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ABSTRACT

Causality constraints of random discrete simulation make
parallel and distributed processing difficult. Methods of
applying reconfigurable logic to implement and accelerate
simulation service event queues are presented which
process simulation events at a rate of one event per
80 nanoseconds. The event generator presented in our
previous work (Bumble and Coraor 1998) is also capable
of sustaining the 80ns clock rate, providing overall speedup
rates which depend on the software comparison scenario.
The software comparison cited in this work provides a 2
order of magnitudespeedup. Thespeedup factor varieswith
the size of the software event queue. Field Programmable
Gate Arrays (FPGAs) are used to implement and test the
service queue design.

1 INT RODUCTION

Using reconfigurable logic, this study explores a method of
accelerating random discrete simulation. Random discrete
simulation is inherently serial in nature due to its causality
(Nicol 1996) constraints. However, the benefits of faster
simulation execution make parallelism a very attractive
pursuit. Faster simulations could benefit traffic engineers
in accommodating emergency changes to metropolitan
traffic models. Analogous applications exist for simulating
aerospace traffic and telephone networks.

The basic random simulation model is illustrated in
Figure 1. The model applies to both time and event-
driven simulation. The simulator is divided into the
Event Generator, the Event Queue, the Scheduler, and
the Simulation Time Clock. The Event Generator creates
random events, according to a user selected statistical
distribution. Events and their attributes are placed in the
Event Queue. The Scheduler steps through the Event
Queue in chronological order according to the global
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Figure 1: Simulator Model

Simulation Time Clock, attempting to allocate resources to
each event. If the resources are available, the event can
execute. If not, the event is blocked.

One of the goals of discrete simulation research is
to speedup simulations by processing events in parallel.
Causality constraints force each event to execute in the
simulation environment according to the results of the
event’spredecessor. An event which altersstateinformation
upon which thenext event depends, must beexecuted before
the dependent event. Simulations are characterized as
being either conservative or optimistic. The conservative
approach prohibits simulations from executing the next
event until all events with earlier time-stamps have been
executed. Optimistic simulators allow events to execute
out of order, but maintain enough state information so
that the simulation can return (rollback) to an earlier
checkpoint. In optimistic simulation, straggler events with
earlier timestamps create causality errors forcing rollbacks.
The simulation must then undo the effects of any incorrect
computations (Nicol 1996) resetting the simulation state
variables and time clock to their checkpointed values.
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The simulator presented in this study is a conservative
simulator.

1.1 Methodology

Simulation speedup is accomplished via two independent
enhancements. The first accelerates random event gener-
ation. The second facilitates faster handling of service
events generated by scheduled arrival events.

The first enhancement accomplishes event generation
speedup by translating some simulation loop software into
parallel, systolic, and reconfigurable logic. Reconfigurable
logic permits various statistical distribution models to be
compiled from software into hardware implementations.
Existing hardware may be reused instead of requiring a
variety of Application Specific Integrated Chips (ASICs).
Reconfigurable logic is required by this approach, as
it is impossible to anticipate every statistical model
which a user might desire. The reconfigurable logic
can further accommodate user preferences by allowing the
implementation of table generated statistical distributions.

Typical simulations contain data dependency between
contiguous event arrivals and between event arrivals and
their service durations. Each arrival is calculated as a
random offset from the previous arrival time. Event
service durations are calculated as random offsets from
that event’s arrival time. Because the random arrival and
service offsets are not themselves dependent on anything,
event generation can be accelerated. Data dependency
among events arises when the random offsets are added
to the previous event’s arrival time.

The Event Generator computes event arrival times,
service times, and resource requirements with some partial
parallelism. By carefully maintaining the flow of data
through hardware which calculates the sub-portions of
each event, the proposed design alleviates some of the
data dependency constraints. The resulting event objects
are stored in the Event Queue which is accessible to the
scheduling software.

The second simulation enhancement employs a split
event queue. The queue stores the events in two separate
queues, the arrival and service queues. The split queues
are implemented as hardware, with the service queue able
to select its minimum timestamp. A further enhancement
allows the arrival queue to eliminate impotent events. An
arrival event is considered to be impotent if the event
requires unavailable resources, and no service event will
occur in time to replenish the needed resources. The event
can be eliminated without scheduler intervention.

