
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

ARCHITECTUR E FOR A NON-DETERMINISTI C SIMUL ATIO N MACHINE

Marc Bumble
Lee Coraor

Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16801, U.S.A.
ABSTRACT

Causality constraints of random discrete simulation make
parallel and distributed processing difficult. Methods of
applying reconfigurable logic to implement and accelerate
simulation service event queues are presented which
process simulation events at a rate of one event per
80 nanoseconds. The event generator presented in our
previous work (Bumble and Coraor 1998) is also capable
of sustaining the 80ns clock rate, providing overall speedup
rates which depend on the software comparison scenario.
The software comparison cited in this work provides a 2
order of magnitudespeedup. Thespeedup factor varieswith
the size of the software event queue. Field Programmable
Gate Arrays (FPGAs) are used to implement and test the
service queue design.

1 INT RODUCTION

Using reconfigurable logic, this study explores a method of
accelerating random discrete simulation. Random discrete
simulation is inherently serial in nature due to its causality
(Nicol 1996) constraints. However, the benefits of faster
simulation execution make parallelism a very attractive
pursuit. Faster simulations could benefit traffic engineers
in accommodating emergency changes to metropolitan
traffic models. Analogous applications exist for simulating
aerospace traffic and telephone networks.

The basic random simulation model is illustrated in
Figure 1. The model applies to both time and event-
driven simulation. The simulator is divided into the
Event Generator, the Event Queue, the Scheduler, and
the Simulation Time Clock. The Event Generator creates
random events, according to a user selected statistical
distribution. Events and their attributes are placed in the
Event Queue. The Scheduler steps through the Event
Queue in chronological order according to the global
1599
Event Queue

Server

Scheduler
Simulation
Time Clock

Event
Generator

Random
Number
Generator

Queue

Figure 1: Simulator Model

Simulation Time Clock, attempting to allocate resources to
each event. If the resources are available, the event can
execute. If not, the event is blocked.

One of the goals of discrete simulation research is
to speedup simulations by processing events in parallel.
Causality constraints force each event to execute in the
simulation environment according to the results of the
event’spredecessor. An event which altersstateinformation
upon which thenext event depends, must beexecuted before
the dependent event. Simulations are characterized as
being either conservative or optimistic. The conservative
approach prohibits simulations from executing the next
event until all events with earlier time-stamps have been
executed. Optimistic simulators allow events to execute
out of order, but maintain enough state information so
that the simulation can return (rollback) to an earlier
checkpoint. In optimistic simulation, straggler events with
earlier timestamps create causality errors forcing rollbacks.
The simulation must then undo the effects of any incorrect
computations (Nicol 1996) resetting the simulation state
variables and time clock to their checkpointed values.

Bumble and Coraor
The simulator presented in this study is a conservative
simulator.

1.1 Methodology

Simulation speedup is accomplished via two independent
enhancements. The first accelerates random event gener-
ation. The second facilitates faster handling of service
events generated by scheduled arrival events.

The first enhancement accomplishes event generation
speedup by translating some simulation loop software into
parallel, systolic, and reconfigurable logic. Reconfigurable
logic permits various statistical distribution models to be
compiled from software into hardware implementations.
Existing hardware may be reused instead of requiring a
variety of Application Specific Integrated Chips (ASICs).
Reconfigurable logic is required by this approach, as
it is impossible to anticipate every statistical model
which a user might desire. The reconfigurable logic
can further accommodate user preferences by allowing the
implementation of table generated statistical distributions.

Typical simulations contain data dependency between
contiguous event arrivals and between event arrivals and
their service durations. Each arrival is calculated as a
random offset from the previous arrival time. Event
service durations are calculated as random offsets from
that event’s arrival time. Because the random arrival and
service offsets are not themselves dependent on anything,
event generation can be accelerated. Data dependency
among events arises when the random offsets are added
to the previous event’s arrival time.

The Event Generator computes event arrival times,
service times, and resource requirements with some partial
parallelism. By carefully maintaining the flow of data
through hardware which calculates the sub-portions of
each event, the proposed design alleviates some of the
data dependency constraints. The resulting event objects
are stored in the Event Queue which is accessible to the
scheduling software.

