes arrival
events are executed they produe end of servie events.

1600

Executal end of servie evens may releag resourcs for
later reuse For the hardwae simulata modé presentd in
Sectin 4.1, it is assumd tha before the simulatian starts,
the use selecs statistica distributions for generatig event
arrival ard servie times The simulation modé is then
configurel and downloadel into reconfigurale logic by
the hog platform The initial simulata configuration will
remah for the duratian of the simulation.

Compute architectue has generaly used a cental
processig unit (CPU) asthe focd point of its computation.
Data was moved from memoy or peripherasd to the CPU
where the computatim was performed Then the results
were written badk to a peripherd or memoy. Currenty,
there is a trend to eliminake the centrd processig unit
ard move mud of the processig hardwae into memory
ard the peripheras (Gray 1998) With the currert trend,
computatian is performeal within a peripheréd and moved
to anothe point wher additionda computatim may be
performed but basicaly the computatia is performel at the
communicatio endpoints At thes endpointsinstructions
are fetchel and decodé to perfom work on the given
operang or data Systolc Communicatioa (Kung 1988),
onthe othe hand allowsthe required processig to occu as
dataflowsfrom onelocation to the next. Although proposed
some time agq systolc communicatios is difficult to
implement but with the advert of reconfigural# logic, this
approab is vely attractve for discree evert simulation In
systolc communicationsthe data flows through functional
units so tha computatio is performel as patt of the data
transfe, giving rise to greate computationh efficiencies.
The proces requires afair amoun of dat independence
ard happe to work well with non-deterministi simulation
models.

2 RELATED WORK

Historically, deterministt logic simulatiocn has been the

chief application for simulation accelerators. The first

acceptd logic simulation machire was the Boeing Com-

pute Simulata (VanAusdé 1971). Both Abranovici

(Abramovici et a 1983 and Barto (Barto and Szygenda
1985 developel specid purpo® paralld processig archi-

tectures for handlirg logic simulation However, machine
developmen costs limited applications and the fag evo-

lution of technoloy have deterrel hardwae researh for

paralld discree simulatian in the past The development
of Field Programmald Gake Arrays (FPGA9 (Brown et al.

1992 (Fawcet 19949 has significanty reducel hardware
implementatio costs Standardizeé description languages,
sud as Verilog ard VHDL , facilitate the transfe of existing

desigrs to new evolutions of hardwae allowing systems
to more easily keep pae with their quickly changing
underlirg technolog.

Achitectue for a Non-Deterministt Simulation Machine

Set

Resol

rces
Pipeline Register

Pipeline Register

B
i
_ p
Add Offset €
To Previous R
Arrival Time e t:]
L9 Place Event
? in Queue
i
p
Create _ e
Service = To Current R
Time Offset lérrival Time j_

Figure 2. The Evert Generato Flow Diagram

Relatel studies of non-determinist paralld event-
driven simulatin include work by Beaumon (Beaumont
1994) Reconfigural# logic was usal to produe acom-
municatiors ring which was capabé of synthesizig ap-
plication specift operatos and contrd or communications
circuits betwea parallé processig elements Fujimoto
et a developal the Rollback Chip (Fujimoto et al. 1992)
which allows an optimistic simulata to quickly rese a
simulatioris stat bad to a previous checkpointd time.

2.1 The Event Generator

Event Generationillustrated in Figure 2, is subdvided into
the creation of arrival and servietimes Evert generatio is
accomplishd by a two-dimensionkreconfigurale systolic
array which allows the two time offsets to be creata in
parallel Reconfiguable logic (Favcet 1994 booss the
executian speel of evert generatio by avoiding much of the
communicatios overhea requiral by paralld processors.
Systolc communications which facilitates a dataflow
(Hennesg ard Pattersm 1990 modd of computation,
alo accelerate the mechanimn by awiding the nedal to
fetch instructiors and operand from memoy. Systolic
communicatios provide the ability to transfe long streams
of intermedia¢ data betwe@ processg at high throughput
rates with low latercy (Hord 1993) The systolc array
depictal in Figure 2, pumps da@ from one processing
block to the next in regular time intervals until the
data circulates to the Evert Queue Reconfigurat# logic
implemens adders multipliers and a natura logarithm,
In(), functiond unit. These functiond units are processing
elemens within the systolc array.