In the general simulation model, arrival events, which
are produced in time order by the event generator, are
added directly into the Event Queue. When these arrival
events are executed, they produce end of service events.
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Executed end of service events may release resources for
later reuse. For the hardware simulator model presented in
Section 4.1, it is assumed that before the simulation starts,
the user selects statistical distributions for generating event
arrival and service times. The simulation model is then
configured and downloaded into reconfigurable logic by
the host platform. The initial simulator configuration will
remain for the duration of the simulation.

Computer architecture has generally used a central
processing unit (CPU) as the focal point of its computation.
Data was moved from memory or peripherals to the CPU
where the computation was performed. Then the results
were written back to a peripheral or memory. Currently,
there is a trend to eliminate the central processing unit
and move much of the processing hardware into memory
and the peripherals (Gray 1998). With the current trend,
computation is performed within a peripheral and moved
to another point where additional computation may be
performed, but basically thecomputation isperformed at the
communication endpoints. At these endpoints, instructions
are fetched and decoded to perform work on the given
operands or data. Systolic Communications (Kung 1988),
on theother hand, allowstherequired processing to occur as
dataflowsfrom onelocation to thenext. Although proposed
some time ago, systolic communications is difficult to
implement, but with the advent of reconfigurable logic, this
approach is very attractive for discrete event simulation. In
systolic communications, the data flows through functional
units so that computation is performed as part of the data
transfer, giving rise to greater computational efficiencies.
The process requires a fair amount of data independence
and happens to work well with non-deterministic simulation
models.

2 RELATED WORK

Historically, deterministic logic simulation has been the
chief application for simulation accelerators. The first
accepted logic simulation machine was the Boeing Com-
puter Simulator (VanAusdal 1971). Both Abramovici
(Abramovici et. al 1983) and Barto (Barto and Szygenda
1985) developed special purpose parallel processing archi-
tectures for handling logic simulation. However, machine
development costs, limited applications, and the fast evo-
lution of technology have deterred hardware research for
parallel discrete simulation in the past. The development
of Field Programmable Gate Arrays (FPGAs) (Brown et al.
1992) (Fawcett 1994) has significantly reduced hardware
implementation costs. Standardized description languages,
such asVerilog and VHDL, facilitate the transfer of existing
designs to new evolutions of hardware allowing systems
to more easily keep pace with their quickly changing
underling technology.
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Figure 2: The Event Generator Flow Diagram

Related studies of non-deterministic parallel event-
driven simulation include work by Beaumont (Beaumont
1994). Reconfigurable logic was used to produce a com-
munications ring which was capable of synthesizing ap-
plication specific operators and control or communications
circuits between parallel processing elements. Fujimoto
et al developed the Rollback Chip (Fujimoto et al. 1992)
which allows an optimistic simulator to quickly reset a
simulation’s state back to a previous checkpointed time.

2.1 The Event Generator

Event Generation, illustrated in Figure 2, is subdivided into
thecreation of arrival and servicetimes. Event generation is
accomplished by a two-dimensional reconfigurable systolic
array which allows the two time offsets to be created in
parallel. Reconfigurable logic (Fawcett 1994) boosts the
execution speed of event generation by avoiding much of the
communications overhead required by parallel processors
Systolic communications, which facilitates a dataflow
(Hennessy and Patterson 1990) model of computation,
also accelerates the mechanism by avoiding the need to
fetch instructions and operands from memory. Systolic
communications provide the ability to transfer long streams
of intermediate data between processes at high throughput
rates with low latency (Hord 1993). The systolic array
depicted in Figure 2, pumps data from one processing
block to the next in regular time intervals, until the
data circulates to the Event Queue. Reconfigurable logic
implements adders, multipliers, and a natural logarithm,
ln(), functional unit. These functional units are processing
elements within the systolic array.