The second simulation enhancement employs a split
event queue. The queue stores the events in two separate
queues, the arrival and service queues. The split queues
are implemented as hardware, with the service queue able
to select its minimum timestamp. A further enhancement
allows the arrival queue to eliminate impotent events. An
arrival event is considered to be impotent if the event
requires unavailable resources, and no service event will
occur in time to replenish the needed resources. The event
can be eliminated without scheduler intervention.

In the general simulation model, arrival events, which
are produced in time order by the event generator, are
added directly into the Event Queue. When these arrival
events are executed, they produce end of service events.
1600
Executed end of service events may release resources for
later reuse. For the hardware simulator model presented in
Section 4.1, it is assumed that before the simulation starts,
the user selects statistical distributions for generating event
arrival and service times. The simulation model is then
configured and downloaded into reconfigurable logic by
the host platform. The initial simulator configuration will
remain for the duration of the simulation.

Computer architecture has generally used a central
processing unit (CPU) as the focal point of its computation.
Data was moved from memory or peripherals to the CPU
where the computation was performed. Then the results
were written back to a peripheral or memory. Currently,
there is a trend to eliminate the central processing unit
and move much of the processing hardware into memory
and the peripherals (Gray 1998). With the current trend,
computation is performed within a peripheral and moved
to another point where additional computation may be
performed, but basically thecomputation isperformed at the
communication endpoints. At these endpoints, instructions
are fetched and decoded to perform work on the given
operands or data. Systolic Communications (Kung 1988),
on theother hand, allowstherequired processing to occur as
dataflowsfrom onelocation to thenext. Although proposed
some time ago, systolic communications is difficult to
implement, but with the advent of reconfigurable logic, this
approach is very attractive for discrete event simulation. In
systolic communications, the data flows through functional
units so that computation is performed as part of the data
transfer, giving rise to greater computational efficiencies.
The process requires a fair amount of data independence
and happens to work well with non-deterministic simulation
models.

2 RELATED WORK

Historically, deterministic logic simulation has been the
chief application for simulation accelerators. The first
accepted logic simulation machine was the Boeing Com-
puter Simulator (VanAusdal 1971). Both Abramovici
(Abramovici et. al 1983) and Barto (Barto and Szygenda
1985) developed special purpose parallel processing archi-
tectures for handling logic simulation. However, machine
development costs, limited applications, and the fast evo-
lution of technology have deterred hardware research for
parallel discrete simulation in the past. The development
of Field Programmable Gate Arrays (FPGAs) (Brown et al.
1992) (Fawcett 1994) has significantly reduced hardware
implementation costs. Standardized description languages,
such asVerilog and VHDL, facilitate the transfer of existing
designs to new evolutions of hardware allowing systems
to more easily keep pace with their quickly changing
underling technology.

Achitecture for a Non-Deterministic Simulation Machine

.

Create
Arrival

Time Offset

Pipeline Register

Add Offset
To Previous

Arrival Time

Create

Time Offset
Service

i

e

R
e
g

p

P
Pipeline Register

i

e

R
e
g

p

P

i

e

R
e
g

p

P

Pipeline Register

Set

Resources

Place Event

 in Queue

Add Offset
To Current

Arrival Time

Figure 2: The Event Generator Flow Diagram

Related studies of non-deterministic parallel event-
driven simulation include work by Beaumont (Beaumont
1994). Reconfigurable logic was used to produce a com-
munications ring which was capable of synthesizing ap-
plication specific operators and control or communications
circuits between parallel processing elements. Fujimoto
et al developed the Rollback Chip (Fujimoto et al. 1992)
which allows an optimistic simulator to quickly reset a
simulation’s state back to a previous checkpointed time.