Outpu from the evert generato is placal directly
into the arrival quete illustrated in Figure 3. The local
processig elemen desigh uses two queus for ead sewer.
The ariival quele holds the sorted list of ariival events,
which arrive in-orde from the Event Generatg and the

1601

Event

Generator

comparator

Arriva

Service Queue

Queue

Scheduler

Figure 3. The Locd Processig Elemen Design

guele can be implemente as a FIFO queue Service
events which are createl from processig successful
arrival events are storal in the servie queue. Two

method of maintainirg the servie quele are discussed
in Sectilm 3. The sorte array mechanim is the most
appropria¢ methal for this application In the processing
elemen of Figure 3, a comparato sample the head of

both queus and indicates where the next minimum local

time-stampd event resides.

3 THE QUEUE MECHANISM

After event are create by the event generatg they are
storel in the arrival quete in orde. The ariival queue
can be easily implemente as aFIFO queue Successfully
executel ariival events creae servie events However, the
servie evens are generatd out of orda. The smallest
timestampd events be they servie or ariival, mug be
continualy available to allow the events to be executed
in time orda. Therefore Sectim 3 develops a sorter
mechanim to orde a list of servie events This section
presens two servie quete alternatves The first method
maintairs a sortel quete ard can sele¢ the n** element
in O(1), but requires O(4) stefs to inset a new element.
The secom metha insers new elemens in O(1) and can
pop the smalles elemen off in O(1) but does not maintain
a sorted queue.

3.1 The Service Event Sorter

The first method the Servie Evert Sorte, can sott events
in 4 cycles significanty faste than standad software
sorts This sorting mechanien maintairs a sortel array
facilitating selection of the kth smalle$ element. The
hardwae consiss of the input register, a content register
array, a marked array, ard a maxbt register. The input
value is compare again$ the conten array values and
insertal in the corre¢ position within the conten array.
Auxiliary hardwae registeis and logic are usel to quickly

Bumbk and Coraor

8555
SBRR
ey
Input Register 5555
N
0101 BT
- A
0001 | | | [
0011 | | | |-
0110 | | | |XX--
Content - Match
Array OLLp | § xx Array
1001 | | | [
1010 | [| [
XXXX ||| [
XXXX

Match Mark Array —— [1100 | Maxbit Register

Figure 4. Servie Evert Sorter Cycle 1

locat the corred insertio point for the new value Longer
queus can be createl by chairs of smalle queues.

In the first cycle, illustrated in Figure 4, all words
in the contert array are compare to the input register
value If any word in the conten array has the sane most
significart bit (MSB) as the input registe, the first bit of
the maxbt regista is set If any conten array word has
the sane top two MSB’s as the input registe, then the
first two bits of the maxbt registe are set So if bit three
of the maxbt registe is set it indicates tha at leag one
word in the conten array has the sane top 3 MSB's as
the input registe. In the exampke depictal in Figures 4,
5, ard 6, two words have the sane top two MSB's as the
input registe value.

The propose algorithm works as follows. All registers
in the conten array are compare with the input register.
A netwok of nodes called the matc array, is usel to
determire the numbe of mog significart bits which each
contert regista has in comma with the input data registe.
A single regista, the maxbt registe, record the result.
For example if one or more conten array registels match
the data input registe on all 3 of the 3 mog significant
bits, then the first 3 bits of the maxbt registe are sd to
logic 1's.

In the secon of the four cycles all words in the
contert array matchirg the input registe with the maximum
numbe of MSBs are markal by settirg bits in a marked
array. The markel arrgy consiss of one bit pe word of
the content array. Contert array words which have the
maximun numbe of MSBs matchirg the input register
are marked as illustrated in Figure 5. Thes words will
cluste due to the binaly natue of the search.