Output from the event generator is placed directly
into the arrival queue illustrated in Figure 3. The local
processing element design uses two queues for each server.
The arrival queue holds the sorted list of arrival events,
which arrive in-order from the Event Generator, and the
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queue can be implemented as a FIFO queue. Service
events, which are created from processing successful
arrival events, are stored in the service queue. Two
methods of maintaining the service queue are discussed
in Section 3. The sorter array mechanism is the most
appropriate method for this application. In the processing
element of Figure 3, a comparator samples the heads of
both queues and indicates where the next minimum local
time-stamped event resides.

3 THE QUEUE MECHANISM

After events are created by the event generator, they are
stored in the arrival queue in order. The arrival queue
can be easily implemented as aFIFO queue. Successfully
executed arrival events create service events. However, the
service events are generated out of order. The smallest
timestamped events, be they service or arrival, must be
continually available to allow the events to be executed
in time order. Therefore, Section 3 develops a sorter
mechanism to order a list of service events. This section
presents two service queue alternatives. The first method
maintains a sorted queue and can select the nth element
in O(1), but requires O(4) steps to insert a new element.
The second method inserts new elements in O(1) and can
pop the smallest element off in O(1) but does not maintain
a sorted queue.

3.1 The Service Event Sorter

The first method, the Service Event Sorter, can sort events
in 4 cycles, significantly faster than standard software
sorts. This sorting mechanism maintains a sorted array
facilitating selection of the kth smallest element. The
hardware consists of the input register, a content register
array, a marked array, and a maxbit register. The input
value is compared against the content array values and
inserted in the correct position within the content array.
Auxiliary hardware registers and logic are used to quickly
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Figure 4: Service Event Sorter: Cycle 1

locate the correct insertion point for the new value. Longer
queues can be created by chains of smaller queues.

In the first cycle, illustrated in Figure 4, all words
in the content array are compared to the input register
value. If any word in the content array has the same most
significant bit (MSB) as the input register, the first bit of
the maxbit register is set. If any content array word has
the same top two MSB’s as the input register, then the
first two bits of the maxbit register are set. So if bit three
of the maxbit register is set, it indicates that at least one
word in the content array has the same top 3 MSB’s as
the input register. In the example depicted in Figures 4,
5, and 6, two words have the same top two MSB’s as the
input register value.

Theproposed algorithm worksas follows. Al l registers
in the content array are compared with the input register.
A network of nodes, called the match array, is used to
determine the number of most significant bits which each
content register has in common with the input data register.
A single register, the maxbit register, records the result.
For example, if one or more content array registers match
the data input register on all 3 of the 3 most significant
bits, then the first 3 bits of the maxbit register are set to
logic 1’s.

In the second of the four cycles, all words in the
content array matching the input register with themaximum
number of MSBs are marked by setting bits in a marked
array. The marked array consists of one bit per word of
the content array. Content array words which have the
maximum number of MSBs matching the input register
are marked as illustrated in Figure 5. These words will
cluster due to the binary nature of the search.
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Figure 5: Service Event Sorter: Cycle 2

During the third cycle, the required words in the
content array wil l be moved down to allow room for
the insertion of the input register contents. If the least
significant marked bit in the maxbit register is i, then
the i+1 bit of the input register is checked. When the
i+1 bit of the input register is a zero, all registers in the
content array from the marked register to the end of the
array are shifted down one register in a single clock cycle.
Otherwise, if the i+1 bit of the input array is aone, then all
registers below the marked registers are shifted down one
position creating a spot for the new word to be inserted
as shown in Figure 6. For the given example, the i+1 bit
of the input register is a zero, so all words including and
below the marked registers are shifted down. Finally, in
the fourth step, the input register value can be inserted
into the array in proper order.

3.2 The Linear Array

The second service queue mechanism consists of a linear
array approach which is described in (Leighton 1992)
and illustrated in Figure 7. However, instead of using
the linear array to sort the values, the array wil l simply
maintain fast access to the minimum timestamped event.
Al l new simulation events are passed into the leftmost array
element, the queue head, and when removed, the elements
are also popped off the queue head. Each element of the
queue contains two registers and a comparator. The larger
of the two resident elements may be passed to the right,
and the smaller of the two elements may be passed to the
left. Therefore the smallest entry is always at the leftmost
queue element. Comparators in each queue element and
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Figure 7: Linear Array Queue

the queue push/pop signal steer the 2x2 multiplexor logic
to route the correct entries in and out of the processing
element registers. Larger queue elements are passed to
the right and smaller elements are passed to the left.

