Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

COMMUNICATING STRUCTURES FOR MODELING LARGE-SCALE SYSTEMS

Vadim E. Kotov

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, California 94303, U.S.A.

ABSTRACT tem trafficconsisting of messages and data moving among
the system components (that may be complex systems

Communicating Structuress a system abstraction that themselves).

helps to model large-scale distributed systems, whose The modeling objectives are:

performance mostly depends on how well the data and))

messages traffic is organized. The whole variety of “traffic ® €valuation of system performance in terms of aver-

sensitive” communicating systems can be modeled using age latencies, throughput, utilization, sensitivity to

just a small number of basic primitives which are com- variation in the system and workload parameters;

mon for all such systems. The system components are

represented simply asodes Each node hamemorythat

may containitems Nets are sets oflinks that connect

the nodes. The items are generated at some nodes and There are three main assumptions on which the

move from node to node along links, with some delay. Communicating Structuresiethodology is based.

The item traffic models the message and data traffic in assumption 1 Traffic is the king. This means that

e identification of congestions, bottlenecks, non-fairness,
and unpremeditated behaviors.

systems. Using uniform, systematic composition of the performance of the large-scale distributed systems
basic primitives, Communicating Structures are able to ap- mostly depends on how well the system traffic is
proximate the properties and behavior of a broad spectrum organized. In system models we focus on the traffic
of large-scale communicating systemsCommunicating and those features that influence the traffic. For
Structures Library (CSL)s a core environment for the example, in information systems these features are:
simulation of large communicating systems. CSL has been

used to analyze the architecture of multiprocessor systems, e system topologies (including hierarchies) ;
global enterprise intranets, distributed mission-critical ap- e data and application partition;

plications, and the World-Wide Web. o)
e data and application placement;

e (queuing and scheduling;
e load balancing.

Large-scale distributed systems such as global enterprise in- Assumption 2 All systems are alikeThe whole variety

1 INTRODUCTION

tranets, distributed mission-critical applications, distributed of such “traffic sensitive” systems can be modeled
design/manufacturing systems, WWW, and e-commerce using just small number obasic system primitives
represent a challenge for system modeling and analysis, which are common for all these systems.
as their complexity is increasing, their solution space is Assuymption 3 Any system can be approximatedsing
huge, and customer requirements for Q0S are growing. systematic compositiorf the basic system primitives
Combining hardware, netware, software, middleware, and and abstraction/refinement we are able to approximate
applications into integrated systems results in the explosion the properties and behavior of a broad spectrum of
of feasible system architectures. large-scale systems.

To meet this challenge, we propose tiemmunicat-
ing Structuresmodeling methodology which views large This paper presents th€ommunicating Structures
distributed systems aommunicating systenis which the Library (CSL) a core object-oriented environment for the
main activities are related to the coordination of #yes- modeling and analysis of large communicating systems

1571

Kotov

based on th€ommunicating Structurerethodology. CSL 2 THE CSL STRUCTURE

P‘f‘. been uI?ed to analyzetarchltecttéresltg lmterconn(tact.l.here are several levels of the modeling primitives and
abrics, multiprocessor systems, and global corporate s in the CSL environment.

computing environments.) . The lowest, CSL BASE level, is formed by data
The system components are representedioramuni- structures, classes, and algorithms that allow us to com-

cating Structuresimply asnodes Each node hamemory o taply define, construct, and modify the components of
that may contairitems Netsare sets ofinks that connect Communicating Structures.

the nodes. The items are generated at some nodes and The second. CSL OBJECTS level contains the

move from node tf;_ node along I'”ES’ with sof;ne delaﬁ" basic components of Communicating Structures and the
Iltems may be modified by nodes. The item traffic models instruments to assemble them.

the data traffic in the system, which is represented as a The third level, CSL BASICS, provides means to build

communicating structure.. simulation or analytical models out of components of the
Items, nodes, memories, and nets may be elementary previous level.