2.1 The Event Generator

Event Generation, illustrated in Figure 2, is subdivided into
thecreation of arrival and servicetimes. Event generation is
accomplished by a two-dimensional reconfigurable systolic
array which allows the two time offsets to be created in
parallel. Reconfigurable logic (Fawcett 1994) boosts the
execution speed of event generation by avoiding much of the
communications overhead required by parallel processors
Systolic communications, which facilitates a dataflow
(Hennessy and Patterson 1990) model of computation,
also accelerates the mechanism by avoiding the need to
fetch instructions and operands from memory. Systolic
communications provide the ability to transfer long streams
of intermediate data between processes at high throughput
rates with low latency (Hord 1993). The systolic array
depicted in Figure 2, pumps data from one processing
block to the next in regular time intervals, until the
data circulates to the Event Queue. Reconfigurable logic
implements adders, multipliers, and a natural logarithm,
ln(), functional unit. These functional units are processing
elements within the systolic array.

Output from the event generator is placed directly
into the arrival queue illustrated in Figure 3. The local
processing element design uses two queues for each server.
The arrival queue holds the sorted list of arrival events,
which arrive in-order from the Event Generator, and the
1601
comparator

Service
Queue

Event

Generator

Arrival
Queue

Scheduler

Figure 3: The Local Processing Element Design

queue can be implemented as a FIFO queue. Service
events, which are created from processing successful
arrival events, are stored in the service queue. Two
methods of maintaining the service queue are discussed
in Section 3. The sorter array mechanism is the most
appropriate method for this application. In the processing
element of Figure 3, a comparator samples the heads of
both queues and indicates where the next minimum local
time-stamped event resides.

3 THE QUEUE MECHANISM

After events are created by the event generator, they are
stored in the arrival queue in order. The arrival queue
can be easily implemented as aFIFO queue. Successfully
executed arrival events create service events. However, the
service events are generated out of order. The smallest
timestamped events, be they service or arrival, must be
continually available to allow the events to be executed
in time order. Therefore, Section 3 develops a sorter
mechanism to order a list of service events. This section
presents two service queue alternatives. The first method
maintains a sorted queue and can select the nth element
in O(1), but requires O(4) steps to insert a new element.
The second method inserts new elements in O(1) and can
pop the smallest element off in O(1) but does not maintain
a sorted queue.

3.1 The Service Event Sorter

The first method, the Service Event Sorter, can sort events
in 4 cycles, significantly faster than standard software
sorts. This sorting mechanism maintains a sorted array
facilitating selection of the kth smallest element. The
hardware consists of the input register, a content register
array, a marked array, and a maxbit register. The input
value is compared against the content array values and
inserted in the correct position within the content array.
Auxiliary hardware registers and logic are used to quickly

Bumble and Coraor
1s
t B

it
M

at
ch

es
1s

t 2
 B

its
 M

at
ch

1s
t 3

 B
its

 M
at

ch
1s

t 4
 B

its
 M

at
ch

0001

0011

0110

0111

1001

1010
xxxx
xxxx

Content
Array

Match
Array

Match Mark Array

xx--

0101

xx--

1100

Input Register

Maxbit Register

Figure 4: Service Event Sorter: Cycle 1

locate the correct insertion point for the new value. Longer
queues can be created by chains of smaller queues.

In the first cycle, illustrated in Figure 4, all words
in the content array are compared to the input register
value. If any word in the content array has the same most
significant bit (MSB) as the input register, the first bit of
the maxbit register is set. If any content array word has
the same top two MSB’s as the input register, then the
first two bits of the maxbit register are set. So if bit three
of the maxbit register is set, it indicates that at least one
word in the content array has the same top 3 MSB’s as
the input register. In the example depicted in Figures 4,
5, and 6, two words have the same top two MSB’s as the
input register value.

Theproposed algorithm worksas follows. Al l registers
in the content array are compared with the input register.
A network of nodes, called the match array, is used to
determine the number of most significant bits which each
content register has in common with the input data register.
A single register, the maxbit register, records the result.
For example, if one or more content array registers match
the data input register on all 3 of the 3 most significant
bits, then the first 3 bits of the maxbit register are set to
logic 1’s.