The service queue is required to always have the
smallest element ready. The availability of the smallest
element can be reasoned as follows. Assume that at some
time, t, the queue contains N elements. Therefore, the
leftmost element, K, has examined asequence of N values,
retaining the smallest value. This value can be popped off
in 1 move. The element to K’s right, K-1, has examined
at least N-1 values, so the 2nd smallest value can be either
at element K, or at element K-1, but it must be in one of
those two places, and can be accessed in 2 moves since
the smallest element must be removed first.

The nth smallest element to enter the array is in any
position from K down to K − (n − 1). Then the next
smallest element to enter the queue wil l be in any position
from K down to K − ((n − 1) − 1), which provides our
inductive step for the n − 1 smallest element. So our nth

smallest element can always be retrieved in n steps. This
queue allows us to push and pop each element in O(1)
time. The queue is illustrated in Figures 8 and 9.

Figure 8 illustrates asequence of values being pushed
into the array. The top array illustrates the first time
step, with each successive array below depicting the same
array during the next clock cycle. Comparators on each
processing element and their associated multiplexors steer
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the values into each element of the array. Larger elements
are pushed to the right. When events are popped off the
queue, the analogous sequence of steps is illustrated in
Figure 9. Smaller elements are pushed to the left.

4 RESULTS AND CONCLUSIONS

Previous work (Bumble and Coraor 1997; 1998) demon-
strated a speedup of 225 for an event generation hardware
implementation of Figure2 over its softwareanalogue. The
implemented array calculates event arrivals and durations
based on the Exponential Distribution (Banks, Carson II,
and Nelson 1996; Walrand 1991). Other logic arrange-
ments could also be engendered, and the proposed system
would have a variety of distributions available to the user.

This research focuses primarily on the service queue.
The software version is implemented as a GNU LIBG++
XPPQ Priority Queue class. In the C++ software
simulation, thetimerequired for the insertion and extraction
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of events to and from the event queue increases as the
queuestraysfrom itsoptimum size. Theproposed hardware
queue speed, on the other hand, is not affected by its size,
and it provides a 102 speedup over the software model.

4.1 The Hardware Model

The hardware service queue we implemented was a five
element design closely resembling Figure 7. At this time,
there is no need for the fully ordered list of Figure 5.
The linear array queue was capable of pushing one 16-bit
value per 40 nanoseconds. The smallest queue value could
also be popped out at that rate. It is assumed that each
simulator cycle would need to push one event and pop
one event from the service queue. Therefore, our queue
achieves the system 80ns cycle time. Queue data values
would also require pointers to the event data so that pairs
of values would need to be pushed and popped off the
queue. Conversely, when new elements are pushed into a
software data structure, the existing software elements must
be fetched from memory to allow the CPU to compare the
stored elements to the new arrival, so that the insertion
point can be determined, or an address must be calculated
to determine a proper bin on which to chain the new
entry for hashing. Software methods require more time
and variable amounts of it.

Using Altera’sMax+Plus II R© FPGA simulation pack-
age, the Event Generator and the Service Queue have been
simulated as individual parts running with a clock rate of
80ns. The service queue was simulated at a rate of 40ns,
allowing it to push an event during the first half cycle and
pop an event during the next. A 5 processing element
queue was implemented on one Altera EPF10K20TC144-3
chip utilizing 90% of the chip’s resources. The Event gen-
erator is synthesized as a combination of five chips. Four
logarithm units are required, two producing their results on
the even clock cycles and the other two producing results
on the odd clock cycles. The Create Arrival Time Offset
and the Create Service Time Offset blocks of Figure 2
each require one odd and one even logarithm unit. The
system FPGA components are listed in Table 1.