or may have some aggregate structure. - _ The next level contains the generic CSL PARTS
The CSL objects may be assigned different attributes KT which serves to customize and refine Communicating
(numbers, variables, functions, and processes) which Structures to make them adequate for the specification

i o and evaluation of particular types of systems. It will also
o define quantitative parameters such as the number of gccymulates mathematical and statistics libraries.
subobjects in an object, time constraints, etc.; Finally, CSL DOMAIN LIBRARIES are built by
users and provide the means to make the construction and

e locate an object in the model hierarchy such as, the analysis of models in different domain-specific areas fast
object's name, its relative address in the hierarchy gnd reliable.

tree; The CSL GUI provides the graphical and visualization
. . means for the easy construction, running and analysis of
e change the behavior of objects; the CSL models, particularly during the prototyping and

debugging stages.
e provide an input data for objects and register their
behavior and for output and further analysis; 3 THE CSL BASE

3.1 C++/CSIM Constructs

A set of modified CSIM structures is introduced to generate

A model in CSL is a hierarchy of nodes with one top and coordinate concurrent processespracessis a C++
node that has no parent. Nodes are assigned processes thgirocedure that executesceeatestatement. This statement
are invoked to generate items, receive/send items from/to invokes a new thread that proceeds concurrently with the
other nodes, and to transform the items if necessary. process that invoked it.

In the case of simulation, CSL is accumulating generic The mechanisms to organize the interactions between
or parameterized CSL objects, functions, and processesthe processes ammailboxes facilities, and events
that may be quickly assembled into a particular simulation The CSL classMailbox is derived from the CSIM
model and tuned for a specific case study using input mailbox and all CSIM mailbox operations and functions
parameters. are valid in CSL. Mailboxes are used for interprocess

CSL is a system analysis package, not a universal communication. A process caenda message which is
modeling language with the emphasis on the precise just an integer or a pointer to a mailbox amneceivea
specification of systems’ structure or behavior. It also message from a mailbox. When a process does a receive
supports a programming, not a pictorial, style of modeling operation on an empty mailbox, it automatically waits until
(though it has graphical interface and visualization support a message is sent to this mailbox. The CSL Mailbox is
for the analysis of the modeling results). The CSL augmented by an additional operatisendwith_delaythat
hierarchy is based on C++ classes and CSL concurrency makes it possible to send a message to a mailbox with
uses the main structures of C++/CSIM, a process-oriented some time delay.
discrete-event simulation package (Schwetman 1995). CSL The semantics of the CSL claacility_ msis similar
is transparent in that sense that the user can use not onlyto that of CSIM facility_.ms but it is implemented via
the CSL constructs but also everything that is below them: Mailbox This was done in order to avoid the CSIM
C++/CSIM, C++, and plain C. More details on CSL can restrictions on theeleaseoperation. Facilityms models
be found in the HP Labs report (Kotov et al. 1998). a resource. It contains a single queue and several servers.

e provide data and functions for analytical modeling.

1572

Communicating Structures for Modeling Large-Scale Systems

Only one process at a time can hold a server after executing Nodes typically generate, receive, store, forward, and,
the reservestatement. If there is no available server, the perhaps, modify data abstractly presented as items. They
process waits in the queue until one of the servers is store and retrieve items in the node’'s memory. Nets connect

releasedand there is no process waiting in the facility
gueue ahead of this process.

the nodes into a communicating structure in which the
items travel from source nodes to destination nodes. These

Events are used to synchronize processes. An event iselements are derived from the common CSL cl@ggect

a state variable with two statesccurredandnot occurred

A CSL object may be simple or may have a

and two queues for waiting processes. One of these queueshierarchical structure and include subobjects (subnodes,

is for processes that have executed whst statement (and

subnets, submemories, subitems). A@bject has a

are in a waiting state) and another is for processes that Facility ms an attribute and autilize associated with it.

have executed thgueuestatement (and also are in the
waiting state). When the event occurs, by executing the
set statement, all waiting processes and only one of the

This makes the object a resource for which concurrent
processes may compete and provides “hooks” for supplying
input data to objects and collecting utilization statistics.

queued processes are allowed to proceed. The statement

clear resets the event to the not-occurred state.

