
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

COMMUNICATING STRUCTURES FOR MODELING LARGE-SCALE SYSTEMS

Vadim E. Kotov

Hewlett-Packard Laboratories
1501 Page Mill Road

Palo Alto, California 94303, U.S.A.

t
os
nd
fic
in
-

ar

a
y.
in

he
ap
rum

ee
m
p-

e in
ed
rce
sis
is

ing
nd
io

e

g
s

,

s

e
f

s

ABSTRACT

Communicating Structuresis a system abstraction tha
helps to model large-scale distributed systems, wh
performance mostly depends on how well the data a
messages traffic is organized. The whole variety of “traf
sensitive” communicating systems can be modeled us
just a small number of basic primitives which are com
mon for all such systems. The system components
represented simply asnodes. Each node hasmemorythat
may contain items. Nets are sets oflinks that connect
the nodes. The items are generated at some nodes
move from node to node along links, with some dela
The item traffic models the message and data traffic
systems. Using uniform, systematic composition of t
basic primitives, Communicating Structures are able to
proximate the properties and behavior of a broad spect
of large-scale communicating systems.Communicating
Structures Library (CSL)is a core environment for the
simulation of large communicating systems. CSL has b
used to analyze the architecture of multiprocessor syste
global enterprise intranets, distributed mission-critical a
plications, and the World-Wide Web.

1 INTRODUCTION

Large-scale distributed systems such as global enterpris
tranets, distributed mission-critical applications, distribut
design/manufacturing systems, WWW, and e-comme
represent a challenge for system modeling and analy
as their complexity is increasing, their solution space
huge, and customer requirements for QoS are grow
Combining hardware, netware, software, middleware, a
applications into integrated systems results in the explos
of feasible system architectures.

To meet this challenge, we propose theCommunicat-
ing Structuresmodeling methodology which views larg
distributed systems ascommunicating systemsin which the
main activities are related to the coordination of thesys-
1571
e

g

e

nd

-

n
s,

-

,

.

n

tem trafficconsisting of messages and data moving amon
the system components (that may be complex system
themselves).

The modeling objectives are:

• evaluation of system performance in terms of aver-
age latencies, throughput, utilization, sensitivity to
variation in the system and workload parameters;

• identification of congestions, bottlenecks, non-fairness
and unpremeditated behaviors.

There are three main assumptions on which the
Communicating Structuresmethodology is based.

Assumption 1 Traffic is the king. This means that
performance of the large-scale distributed system
mostly depends on how well the system traffic is
organized. In system models we focus on the traffic
and those features that influence the traffic. For
example, in information systems these features are:

• system topologies (including hierarchies) ;

• data and application partition;

• data and application placement;

• queuing and scheduling;

• load balancing.

Assumption 2 All systems are alike.The whole variety
of such “traffic sensitive” systems can be modeled
using just small number ofbasic system primitives
which are common for all these systems.

Assumption 3 Any system can be approximated.Using
systematic compositionof the basic system primitives
and abstraction/refinement we are able to approximat
the properties and behavior of a broad spectrum o
large-scale systems.

This paper presents theCommunicating Structures
Library (CSL), a core object-oriented environment for the
modeling and analysis of large communicating system



Kotov

nec
ate

an
ay.
els
s a

tar

tes

r o

the
hy

eir

.

p
s th
/to

ric
se

ion
put

rsa
ise

lso
ing
ort
L
nc
ted
SL

on
m:
n

nd

a
m-
of

e
the

ld
e

S
ng
ion
o

and
st

n
of

d

te

t
the

en

s
ss

eive
til
is

ith

ers.
based on theCommunicating Structuresmethodology. CSL
has been used to analyze architectures of intercon
fabrics, multiprocessor systems, and global corpor
computing environments.

The system components are represented in aCommuni-
cating Structuresimply asnodes. Each node hasmemory
that may containitems. Netsare sets oflinks that connect
the nodes. The items are generated at some nodes
move from node to node along links, with some del
Items may be modified by nodes. The item traffic mod
the data traffic in the system, which is represented a
communicating structure.

Items, nodes, memories, and nets may be elemen
or may have some aggregate structure.