1602

Input Register ===

R
0001 | | | [
o011 | | | |-
0110 | |1 | [xx--
g o] 1] b | XD
1001 | [| [
1010 | | [
XXXX ||| |
XXXX

Ma[tchMarkArray—‘A Maxbit Register

Figure 5. Servie Evert Sorter Cycle 2

During the third cycle, the requirad words in the
contert array will be moved down to allow room for
the insertion of the input registe contents If the least
significat marked bit in the maxbt registe is i, then
the i+1 bit of the input registe is checked When the
i+1 bit of the input registe is azerqg all registes in the
contert array from the marked registe to the erd of the
array are shifted down one registe in asingle clock cycle.
Otherwise if the i+1 bit of the input array is aone then all
registess below the markel registess are shifted down one
position creatirg a spa for the new word to be inserted
as shown in Figure 6. For the given example the i+1 bit
of the input registe is azerg so all words including and
below the markel registess are shifted down. Finally, in
the fourth step the input register value can be inserted
into the array in prope orde.

3.2 The Linear Array

The secoml servie quele mechanim consiss of a linear
array approab which is describé in (Leighton 1992)
and illustrated in Figure 7. However, insteal of using
the linea array to sott the values the array will simply
maintah fag acces to the minimum timestampd event.
All new simulation event are passd into the leftmog array
element the quele head and when removed, the elements
are aloo poppea off the quele head Ead elemen of the
guete contairs two registess and acomparata The larger
of the two residerh elemens may be passd to the right,
ard the smalle of the two elemens may be passd to the
left. Therefoe the smalles ently is always at the leftmost
guele element Comparates in ead quele elemen and

Achitectue for a Non-Deterministt Simulation Machine

$E6S
LBET
===
i >222
Input Register gmmm
ANM<
0101 BT
- e
o001 | | | [
ooir | | | [
< 1] [xx--
content”| 0110 | |1 | |xx-- | Mach
(¢ - rr
¥ o | [&
1001 | | | [--
1010 | | | |-
XXXX

Maxbit Register

Figure 6. Servie Evert Sorter Cycle 3

Match Mark Array -

Out Regisier A Register Al
egister egister
Comparat M = Comparat [M =~ eee
omparato| - ux omparatoj ux
L Regisier B | I Regiser Bl S~

Figure 7: Linea Array Queue

the quete push/p@ signd stee the 2x2 multiplexor logic
to route the corre¢ entries in and out of the processing
elemen registers Larger quele elemens are passd to
the right and smalle elemens are passd to the left.

The servie quete is required to always have the
smalles elemen read. The availability of the smallest
elemen can be reasond as follows. Assune tha at some
time, t, the quele contairs N elements Therefore the
leftmod element K, has examined asequene of N values,
retainirg the smalles value This value can be poppel off
in 1 move. The elemen to K’s right, K-1, has examined
a leag N-1 values so the 2nd smalles value can be either
a elemen K, or at elemen K-1, but it mug be in one of
thos two places ard can be accesse in 2 moves since
the smalle$ elemem mug be removed first.

The n*"* smalles elemen to ente the array is in any
positin from K down to K — (n — 1). Then the next
smalles elemen to ente the quete will be in any position
from K down to K — ((n — 1) — 1), which provides our
inducive ste for the n — 1 smalles element So our n*”
smalles elemen can always be retrieved in n steps This
quete allows us to push ard pop ead elemen in O(1)
time. The quete is illustrated in Figures 8 and 9.

Figure 8 illustrates asequene of values being pushed
into the array. The top array illustrates the first time
step with ead succesise array below depictirg the same
array during the next clock cycle. Comparatas on each
processig elemen and their associatéd multiplexors steer

1603

1 5

82

1 3 7 5

Figure 8. Linea Sott Array Input Example

1 3 Z 5
1 2 3 7
12 3 S 7
6
123 4 5 7
6
1234 5 7

Figure 9: Linear Sott Array Outpu Example

the values into eat elemen of the array. Larger elements
are pushel to the right. When evens are poppel off the
gueue the analogos sequene of steps is illustrated in

Figure 9. Smalle elemens are pushel to the left.