3.2 Names, Parameters, Attributes, Trees

The clasCSLNameprovides a convenient way to construct
compound names which are useful for naming hierarchical
objects.

Such a compound name is, in fact, a “multistring”,
a string that consists of substrings delimited by a special
delimiter (the default is “."). Each substring represents a
name of a predecessor of the object in the hierarchy to
which it belongs. For example, a subobject of an object
may be given a “full name” which contain the name of
this object as a prefix and the subobject's name as its
“first name”.

To easily parameterize the CSL models, the classes
Parameter and Attribute are introduced. The external
parameter makes it possible to add to an input file a
named input string and then to convert it in a CSL
program into a value of a simple type (integer, double,
string), into a list of values, into a list of lists, etc.

The classAttribute provides the connection between

4.1 Item

An Item represents an entity that migrates in a communi-

cating system. The item has a unique (for its life cycle)

id. Each item carries with it a pointer to the sender-node

that is its birthplace and a destination path which defines
the item potential route leading to its destination (maybe

just to some intermediate destination.) Not all nodes that
the item will actually pass need to be listed in the path.

The routes between subsequent points of the path are
optional and subjects to some chosen routing algorithm.
The original destination path may be also modified on

the way or, after the item reaches its original destination

node, it may be assigned a new destination.

If an item has subitems, then these subitems may be
spawned into a set of items that are issued when the item
has reached its destination and is ready to disappear.

Each item may be assigned a spedi@mTag that
represents the item type and serves to distinguish between
different sorts of items. The clasgeem member functions
serve to modify items and to handle its time and space
attributes, for example, to mark time stamps, to change

structural attributes and external parameters through regular ine jtem destination, the item length, or to change its tag.

expression-matching between the structural name and the

external parameter. Eadhttribute has a name associated
with it. It may be, for example, the name of an object
or the name of another element related to the object.
Each Attribute also has a match, which is a pointer to a
Parameterthat is the most specific matching parameter.
The classesObserve and Utilize provide external
visibility for statistic and other computed values. Each

observe has a name and a value, which keep track of time-
valued observables. These are values such as utilization,

for which the average value over time, rather than just the
average of a number of observations, is critical.

4 THE CSL OBJECTS

The basic elements @ommunicating Structuremreitems
memory netsand nodes

1573

4.2 Memory

A CSL Memoryis an Object that storesltems In the
general case, the memory is a hierarchy of (sub)memories
with the ability to store items at different levels of the
hierarchy. The top memory of the hierarchy is contained
in a Node At the bottom of this hierarchy are “simple”
memories which are just arrayslotationsholding pointers

to stored items.

The classMemory has members (the memory size,
the current number of stored items, the number of items
waiting to be stored, the last-visited submemory or location)
which help to monitor and control the availability of items
and storage space in the memory. As a CGOhject
the memory can be a resource that allows us to prevent
noncontrolled nondeterministic concurrent access to it.

Kc

The functions use information about the last visite
submemory or location and about the predicate whi
defines criteria of the selection. Then it calculates a ne
position taking into account the previous access positi
and the predicate value. That gives the possibility to cre:
specific memory access patterns; for example, those u
in FIFO or Priority Queue.

startup

false

y N\

4.3 Net

The Netis an Objectthat makes connections between th @;
nodes. In the general case, the net inherits a multile’ —
hierarchy from the clas®bject The “top” net, that is, a
net with no father-net, is a part of théodedefinition for

which it provides communication links among the node

\

process

subnodes. At the bottom of this hierarchy drenks Figure 1. Startup Process
“elementary” nets, each of which connects just a pair
nodes. 5 THE CSL BASICS