In the second of the four cycles, all words in the
content array matching the input register with themaximum
number of MSBs are marked by setting bits in a marked
array. The marked array consists of one bit per word of
the content array. Content array words which have the
maximum number of MSBs matching the input register
are marked as illustrated in Figure 5. These words will
cluster due to the binary nature of the search.
1602
1s
t B

it
M

at
ch

es
1s

t 2
 B

its
 M

at
ch

1s
t 3

 B
its

 M
at

ch
1s

t 4
 B

its
 M

at
ch

0001

0011

0110

0111

1001

1010
xxxx
xxxx

Content
Array

Match
Array

Match Mark Array

xx--

0101

xx--

1100

1
1

Input Register

Maxbit Register

Figure 5: Service Event Sorter: Cycle 2

During the third cycle, the required words in the
content array wil l be moved down to allow room for
the insertion of the input register contents. If the least
significant marked bit in the maxbit register is i, then
the i+1 bit of the input register is checked. When the
i+1 bit of the input register is a zero, all registers in the
content array from the marked register to the end of the
array are shifted down one register in a single clock cycle.
Otherwise, if the i+1 bit of the input array is aone, then all
registers below the marked registers are shifted down one
position creating a spot for the new word to be inserted
as shown in Figure 6. For the given example, the i+1 bit
of the input register is a zero, so all words including and
below the marked registers are shifted down. Finally, in
the fourth step, the input register value can be inserted
into the array in proper order.

3.2 The Linear Array

The second service queue mechanism consists of a linear
array approach which is described in (Leighton 1992)
and illustrated in Figure 7. However, instead of using
the linear array to sort the values, the array wil l simply
maintain fast access to the minimum timestamped event.
Al l new simulation events are passed into the leftmost array
element, the queue head, and when removed, the elements
are also popped off the queue head. Each element of the
queue contains two registers and a comparator. The larger
of the two resident elements may be passed to the right,
and the smaller of the two elements may be passed to the
left. Therefore the smallest entry is always at the leftmost
queue element. Comparators in each queue element and

inistic Simulation Machine
Achitecture for a Non-Determ

1s
t B

it
M

at
ch

es
1s

t 2
 B

its
 M

at
ch

1s
t 3

 B
its

 M
at

ch
1s

t 4
 B

its
 M

at
ch

Match
Array

Match Mark Array

Content
Array

xx--

0101

xx--

1100

1
1

0001

0011

xxxx
1010
1001
0111
0110

Input Register

Maxbit Register

Figure 6: Service Event Sorter: Cycle 3

Mux Mux

Out

In Comparator Comparator

Register A Register A

Register BRegister B

Figure 7: Linear Array Queue

the queue push/pop signal steer the 2x2 multiplexor logic
to route the correct entries in and out of the processing
element registers. Larger queue elements are passed to
the right and smaller elements are passed to the left.

The service queue is required to always have the
smallest element ready. The availability of the smallest
element can be reasoned as follows. Assume that at some
time, t, the queue contains N elements. Therefore, the
leftmost element, K, has examined asequence of N values,
retaining the smallest value. This value can be popped off
in 1 move. The element to K’s right, K-1, has examined
at least N-1 values, so the 2nd smallest value can be either
at element K, or at element K-1, but it must be in one of
those two places, and can be accessed in 2 moves since
the smallest element must be removed first.

The nth smallest element to enter the array is in any
position from K down to K − (n − 1). Then the next
smallest element to enter the queue wil l be in any position
from K down to K − ((n − 1) − 1), which provides our
inductive step for the n − 1 smallest element. So our nth

smallest element can always be retrieved in n steps. This
queue allows us to push and pop each element in O(1)
time. The queue is illustrated in Figures 8 and 9.