4 RESULTS AND CONCLUSIONS

Previous work (Bumble ard Corag 1997 1998 demon-
stratel a speedp of 225 for an evert generatio hardware
implementatio of Figure 2 over its softwae analogue The
implemente array calculats evert arrivals and durations
basel on the Exponenti& Distribution (Banks Carsm I,
ard Nelsan 1996 Walrard 1991) Othe logic arrange-
mens could also be engenderedard the proposéd system
would have a variety of distributions available to the use.
This researh focuses primarily on the servie queue.
The softwae versim is implemente as a GNU LIBG++
XPPQ Priority Quewe class. In the C++ software
simulation thetime required for the insertian ard extraction

Bumbk and Coraor

of events to and from the evert quele increass as the
quete straysfromits optimum size The propose hardware
quete speed on the othe hand is nat affected by its size,
ard it provides a 10 speedp over the softwae model.

4.1 The Hardware Model

The hardwae servie quele we implemente was a five
elemen desiq closey resemblig Figure 7. At this time,
there is no neal for the fully orderal list of Figure 5.
The linear array quete was capabé of pushirg one 16-bit
value pe 40 nanosecondsThe smalle$ quete value could
alo be poppeal out at tha rate It is assumd tha each
simulata cycle would neel to push one evert and pop
one evert from the servie queue Therefore our queue
achives the systan 80rs cycle time. Quele dat values
would also require pointess to the evert data so tha pairs
of values would neeal to be pushe ard poppe off the
queue Conversey, when new elemens are pushel into a
softwae data structure the existing softwae elemens must
be fetchel from memoy to allow the CPU to compae the
storal elemens$ to the new arrival, so tha the insertion
point can be determinedor an addres mug be calculated
to determire a prope bin on which to chan the new
entry for hashing Softwae method require more time
ard variabke amouns of it.

Using Altera'sMax+Plis Il ® Ep@ simulatin pack-
age the Event Generato and the Servie Quete have been
simulatal as individud pars running with a clock rate of
80ns The servie quele was simulatel at a rate of 40ns,
allowing it to push an evert during the first haff cycle and
pop an evert during the next. A 5 processig element
guete was implemente on one Altera EPF10K20TC144-3
chip utilizing 90% of the chip's resources The Evert gen-
erato is synthesizd as acombinatim of five chips Four
logarithm units are required two producirg their resuls on
the even clock cycles ard the othe two producirg results
on the odd clock cycles The Creake Arrival Time Offset
ard the Creake Servie Time Offsa blocks of Figure 2
ead require one odd and one even logarithm unit. The
systen FPGA componerd are listed in Table 1.

Oreinterestiry facd gleamel from the FPGA research
is tha FPGA implementatio method are very important
to minimizing their clock speeds It is difficult for the
hardwae compiless to fully optimize designs For instance,
two method of allowing a 16 bit D-flip/flop registe to
hold its value can be compared One methal routes the
outpu badk throuch an input multiplexor, so tha the
outpu is re-inserte on the next clock strike The second
methal simply disables the registe bits which then retain
their value The first methal requires 16 lines to be routed
efficiently within the FPGA The seconl requires one
signd to be chainal to ead elemen of the registe bits.

1604

Table 2: Evert Generation

/] intende d to maintai n number of arriva | events
whil e (create_event_cn t <= num_events) {
create_event_cnt++;

arrival_tim e = cloc k + rnd1();
service_tim e = rnd2();
Event_Clas s *tes t = new Event_Class(arrival_time,

service_time);
queue->enq(*test);

Number of Queue Arrival Events vs Speedup

s
B 400 o]
& S Uniform ——
300 Normal --+-- 8
LogNormal -=-
Wiebull -

NegativeExpntl -+--|

1 2 3 4 5 10 50 100 500 1000
Number of Events in Arrival Queue

Figure 10: Speedp vs for Evert Generation Arrival and
Servie Queues

The secomnl methal was mudch more efficient producing
better timing results.

4.2 The Software Model

The softwae simulaticn modé we usel for comparison
was written in C++ ard is illustrated in Tables 2 ard 3.