Each link delivers items from &rom-nodeto a to-
nodewith delay which is a function of the linkandwidth The basic CSL objects form a conceptual CSL kernel that
and the transferred item length (or some other ite is augmented by classes that convert the kernel into a CSL
attributes). Being derived from the cla§bject the link model of specific type: simulation model, or queueing

is a resource with some number of servers that defir model, or (stochastic) Petri Net model, etc. These classes
the maximal number of transfers that may occur alongt are currently collected in the CSL BASICS sublibrary.
link simultaneously.
The net hierarchy may be treated as a hierarchy of
sets of links and their subsets. This makes possible the use5.1 Process
of structured nets to model at an abstract level switches
and interconnects, as the logic of switching is conveniently The classProcessintroduces main generic processes that

expressed in the set theory terms. Some examples of thisare associated with the CSL node in simulation.
approach will be presented in Section 6. The startup process makes the node active using the

generationprocess which initializes item traffic from the
node. It starts the main node procedure that generates the
default or user-defined processes to transfer items to and
The Nodeis the main building block of Communicating from the node and allocate them in the node’s memaory.
Structures. Any CSL model is the top-level node. The Figure 1 shows the structure of trstartup process.
hierarchy of aggregate node defines the static structure (In this and subsequent figures, a rectangle represents
(topology) of CSL models: an aggregated node is an a function (procedure), a rounded rectangle represents a
object that represents a hierarchical graph; its subnodes CSIM process, a rhombus is a condition, and a circle is
are its vertices and its directed arcs are the links connecting loop condition.)
its subnodes. Both the node and its subnodes may contain When a CSL model is initiated, each model's node
memory (the clasdlodecontainsMemoryas its member). with a special taggeneratorstarts itsgenerationprocess

The node’s internal links (if it is an aggregated node) This process is recursive: it may generate an item or it
are clustered into &let The membemnet contains all the may initiate another next-level generation process. Several
links that connect the node with its subnodes (both ways) levels of generation are useful when there is a hierarchy of
and the node’s subnodes among themselves. The net fully generated items: messages consisting of frames, sessions

4.4 Node

determines the node’s internal structure. consisting of messages, etc. The value of thegeggerator
The Nodés member functions construct the node specifies the number of the generation levels.
communication structure, identify specific groups of links, The virtual functiongenerationdefines the generation

find paths in the internal structure of the node, and modify procedure for each level of generation. It generates an
its structure. When given two subnodes of a node, one item (with the help of the virtual functionsnakeitem

of the member functions, namepath(Node *from, Node destinationand timing) and then stores the item in the
*to) , finds the shortest local path in the node’s internal node memory with the help of thetore function (see
structure connecting these two subnodes. Figure 2).

1574

Modeling

generation

make_item

generation_leve]

generation_process

stat_item

Figure 2: Generation . .
Figure 3: Main Node Process

5.2 Simulation Node its remaining path is empty, then the item travel in the

. . . . communicating structure is terminated and the statistics
The SimNoderepresents a simulation node. It combines (g|ated to the item is collected.

CSL Node and CSL Process As the classProcess Otherwise, théransformfunction starts. This function

is derived from Mailbox, any SimNodehas a mailbox may make some changes to the item. In particular, the
for communication between its processes. The node’s fynction may change the item destination or make clones of
processes generate and control item traffic and change this jtem for subsequent spawning into the communicating
and register the node’s behavior. Most of the basic node strycture. Thetransform function is almost always
member functions and processes are virtual and may be cystomized, as it actually defines the node’s functionality.
customized for specific purposes by the user. The default The default version ofransformis an “empty action”.
definitions of these functions provide “generic” item traffic After the transformation, the main process either
that is generated in one subset of nodes and destined forterminates or theransferfunction is initiated (see Figure 4).
another subset of nodes using the shortest path routing The function organizes the transfer of the item (or its
After the generated item is stored in the node’s sypitems) to other nodes. In the default definition, it
memory, the generation process sends a message to theynalyzes the item destination path and selects one of

node’s mailbox in order to activate the node’s main process, the possible transfer modes: monotransfer or multicast,
which waited for a message to arrive to the mailbox. This synchronous or asynchronous.

message contains a pointer to the address of the location
in which the item was stored.