Figure 8 illustrates asequence of values being pushed
into the array. The top array illustrates the first time
step, with each successive array below depicting the same
array during the next clock cycle. Comparators on each
processing element and their associated multiplexors steer
1603
8 2
1

4 6
53

7

1 3
4 6

57
28

8 2 7 3 1 5 6 4

4
6

4
5

6

8 2 7 3 1 5

8 2 7 3 1

4
1

6
5

8 2 7 3

Figure 8: Linear Sort Array Input Example

1 3
4 6

57
8 2

3
6

7
8
2

4 51

7
8 41 2 3 5

6

7
8

51 2 3 4
6

8 6
1 2 3 4 5 7

81 2 3 4 5 6 7

1 2 3 4 5 6 7 8

Figure 9: Linear Sort Array Output Example

the values into each element of the array. Larger elements
are pushed to the right. When events are popped off the
queue, the analogous sequence of steps is illustrated in
Figure 9. Smaller elements are pushed to the left.

4 RESULTS AND CONCLUSIONS

Previous work (Bumble and Coraor 1997; 1998) demon-
strated a speedup of 225 for an event generation hardware
implementation of Figure2 over its softwareanalogue. The
implemented array calculates event arrivals and durations
based on the Exponential Distribution (Banks, Carson II,
and Nelson 1996; Walrand 1991). Other logic arrange-
ments could also be engendered, and the proposed system
would have a variety of distributions available to the user.

This research focuses primarily on the service queue.
The software version is implemented as a GNU LIBG++
XPPQ Priority Queue class. In the C++ software
simulation, thetimerequired for the insertion and extraction

Bumble and Coraor
of events to and from the event queue increases as the
queuestraysfrom itsoptimum size. Theproposed hardware
queue speed, on the other hand, is not affected by its size,
and it provides a 102 speedup over the software model.

4.1 The Hardware Model

The hardware service queue we implemented was a five
element design closely resembling Figure 7. At this time,
there is no need for the fully ordered list of Figure 5.
The linear array queue was capable of pushing one 16-bit
value per 40 nanoseconds. The smallest queue value could
also be popped out at that rate. It is assumed that each
simulator cycle would need to push one event and pop
one event from the service queue. Therefore, our queue
achieves the system 80ns cycle time. Queue data values
would also require pointers to the event data so that pairs
of values would need to be pushed and popped off the
queue. Conversely, when new elements are pushed into a
software data structure, the existing software elements must
be fetched from memory to allow the CPU to compare the
stored elements to the new arrival, so that the insertion
point can be determined, or an address must be calculated
to determine a proper bin on which to chain the new
entry for hashing. Software methods require more time
and variable amounts of it.

Using Altera’sMax+Plus II R© FPGA simulation pack-
age, the Event Generator and the Service Queue have been
simulated as individual parts running with a clock rate of
80ns. The service queue was simulated at a rate of 40ns,
allowing it to push an event during the first half cycle and
pop an event during the next. A 5 processing element
queue was implemented on one Altera EPF10K20TC144-3
chip utilizing 90% of the chip’s resources. The Event gen-
erator is synthesized as a combination of five chips. Four
logarithm units are required, two producing their results on
the even clock cycles and the other two producing results
on the odd clock cycles. The Create Arrival Time Offset
and the Create Service Time Offset blocks of Figure 2
each require one odd and one even logarithm unit. The
system FPGA components are listed in Table 1.

One interesting facet gleamed from the FPGA research
is that FPGA implementation methods are very important
to minimizing their clock speeds. It is difficult for the
hardware compilers to fully optimize designs. For instance,
two methods of allowing a 16 bit D-flip/flop register to
hold its value can be compared. One method routes the
output back through an input multiplexor, so that the
output is re-inserted on the next clock strike. The second
method simply disables the register bits which then retain
their value. The first method requires 16 lines to be routed
efficiently within the FPGA. The second requires one
signal to be chained to each element of the register bits.
1604
Table 2: Event Generation

/ / intende d t o maintai n number of arriva l events
whil e (create_event_cn t <= num_events) {

create_event_cnt++;
arrival_tim e = cloc k + rnd1();
service_tim e = rnd2();
Event_Clas s *tes t = new Event_Class(arrival_time,

service_time);
queue->enq(*test);

};

0

100

200

300

400

500

600

700

800

1 2 3 4 5 10 50 100 500 1000
S

pe
ed

up
Number of Events in Arrival Queue

Number of Queue Arrival Events vs Speedup

Uniform
Normal

LogNormal
Wiebull

NegativeExpntl

Figure 10: Speedup vs for Event Generation, Arrival and
Service Queues

The second method was much more efficient producing
better timing results.