The CSL objects may be assigned different attribu
(numbers, variables, functions, and processes) which

• define quantitative parameters such as the numbe
subobjects in an object, time constraints, etc.;

• locate an object in the model hierarchy such as,
object’s name, its relative address in the hierarc
tree;

• change the behavior of objects;

• provide an input data for objects and register th
behavior and for output and further analysis;

• provide data and functions for analytical modeling

A model in CSL is a hierarchy of nodes with one to
node that has no parent. Nodes are assigned processe
are invoked to generate items, receive/send items from
other nodes, and to transform the items if necessary.

In the case of simulation, CSL is accumulating gene
or parameterized CSL objects, functions, and proces
that may be quickly assembled into a particular simulat
model and tuned for a specific case study using in
parameters.

CSL is a system analysis package, not a unive
modeling language with the emphasis on the prec
specification of systems’ structure or behavior. It a
supports a programming, not a pictorial, style of model
(though it has graphical interface and visualization supp
for the analysis of the modeling results). The CS
hierarchy is based on C++ classes and CSL concurre
uses the main structures of C++/CSIM, a process-orien
discrete-event simulation package (Schwetman 1995). C
is transparent in that sense that the user can use not
the CSL constructs but also everything that is below the
C++/CSIM, C++, and plain C. More details on CSL ca
be found in the HP Labs report (Kotov et al. 1998).
1572
t

d

y

f

at

s

l

y

ly

2 THE CSL STRUCTURE

There are several levels of the modeling primitives a
constructs in the CSL environment.

The lowest, CSL BASE level, is formed by dat
structures, classes, and algorithms that allow us to co
fortably define, construct, and modify the components
Communicating Structures.

The second, CSL OBJECTS level, contains th
basic components of Communicating Structures and
instruments to assemble them.

The third level, CSL BASICS, provides means to bui
simulation or analytical models out of components of th
previous level.

The next level contains the generic CSL PART
KIT which serves to customize and refine Communicati
Structures to make them adequate for the specificat
and evaluation of particular types of systems. It will als
accumulates mathematical and statistics libraries.

Finally, CSL DOMAIN LIBRARIES are built by
users and provide the means to make the construction
analysis of models in different domain-specific areas fa
and reliable.

The CSL GUI provides the graphical and visualizatio
means for the easy construction, running and analysis
the CSL models, particularly during the prototyping an
debugging stages.

3 THE CSL BASE

3.1 C++/CSIM Constructs

A set of modified CSIM structures is introduced to genera
and coordinate concurrent processes. Aprocessis a C++
procedure that executes acreatestatement. This statemen
invokes a new thread that proceeds concurrently with
process that invoked it.

The mechanisms to organize the interactions betwe
the processes aremailboxes, facilities, and events.

The CSL classMailbox is derived from the CSIM
mailbox, and all CSIM mailbox operations and function
are valid in CSL. Mailboxes are used for interproce
communication. A process cansenda message which is
just an integer or a pointer to a mailbox andreceive a
message from a mailbox. When a process does a rec
operation on an empty mailbox, it automatically waits un
a message is sent to this mailbox. The CSL Mailbox
augmented by an additional operationsendwith delay that
makes it possible to send a message to a mailbox w
some time delay.

The semantics of the CSL classFacility ms is similar
to that of CSIM facility ms, but it is implemented via
Mailbox. This was done in order to avoid the CSIM
restrictions on thereleaseoperation. Facilityms models
a resource. It contains a single queue and several serv



Communicating Structures for Modeling Large-Scale Systems

ing
e
is

y

t is

ue

hat

he
he
en

t
al

,
ial
a
to
ct
f
its

es
l
a

L
e,

la
the

t
ct.
a

h
e

ion
he

,
ey
ct

se

s,

t
g

-
)
e
s
e
t
.
re
.

n

e
m

en

e
e
.

es

d

s
)

nt
Only one process at a time can hold a server after execut
the reservestatement. If there is no available server, th
process waits in the queue until one of the servers
releasedand there is no process waiting in the facilit
queue ahead of this process.