Sone additiona processig is performal when the event
dat structue is allocated The arriva and servie queues
are maintaine as a single heg dafa structure unlike the

propose dud quele hardwae mechanim illustrated in

Figure 3. To gathe accura¢ timing results the number
of event in the evert quele was kept constant The extra

time used to generat additiond arrival evens in orde to

maintah the quetle size is nat included in the speedup
plot of Figure 10. The softwae modé usel to obtan the

timing values is provided in Tables 2 ard 3.

Figure 10 illustrates the speedp expectal for other
distributions if the 80rs clock is maintaing in their
hardwae implementations. The hardwae distribution
implemente provides the speedp illustrated for the
NegaiveExpnt curve in Figure 10. Excess/e amounts
of speedp were delived for quele sizes of 1 element
probaby due to the C++ destructo de-allocatilg the queue
as its size drops below one The speedp shown mug also

Achitectue for a Non-Deterministt Simulation Machine

Table 1: FPGA Chip Implementation

Function Quantity Chip Type Chip Percent Utilized
Evernt Generator
Logarithm Unit 4 EPF10K40RC208-3 95%
Evert Logic 1 EPF10K30RC240-3 71%
Servie Queue
Linear Array 1 EPF10K20TC144-3 90%

Table 3: Evert Executian Loop Code

whil e (event s <= num_events) {
events++;

Event Clas s event = queue->deq() ; // include d in
/| speedup test
/1 too k event off , so put it back to maintai n num
/] arriva | events
arrival_tim e = cloc k + rnd1();
service_tim e = rnd2();

Event_Clas s *arri v = new Event_Class(arrival_time,
service_time);
queue->eng(*arriv); /1 not include d in speedup test
i f (event.getArrival() == true) {
if ((eventres.get_a() <= a_resource_counter) &&

(event.res.get_b() <= b_resource_counter)) {
a_resource_counte r -= eventres.get_a();
b_resource_counte r -= event.res.get_b();

event.SetNextArrivalTime();
/1 push servic e event
gueue->eng(event) ; /1 include d in speedup test
} else {
if (eventres.get_a(
block_a++;

) >= a_resource_counter) {

if (eventres.get_b(
block_b++;

) >= b_resource_counter) {

if (double_or_more_im p > 1)
total_saves++;
double_or_more_imp++;

} els e {
double_or_more_im p = 0;
a_resource_counte r += event.res.get_a();
b_resource_counte r += event.res.get_b();
}
b

be considerd in light of the fact tha the Sparc Ultra’'s
were attache to a Netwok File Systen (NFS) ard so
netwok communicatios delays within the building to the
file sewer mug be considered However, once the file is
initially fetchel to the locd machineg this delay ends It
also need to be noted that the propose linear array queue
neal not be implemente as reconfigurak® logic. The
guele could be implemente as an Application Specific
Integrated Chip (ASIC), and would probaby be able to
function at an even faste clock rate with many more queue
elements The code executin times were clocked on a
Sun Microsystens Ultra 1 Sparcstatin running Solars 5.6.

1605

The code was compiled using the GNU G++ compile,
versin 2.7.2.

Future work will investigae joining individud pro-
cessilg elemens into a simulatian network This course
will directly effect the arrival quete which will neal to
hande unsequena arrival events Synchronizirg a net-
work of differert locd processig elemet clocks to follow
a globd simulatin clock will also be challenging.

ACKNOWLEDGMENTS

The authos wish to thark Dr. Piotr Berman of Penn
Stak University Departmeh of Compute Sciene for his
assistance.

REFERENCES

Miron Abranvovici, Ytzhak H. Levende] and Premachan-
dran R. Menon A logicd simulation machine IEEE
Transactios on Compute-Aided Design of Integrated
Circuits and SystemsCAD-2(2):82—94 April 1983.

Jery Banks Jom S. Carsa I, and Barry L. Nelson.
Discrete-Eveh Systen Simulation Internation& Series
in Industrid and Systens Engineering Prentie Hall,
Uppe Sadde River, New Jergy 07458 secom edition,
1996.