One interesting facet gleamed from the FPGA research
is that FPGA implementation methods are very important
to minimizing their clock speeds. It is difficult for the
hardware compilers to fully optimize designs. For instance,
two methods of allowing a 16 bit D-flip/flop register to
hold its value can be compared. One method routes the
output back through an input multiplexor, so that the
output is re-inserted on the next clock strike. The second
method simply disables the register bits which then retain
their value. The first method requires 16 lines to be routed
efficiently within the FPGA. The second requires one
signal to be chained to each element of the register bits.
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Table 2: Event Generation

/ / intende d t o maintai n number of arriva l events
whil e (create_event_cn t <= num_events ) {

create_event_cnt++;
arrival_tim e = cloc k + rnd1();
service_tim e = rnd2();
Event_Clas s *tes t = new Event_Class(arrival_time,

service_time);
queue->enq(*test);

};
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The second method was much more efficient producing
better timing results.

4.2 The Software Model

The software simulation model we used for comparison
was written in C++ and is illustrated in Tables 2 and 3.
Some additional processing is performed when the event
data structure is allocated. The arrival and service queues
are maintained as a single heap data structure, unlike the
proposed dual queue hardware mechanism illustrated in
Figure 3. To gather accurate timing results, the number
of events in the event queue was kept constant. The extra
time used to generate additional arrival events in order to
maintain the queue size is not included in the speedup
plot of Figure 10. The software model used to obtain the
timing values is provided in Tables 2 and 3.

Figure 10 illustrates the speedup expected for other
distributions if the 80ns clock is maintained in their
hardware implementations. The hardware distribution
implemented provides the speedup illustrated for the
NegativeExpntl curve in Figure 10. Excessive amounts
of speedup were derived for queue sizes of 1 element
probably due to the C++ destructor de-allocating the queue
as its size drops below one. The speedup shown must also
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Table 1: FPGA Chip Implementation

Function Quantity Chip Type Chip Percent Utilized
Event Generator
Logarithm Unit 4 EPF10K40RC208-3 95%

Event Logic 1 EPF10K30RC240-3 71%
Service Queue
Linear Array 1 EPF10K20TC144-3 90%
Table 3: Event Execution Loop Code

whil e (event s <= num_events ) {
events++;
Event_Clas s even t = queue->deq() ; / / include d in

/ / speedu p test
/ / too k even t off , so put i t bac k t o maintai n num
/ / arriva l events
arrival_tim e = cloc k + rnd1();
service_tim e = rnd2();
Event_Clas s *arri v = new Event_Class(arrival_time,

service_time);
queue->enq(*arriv);  / / not include d i n speedu p test
i f (event.getArrival( ) == true ) {

i f ((event.res.get_a( ) <= a_resource_counter ) &&
(event.res.get_b( ) <= b_resource_counter) ) {

a_resource_counte r - = event.res.get_a();
b_resource_counte r - = event.res.get_b();
event.SetNextArrivalTime();
/ / pus h servic e event
queue->enq(event) ; / / include d i n speedu p test

} els e {
i f (event.res.get_a( ) >= a_resource_counter ) {

block_a++;
}
i f (event.res.get_b( ) >= b_resource_counter ) {

block_b++;
}
i f (double_or_more_im p > 1)

total_saves++;
double_or_more_imp++;

}
} els e {

double_or_more_im p = 0;
a_resource_counte r += event.res.get_a();
b_resource_counte r += event.res.get_b();

}
};

be considered in light of the fact that the Sparc Ultra’s
were attached to a Network File System (NFS) and so
network communications delays within the building to the
file server must be considered. However, once the file is
initially fetched to the local machine, this delay ends. It
also needs to be noted that the proposed linear array queue
need not be implemented as reconfigurable logic. The
queue could be implemented as an Application Specific
Integrated Chip (ASIC), and would probably be able to
function at an even faster clock rate with many more queue
elements. The code execution times were clocked on a
Sun Microsystems Ultra 1 Sparcstation running Solaris 5.6.
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The code was compiled using the GNU G++ compiler,
version 2.7.2.

Future work wil l investigate joining individual pro-
cessing elements into a simulation network. This course
wil l directly effect the arrival queue which wil l need to
handle unsequenced arrival events. Synchronizing a net-
work of different local processing element clocks to follow
a global simulation clock wil l also be challenging.
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