4.2 The Software Model

The software simulation model we used for comparison
was written in C++ and is illustrated in Tables 2 and 3.
Some additional processing is performed when the event
data structure is allocated. The arrival and service queues
are maintained as a single heap data structure, unlike the
proposed dual queue hardware mechanism illustrated in
Figure 3. To gather accurate timing results, the number
of events in the event queue was kept constant. The extra
time used to generate additional arrival events in order to
maintain the queue size is not included in the speedup
plot of Figure 10. The software model used to obtain the
timing values is provided in Tables 2 and 3.

Figure 10 illustrates the speedup expected for other
distributions if the 80ns clock is maintained in their
hardware implementations. The hardware distribution
implemented provides the speedup illustrated for the
NegativeExpntl curve in Figure 10. Excessive amounts
of speedup were derived for queue sizes of 1 element
probably due to the C++ destructor de-allocating the queue
as its size drops below one. The speedup shown must also

Achitecture for a Non-Deterministic Simulation Machine
Table 1: FPGA Chip Implementation

Function Quantity Chip Type Chip Percent Utilized
Event Generator
Logarithm Unit 4 EPF10K40RC208-3 95%

Event Logic 1 EPF10K30RC240-3 71%
Service Queue
Linear Array 1 EPF10K20TC144-3 90%
Table 3: Event Execution Loop Code

whil e (event s <= num_events) {
events++;
Event_Clas s even t = queue->deq() ; / / include d in

/ / speedu p test
/ / too k even t off , so put i t bac k t o maintai n num
/ / arriva l events
arrival_tim e = cloc k + rnd1();
service_tim e = rnd2();
Event_Clas s *arri v = new Event_Class(arrival_time,

service_time);
queue->enq(*arriv); / / not include d i n speedu p test
i f (event.getArrival() == true) {

i f ((event.res.get_a() <= a_resource_counter) &&
(event.res.get_b() <= b_resource_counter)) {

a_resource_counte r - = event.res.get_a();
b_resource_counte r - = event.res.get_b();
event.SetNextArrivalTime();
/ / pus h servic e event
queue->enq(event) ; / / include d i n speedu p test

} els e {
i f (event.res.get_a() >= a_resource_counter) {

block_a++;
}
i f (event.res.get_b() >= b_resource_counter) {

block_b++;
}
i f (double_or_more_im p > 1)

total_saves++;
double_or_more_imp++;

}
} els e {

double_or_more_im p = 0;
a_resource_counte r += event.res.get_a();
b_resource_counte r += event.res.get_b();

}
};

be considered in light of the fact that the Sparc Ultra’s
were attached to a Network File System (NFS) and so
network communications delays within the building to the
file server must be considered. However, once the file is
initially fetched to the local machine, this delay ends. It
also needs to be noted that the proposed linear array queue
need not be implemented as reconfigurable logic. The
queue could be implemented as an Application Specific
Integrated Chip (ASIC), and would probably be able to
function at an even faster clock rate with many more queue
elements. The code execution times were clocked on a
Sun Microsystems Ultra 1 Sparcstation running Solaris 5.6.
1605
The code was compiled using the GNU G++ compiler,
version 2.7.2.

Future work wil l investigate joining individual pro-
cessing elements into a simulation network. This course
wil l directly effect the arrival queue which wil l need to
handle unsequenced arrival events. Synchronizing a net-
work of different local processing element clocks to follow
a global simulation clock wil l also be challenging.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Piotr Berman of Penn
State University Department of Computer Science for his
assistance.

REFERENCES

Miron Abramovici, Ytzhak H. Levendel, and Premachan-
dran R. Menon. A logical simulation machine. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, CAD-2(2):82–94, April 1983.