R. Barto and S. A. Szygenda A compute architecture
for digital logic simulation Electonic Engineering
52(642):35-66 Septembe 1985.

C. BeaumontP. Boronat ard J. Champea et al. Reconfig-
urabk technology An innovative solution for parallel
discree evert simulatim support In 8th Wbrkshop
on Parallel and Distributed Simulation (PADS '94).
Proceeding of the 199 Worksh@ on Parallel and
Distributed Simulation pages 160-163 Edinburgh,
UK, July 1994 |IEEE, SCS San Diego, CA, USA.

Stepha D. Brown, Robet Francis Jonatha Rose and
Zvonko Vranesic Field-programmabé gate arrays
The Kluwer Internationa Series in Engineerig and
Compute ScienceKluwer Academ¢ Publishers1992.

Bumbk and Coraor

Marc Bumble ard Lee Coraco. Introducirg parallelism
to event-diven simulation In Proceeding of the
IASTHD Internationd Confeence—Applid Simulation
and Modelling ASM '97, Bariff, Canada July 27-
Augug 1, 1997 The Internationd Association of
Sciene ard Technoloy for Development August
1997.

Marc Bumble and Lee Coraa. Implementirg parallelism
in randan discret event-diven simulation In Lectue
Notes in Compute Sciene 1388 Parallel and Dis-
tributed Processing pages 418-427 IEEE Computer
Societ, Springe, March 1998.

Bradly K. Fawcett Taking advantag of reconfigurable
logic. Sevenh Annud IEEE Internationd ASIC
Confeene and Exhibit, pages 227-230 Sept 1994.

Richad M. Fujimoto Paralld discree evert simulation.
In Communicatios of the ACM, volume 33 no. 10,
pages 30-53 ACM, Octobe 1990.

Richad M. Fujimoto, Jya-Jag Tsa, and Ganet C.
GopalakrishmanDesign and evaluation of the rollback
chip: Specia purpo® hardwae for time warp. IEEE
Transactios on Computers 41(1):68-82 January
1992.

Jim Gray. Internation& paralld processig symposium
keynote addressApril 1998.

Jom L. Hennesg and David A. Patterson Compute Archi-
tectue A Quantitatie Approach. Morgan Kaufmann
PublishersInc., first edition 1990.

R. Miched Hord. Parallel Supecomputirg in MIMD
Architectues CRC Press Inc., Boca Raton Florida,
1993.

H. T. Kung Systolc communicationsinternation Confe-
ene on Systolt Arrays page 695-703 May 1988.

F. Thomsa Leighton Introductian to Parallel Algorithms
and Architectues Arrays Trees Hypecubes Morgan
Kaufmam Publishers San Mateq CA, 1992.

David M. Nicol. Principles of consevative parallel
simulation In J. M. Charnes D. J. Morrice, D. T.
Brunne, ard J. J. Swain editors Proceeding of the
199% Winter Simulation Confeence page 128-135,
1996.

A. W. VanAusdal Use of the boeirg compute simulator
for logic desigh confirmation and failure diagnostics
programs Proceeding of the Advancs in the Asto-
nauticd Sciencs 17th Annud Meeting 29:573-594,
Jure 1971.

Jean Walrand Communicatia Networks A First Course
Aksen Associatesinc., 1991.

1606

AUTHOR BIOGRAPHIES

MAR C BUMBL E is agradua¢ studen in the Computer
Sciene and Engineerig departmeh at the Pennsyyania
Stae University in University Park, PA. He recéved his

B.S. ard M.S. degrees in electricd engineerig from

the Universiy of Pennswania in Philadelphia. His

current researh investigats architecturs for accelerating
non-deterministi simulation including the applicatin of

reconfigurate logic.

LEE CORAOR is an Associaé Professo of Computer
Sciene and Engineerig at the Pennswania State Uni-
versiy in Universily Park, PA. He recaved his Ph.D. in
Electricd Engineerig from the University of lowa. Dr.
Corao has worked on the design implementatio and
performane evaluation of decouplé architecturs ard is
currenty investigatiy FPGA architecture and applica-
tions.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