Events are used to synchronize processes. An even
a state variable with two states,occurredandnot occurred,
and two queues for waiting processes. One of these que
is for processes that have executed thewait statement (and
are in a waiting state) and another is for processes t
have executed thequeuestatement (and also are in the
waiting state). When the event occurs, by executing t
set statement, all waiting processes and only one of t
queued processes are allowed to proceed. The statem
clear resets the event to the not-occurred state.

3.2 Names, Parameters, Attributes, Trees

The classCSLNameprovides a convenient way to construc
compound names which are useful for naming hierarchic
objects.

Such a compound name is, in fact, a “multistring”
a string that consists of substrings delimited by a spec
delimiter (the default is “.”). Each substring represents
name of a predecessor of the object in the hierarchy
which it belongs. For example, a subobject of an obje
may be given a “full name” which contain the name o
this object as a prefix and the subobject’s name as
“first name”.

To easily parameterize the CSL models, the class
Parameter and Attribute are introduced. The externa
parameter makes it possible to add to an input file
named input string and then to convert it in a CS
program into a value of a simple type (integer, doubl
string), into a list of values, into a list of lists, etc.

The classAttribute provides the connection between
structural attributes and external parameters through regu
expression-matching between the structural name and
external parameter. EachAttribute has a name associated
with it. It may be, for example, the name of an objec
or the name of another element related to the obje
Each Attribute also has a match, which is a pointer to
Parameterthat is the most specific matching parameter.

The classesObserve and Utilize provide external
visibility for statistic and other computed values. Eac
observe has a name and a value, which keep track of tim
valued observables. These are values such as utilizat
for which the average value over time, rather than just t
average of a number of observations, is critical.

4 THE CSL OBJECTS

The basic elements ofCommunicating Structuresareitems,
memory, netsand nodes.
1573
s

t

r

-
,

Nodes typically generate, receive, store, forward, and
perhaps, modify data abstractly presented as items. Th
store and retrieve items in the node’s memory. Nets conne
the nodes into a communicating structure in which the
items travel from source nodes to destination nodes. The
elements are derived from the common CSL classObject.

A CSL object may be simple or may have a
hierarchical structure and include subobjects (subnode
subnets, submemories, subitems). AnyObject has a
Facility ms, an attribute and autilize associated with it.
This makes the object a resource for which concurren
processes may compete and provides “hooks” for supplyin
input data to objects and collecting utilization statistics.

4.1 Item

An Item represents an entity that migrates in a communi
cating system. The item has a unique (for its life cycle
id. Each item carries with it a pointer to the sender-nod
that is its birthplace and a destination path which define
the item potential route leading to its destination (mayb
just to some intermediate destination.) Not all nodes tha
the item will actually pass need to be listed in the path
The routes between subsequent points of the path a
optional and subjects to some chosen routing algorithm
The original destination path may be also modified on
the way or, after the item reaches its original destinatio
node, it may be assigned a new destination.

If an item has subitems, then these subitems may b
spawned into a set of items that are issued when the ite
has reached its destination and is ready to disappear.

Each item may be assigned a specialItemTag that
represents the item type and serves to distinguish betwe
different sorts of items. The classItem member functions
serve to modify items and to handle its time and spac
attributes, for example, to mark time stamps, to chang
the item destination, the item length, or to change its tag

4.2 Memory

A CSL Memory is an Object that storesItems. In the
general case, the memory is a hierarchy of (sub)memori
with the ability to store items at different levels of the
hierarchy. The top memory of the hierarchy is containe
in a Node. At the bottom of this hierarchy are “simple”
memories which are just arrays oflocationsholding pointers
to stored items.

The classMemory has members (the memory size,
the current number of stored items, the number of item
waiting to be stored, the last-visited submemory or location
which help to monitor and control the availability of items
and storage space in the memory. As a CSLObject,
the memory can be a resource that allows us to preve
noncontrolled nondeterministic concurrent access to it.