The main process (see Figure 3) prescribes the node
functionality and behavior. Thenodemain function
executed in the process is virtual. It is defined as
a superposition of several virtual functions discussed
below. Hence, thenodemain function may be either
completely redefined in derived classes or it may be
partially customized in only some aspects by changing
the definitions of some of the constituent functions while
leaving others unchanged.

The nodemain function extracts some item from the
node’s memory. Which item to exract is defined either by
the type of the memory (queue, priority queue, etc.) or
by the user. The function analyzes the item’s destination
path. If the path is empty, the process completes its work
without actually doing anything. Otherwise, the head of
the path is studied. If it is the pointer to this node,
it is deleted from the path. If the item is simple and

Figure 4: Transfer

1575

Kotov

5.3 Queue Node and Queue Net DoubleBufferand DoubleFIFQ DoublePriorityQueueare
. . provided.
The current version of CSL allow us to construct simple Different interconnecting patterns are represented by

queueing networks (Tanner 1995). A CSL node and a CSL gpecific types of nets. For example, tBais net is a

net (nlore of}en, a link) can be presented as a “servicé communicating structure abstraction of real bus-type nets.

center” or a "queue node. : This abstraction captures the two basic properties of busses:
Such a queue node is modeled byQaeueModela (1 any input point is connected to any output point, and

class that constructs and executes a queueing model that IS2) only one item at a time may be transmitted. Other

associated with the with a CSL node or a link. The type examples are different types of loops, rings, crossbars and
of the model is defined by the arrival time distribution, other more sophisticated connections.

by the the service time distribution, and by the number of
servers.

The input data for the queueing model are an
interarrival rate and a mean service time. The model Some communicating structure patterns and templates may
returns the the average waiting time, the average time be specialized and frequently used in domain specific
spent in a queue node, the average number of items in models. An example of such a domain specific sublibrary
the node, the average number of waiting items, and their is the Systems of ServefSoS) Library.
standard deviations. The main objects of the SoS Library are:

The classQueueNetmakes it possible to describe a _

Jackson network of queues. In the default version of the ® Services

QueueNeteach CSL node and each CSL link is assigned .
a queueing model, which is introduced using the class
QueueModel e clusters of servers

Given the number of the network queue nodes and,
for each queue node, the arrival rate from outside the o proxies
network, the probability that an item goes from this node
to another given node, the service time, and the number of ¢
servers, theQueueNetreturns for each node: the average o gessions.
time spent in a queue node, the average number of items
in the node, the average number of waiting items, and Examples of the problems that can be addressed in
their standard deviations. the SoS models are:

6.2 Systems of Servers

servers

messages

e comparison of server network (virtual) topologies

6 THE CSL PARTS KIT, CSL DOMAINS AND e partition of services among servers in a cluster
VISUALIZATION
e partition of services among clusters

6.1 Parts Kit e load balancing

The parts kit contains sublibraries that accumulate those .
system templates (structures, classes, functions, and pro-
cesses) that are frequently used. These templates aree admission control.
generic, that is, they are used quite often for various type
of systems but are not basic CSL objects or functions.

For example, some specific types of memories that
are derived from the classlemory are introduced in the The huge analysis and design space of large-scale commu-
“Memories” part of the KIT. Such classes BH#O, Stack nicating systems requires a special instrumentation to deal
and PriorityQueueoften serve as “control memories” that with data collection, workload and test data generation,
help to implicitly control the traffic in communicating results collection and analysis, etc. Especially useful is
structures. In many cases it is convenient to have a node to visualize the model behavior, the modeling results,
memory with two submemories each of which hosts a part and provide visual support of the model debugging and
of the traffic going through the node. For example, one validation. Figure 5 shows a “hot spots” picture of a
submemory may take care of the ingoing traffic and another model with traffic flowing between nodes of a hierarchical
of the outgoing traffic. (In this way one can avoid deadlock network of processing centers in a distributed enterprise
situations.) To support such types of memory, the classes computing environment.