Jerry Banks, John S. Carson II , and Barry L. Nelson.
Discrete-Event System Simulation. International Series
in Industrial and Systems Engineering. Prentice Hall,
Upper SaddleRiver, New Jersey 07458, second edition,
1996.

R. Barto and S. A. Szygenda. A computer architecture
for digital logic simulation. Electronic Engineering,
52(642):35–66, September 1985.

C. Beaumont, P. Boronat, and J. Champeau et al. Reconfig-
urable technology: An innovative solution for parallel
discrete event simulation support. In 8th Workshop
on Parallel and Distributed Simulation (PADS ’94).
Proceedings of the 1994 Workshop on Parallel and
Distributed Simulation, pages 160–163, Edinburgh,
UK, July 1994. IEEE, SCS, San Diego, CA, USA.

Stephen D. Brown, Robert Francis, Jonathan Rose, and
Zvonko Vranesic. Field-programmable gate arrays.
The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, 1992.

Bumble and Coraor
Marc Bumble and Lee Coraor. Introducing parallelism
to event-driven simulation. In Proceedings of the
IASTED International Conference–Applied Simulation
and Modelling, ASM ’97, Banff, Canada, July 27-
August 1, 1997. The International Association of
Science and Technology for Development, August
1997.

Marc Bumble and Lee Coraor. Implementing parallelism
in random discrete event-driven simulation. In Lecture
Notes in Computer Science 1388, Parallel and Dis-
tributed Processing, pages 418–427. IEEE Computer
Society, Springer, March 1998.

Bradly K. Fawcett. Taking advantage of reconfigurable
logic. Seventh Annual IEEE International ASIC
Conference and Exhibit, pages 227–230, Sept. 1994.

Richard M. Fujimoto. Parallel discrete event simulation.
In Communications of the ACM, volume 33 no. 10,
pages 30–53. ACM, October 1990.

Richard M. Fujimoto, Jya-Jang Tsai, and Ganesh C.
Gopalakrishman. Design and evaluation of the rollback
chip: Special purpose hardware for time warp. IEEE
Transactions on Computers, 41(1):68–82, January
1992.

Jim Gray. International parallel processing symposium
keynote address, April 1998.

John L. Hennessy and David A. Patterson. Computer Archi-
tecture A Quantitative Approach. Morgan Kaufmann
Publishers, Inc., first edition, 1990.

R. Micheal Hord. Parallel Supercomputing in MIMD
Architectures. CRC Press, Inc., Boca Raton, Florida,
1993.

H. T. Kung. Systolic communications. Internation Confer-
ence on Systolic Arrays, pages 695–703, May 1988.

F. Thomson Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes. Morgan
Kaufmann Publishers, San Mateo, CA, 1992.

David M. Nicol. Principles of conservative parallel
simulation. In J. M. Charnes, D. J. Morrice, D. T.
Brunner, and J. J. Swain, editors, Proceedings of the
1996 Winter Simulation Conference, pages 128–135,
1996.

A. W. VanAusdal. Use of the boeing computer simulator
for logic design confirmation and failure diagnostics
programs. Proceedings of the Advances in the Astro-
nautical Sciences 17th Annual Meeting, 29:573–594,
June 1971.

Jean Walrand. Communication Networks: A First Course.
Aksen Associates, Inc., 1991.
1606
AUTHOR BIOGRAPHIES

MAR C BUMBL E is a graduate student in the Computer
Science and Engineering department at the Pennsylvania
State University in University Park, PA. He received his
B.S. and M.S. degrees in electrical engineering from
the University of Pennsylvania in Philadelphia. His
current research investigates architectures for accelerating
non-deterministic simulation, including the application of
reconfigurable logic.

LEE CORAOR is an Associate Professor of Computer
Science and Engineering at the Pennsylvania State Uni-
versity in University Park, PA. He received his Ph.D. in
Electrical Engineering from the University of Iowa. Dr.
Coraor has worked on the design, implementation and
performance evaluation of decoupled architectures and is
currently investigating FPGA architectures and applica-
tions.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