Kotov

ed
ich
ew

tion
ate

used

he
vel

e’s

of

em

nes
the

of
use

hes
ntly

this

g
he
ture
an
des
ting

ntain
.
e)

ys)
fully

de
ks,
ify

one

nal

at
SL
g
es

at

e

the
nd
.

nts
s a
is

e

it
ral
of
ions

an
The functions use information about the last visit
submemory or location and about the predicate wh
defines criteria of the selection. Then it calculates a n
position taking into account the previous access posi
and the predicate value. That gives the possibility to cre
specific memory access patterns; for example, those
in FIFO or Priority Queue.

4.3 Net

The Net is an Object that makes connections between t
nodes. In the general case, the net inherits a multile
hierarchy from the classObject. The “top” net, that is, a
net with no father-net, is a part of theNodedefinition for
which it provides communication links among the nod
subnodes. At the bottom of this hierarchy areLinks,
“elementary” nets, each of which connects just a pair
nodes.

Each link delivers items from afrom-node to a to-
nodewith delay which is a function of the linkbandwidth
and the transferred item length (or some other it
attributes). Being derived from the classObject, the link
is a resource with some number of servers that defi
the maximal number of transfers that may occur along
link simultaneously.

The net hierarchy may be treated as a hierarchy
sets of links and their subsets. This makes possible the
of structured nets to model at an abstract level switc
and interconnects, as the logic of switching is convenie
expressed in the set theory terms. Some examples of
approach will be presented in Section 6.

4.4 Node

The Node is the main building block of Communicatin
Structures. Any CSL model is the top-level node. T
hierarchy of aggregate node defines the static struc
(topology) of CSL models: an aggregated node is
object that represents a hierarchical graph; its subno
are its vertices and its directed arcs are the links connec
its subnodes. Both the node and its subnodes may co
memory (the classNodecontainsMemoryas its member)

The node’s internal links (if it is an aggregated nod
are clustered into aNet. The membernet contains all the
links that connect the node with its subnodes (both wa
and the node’s subnodes among themselves. The net
determines the node’s internal structure.

The Node’s member functions construct the no
communication structure, identify specific groups of lin
find paths in the internal structure of the node, and mod
its structure. When given two subnodes of a node,
of the member functions, namelypath(Node *from, Node
*to) , finds the shortest local path in the node’s inter
structure connecting these two subnodes.
1574
startup

true
false

generator

 generation_process

generation

process

timing

run

Figure 1: Startup Process

5 THE CSL BASICS

The basic CSL objects form a conceptual CSL kernel th
is augmented by classes that convert the kernel into a C
model of specific type: simulation model, or queuein
model, or (stochastic) Petri Net model, etc. These class
are currently collected in the CSL BASICS sublibrary.

5.1 Process

The classProcessintroduces main generic processes th
are associated with the CSL node in simulation.

The startup process makes the node active using th
generationprocess, which initializes item traffic from the
node. It starts the main node procedure that generates
default or user-defined processes to transfer items to a
from the node and allocate them in the node’s memory

Figure 1 shows the structure of thestartup process.
(In this and subsequent figures, a rectangle represe
a function (procedure), a rounded rectangle represent
CSIM process, a rhombus is a condition, and a circle
loop condition.)

When a CSL model is initiated, each model’s nod
with a special taggeneratorstarts itsgenerationprocess.
This process is recursive: it may generate an item or
may initiate another next-level generation process. Seve
levels of generation are useful when there is a hierarchy
generated items: messages consisting of frames, sess
consisting of messages, etc. The value of the taggenerator
specifies the number of the generation levels.

The virtual functiongenerationdefines the generation
procedure for each level of generation. It generates
item (with the help of the virtual functionsmakeitem,
destinationand timing) and then stores the item in the
node memory with the help of thestore function (see
Figure 2).



for Modeling Large-Scale Systems

es

e’s
nge

ode
be

ault
c
for

g
e’s
o the
ss,

his
tion

ode

as
ed

be
ing
ile

e
by
or
ion
ork
of
e,
d

e
ics

the
of

ng

ty.

er

ts
it
of

st,
Communicating Structures

generation

generation_process

stat_item

generation_level

make_item

> 0= 0

Figure 2: Generation

5.2 Simulation Node

The SimNoderepresents a simulation node. It combin
CSL Node and CSL Process. As the classProcess
is derived from Mailbox, any SimNodehas a mailbox
for communication between its processes. The nod
processes generate and control item traffic and cha
and register the node’s behavior. Most of the basic n
member functions and processes are virtual and may
customized for specific purposes by the user. The def
definitions of these functions provide “generic” item traffi
that is generated in one subset of nodes and destined
another subset of nodes using the shortest path routin

After the generated item is stored in the nod
memory, the generation process sends a message t
node’s mailbox in order to activate the node’s main proce
which waited for a message to arrive to the mailbox. T
message contains a pointer to the address of the loca
in which the item was stored.