caching strategies

6.3 Visualization

1576

Communicating Structures for Modeling Large-Scale Systems

Figure 5. System Hot Spots

7 CONCLUSION

Communicating Structures Library reduces the complexity
of the modeling and analysis of large-scale systems, in
particular:

simplifies construction of models of different levels
of detail by using abstraction/refinement mechanisms;
describes parallel processes and their interaction in an

object-oriented way, speeding-up the model debugging
and increasing the trustworthiness of models;

speeds up the simulation of a large number of
concurrent processes;

and domain specific modules (“parts kit” and “do-
mains”);

configurations and behaviors;

provides friendly programming and modeling infras-
tructure (data generation, collection, analysis, visual-
ization, etc.).

The current version of CSL has been mostly used
for the simulation of concurrent and distributed systems,

accumulates and reuses prefabricated general-purpose

generates and analyses a larger number of the system

The most interesting extension of CSL is related to the
intelligent browsing of the huge solution spaces for large-
scale systems. The goal is not to miss good architectural
solutions. This is a sort of system synthesis that relies on
combining simulation, analytical and formal methods.

ACKNOWLEDGEMENTS

Lucy Cherkasova and Tom Rokicki helped to shape the
basic concepts of Communicating Structures. Tom helped
to implement CSL by contributing his elegant code to
the CSL BASE. Lucy was the first user of the first
version of CSL and the feedback from her modeling
efforts drove the CSL progress at its most critical initial
stage. Naftali Schwartz and Tao Zhao, interns from the
New York University, contributed to the implementation
of CSL structures and GUI.

The author would like also to thank Denny Georg
and Rajiv Gupta for sharing their ideas, encouraging
discussions, and for their overall support.

REFERENCES

Kotov,V.E., Rokicki,T.M., and Cherkasova,L.A. 1998. CSL:
Communicating Structures Library for Systems Model-
ing and Analysis. Hewlett-Packard Laboratories Report
HPL-98-118.

Schwetman, H. 1995. Object-oriented simulation modeling

with C++/CSIM17. InProceedings of the 1995 Winter

Simulation Conference Washington, D.C.. ed. C.

Alexopoulos, K. Kang, W. Lilegdon, D. Goldsman,

pp. 529 - 533, Washington, D.C.

Tanner, Mike. 1995. Practical Queueing Analysis. McGraw-
Hill.

AUTHOR BIOGRAPHY

VADIM E. KOTOV is a Project Leader in the Future

Systems Department at the Hewlett-Packard Laboratories in
Palo Alto. Previously he worked at the Russian Academy
of Sciences, heading several projects of concurrent and

because the analytical modeling methods were inapplicable distributed systems. He holds a M.Sc. from the Institute

to the systems under consideration. However, the analytical
methods, if they work for particular types of large-scale
systems, may complement simulations using the queueing

of Physics Engineering in Moscow in 1963, and his Ph.D.
from the USSR Academy of Sciences in 1971. His main
research interest is in the theory and practice of concurrent

analysis classes associated with the CSL nodes and aand distributed systems with the emphasis on large-scale

network of queues derived from the topology of a model.
In a similar way, Petri Nets Colored Petri Nets and

Stochastic Petri Netgan augment the CSL kernel using
nodes, memories, links and items to build transitions,

integrated systems. He is a correspondent member of
the Russian Academy of Sciences, a full member of the
Russian Academy of Natural Sciences, a member of the
IFIP’s Technical Committee on Foundations of Computer

places, arcs, and tokens, as well as using functions and Science, ACM, IEEE, and is at the editorial boards of
processes associated with the nodes to analyse and monitorT heoretical Computer ScienesdParallel and Distributed

the token traffic.

1577

Computing Practice

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