The main process (see Figure 3) prescribes the n
functionality and behavior. Thenodemain function
executed in the process is virtual. It is defined
a superposition of several virtual functions discuss
below. Hence, thenodemain function may be either
completely redefined in derived classes or it may
partially customized in only some aspects by chang
the definitions of some of the constituent functions wh
leaving others unchanged.

The nodemain function extracts some item from th
node’s memory. Which item to exract is defined either
the type of the memory (queue, priority queue, etc.)
by the user. The function analyzes the item’s destinat
path. If the path is empty, the process completes its w
without actually doing anything. Otherwise, the head
the path is studied. If it is the pointer to this nod
it is deleted from the path. If the item is simple an
1575
process

Mailbox

main_process

node_main

transform_condition

transfer_condition

begin_main

transform

transfer

end_main

true false

true false

Figure 3: Main Node Process

its remaining path is empty, then the item travel in th
communicating structure is terminated and the statist
related to the item is collected.

Otherwise, thetransformfunction starts. This function
may make some changes to the item. In particular,
function may change the item destination or make clones
this item for subsequent spawning into the communicati
structure. The transform function is almost always
customized, as it actually defines the node’s functionali
The default version oftransform is an “empty action”.

After the transformation, the main process eith
terminates or thetransferfunction is initiated (see Figure 4).
The function organizes the transfer of the item (or i
subitems) to other nodes. In the default definition,
analyzes the item destination path and selects one
the possible transfer modes: monotransfer or multica
synchronous or asynchronous.

process

Mailbox

main_process

node_main

transform_condition

transfer_condition

begin_main

transform

transfer

end_main

true false

true false

Figure 4: Transfer



otov

ple
S

vic

a
pe
n,
o

an
de
im
s
he

a
th
e

as

nd
th
de
r

ge
em
an

os
p

yp
.
ha

at
g
o
a
n

th
ck
s

y

s.
s:

r
d

ay
c
y

in

u-
al
,
s
,
d

l
e

K

5.3 Queue Node and Queue Net

The current version of CSL allow us to construct sim
queueing networks (Tanner 1995). A CSL node and a C
net (more often, a link) can be presented as a “ser
center” or a “queue node”.

Such a queue node is modeled by aQueueModel, a
class that constructs and executes a queueing model th
associated with the with a CSL node or a link. The ty
of the model is defined by the arrival time distributio
by the the service time distribution, and by the number
servers.

The input data for the queueing model are
interarrival rate and a mean service time. The mo
returns the the average waiting time, the average t
spent in a queue node, the average number of item
the node, the average number of waiting items, and t
standard deviations.

The classQueueNetmakes it possible to describe
Jackson network of queues. In the default version of
QueueNet, each CSL node and each CSL link is assign
a queueing model, which is introduced using the cl
QueueModel.

Given the number of the network queue nodes a
for each queue node, the arrival rate from outside
network, the probability that an item goes from this no
to another given node, the service time, and the numbe
servers, theQueueNetreturns for each node: the avera
time spent in a queue node, the average number of it
in the node, the average number of waiting items,
their standard deviations.

6 THE CSL PARTS KIT, CSL DOMAINS AND
VISUALIZATION

6.1 Parts Kit

The parts kit contains sublibraries that accumulate th
system templates (structures, classes, functions, and
cesses) that are frequently used. These templates
generic, that is, they are used quite often for various t
of systems but are not basic CSL objects or functions

For example, some specific types of memories t
are derived from the classMemory are introduced in the
“Memories” part of the KIT. Such classes asFIFO, Stack
and PriorityQueueoften serve as “control memories” th
help to implicitly control the traffic in communicatin
structures. In many cases it is convenient to have a n
memory with two submemories each of which hosts a p
of the traffic going through the node. For example, o
submemory may take care of the ingoing traffic and ano
of the outgoing traffic. (In this way one can avoid deadlo
situations.) To support such types of memory, the clas
157
L
e

t is

f

l
e
in
ir

e
d
s

,
e

of

s
d

e
ro-
are
e

t

de
rt
e
er

es

DoubleBufferand DoubleFIFO, DoublePriorityQueueare
provided.

Different interconnecting patterns are represented b
specific types of nets. For example, theBus net is a
communicating structure abstraction of real bus-type net
This abstraction captures the two basic properties of busse
(1) any input point is connected to any output point, and
(2) only one item at a time may be transmitted. Othe
examples are different types of loops, rings, crossbars an
other more sophisticated connections.

6.2 Systems of Servers

Some communicating structure patterns and templates m
be specialized and frequently used in domain specifi
models. An example of such a domain specific sublibrar
is the Systems of Servers(SoS) Library.

The main objects of the SoS Library are:

• services

• servers

• clusters of servers

• proxies

• messages

• sessions.

Examples of the problems that can be addressed
the SoS models are:

• comparison of server network (virtual) topologies

• partition of services among servers in a cluster

• partition of services among clusters

• load balancing

• caching strategies

• admission control.

6.3 Visualization

The huge analysis and design space of large-scale comm
nicating systems requires a special instrumentation to de
with data collection, workload and test data generation
results collection and analysis, etc. Especially useful i
to visualize the model behavior, the modeling results
and provide visual support of the model debugging an
validation. Figure 5 shows a “hot spots” picture of a
model with traffic flowing between nodes of a hierarchica
network of processing centers in a distributed enterpris
computing environment.
6



or Modeling Large-Scale Systems

ty
in

s;

an
ng

f

ose
-

tem

-
l-

d
s,
ble
cal
e
ing

a
l.

s,
nd
ito

e
-

ral
on

e
ed
o
t
g
l
e

g

:
l-
rt

g

-

in
y
nd
te
.

in
nt

ale
of
e

he
r
f

Communicating Structures f

Figure 5: System Hot Spots

7 CONCLUSION

Communicating Structures Library reduces the complexi
of the modeling and analysis of large-scale systems,
particular:

• simplifies construction of models of different levels
of detail by using abstraction/refinement mechanism

• describes parallel processes and their interaction in
object-oriented way, speeding-up the model debuggi
and increasing the trustworthiness of models;

• speeds up the simulation of a large number o
concurrent processes;

• accumulates and reuses prefabricated general-purp
and domain specific modules (“parts kit” and “do
mains”);

• generates and analyses a larger number of the sys
configurations and behaviors;

• provides friendly programming and modeling infras
tructure (data generation, collection, analysis, visua
ization, etc.).

The current version of CSL has been mostly use
for the simulation of concurrent and distributed system
because the analytical modeling methods were inapplica
to the systems under consideration. However, the analyti
methods, if they work for particular types of large-scal
systems, may complement simulations using the queue
analysis classes associated with the CSL nodes and
network of queues derived from the topology of a mode
In a similar way, Petri Nets, Colored Petri Nets, and
Stochastic Petri Netscan augment the CSL kernel using
nodes, memories, links and items to build transition
places, arcs, and tokens, as well as using functions a
processes associated with the nodes to analyse and mon
the token traffic.
1577
r

The most interesting extension of CSL is related to th
intelligent browsing of the huge solution spaces for large
scale systems. The goal is not to miss good architectu
solutions. This is a sort of system synthesis that relies
combining simulation, analytical and formal methods.

ACKNOWLEDGEMENTS

Lucy Cherkasova and Tom Rokicki helped to shape th
basic concepts of Communicating Structures. Tom help
to implement CSL by contributing his elegant code t
the CSL BASE. Lucy was the first user of the firs
version of CSL and the feedback from her modelin
efforts drove the CSL progress at its most critical initia
stage. Naftali Schwartz and Tao Zhao, interns from th
New York University, contributed to the implementation
of CSL structures and GUI.

The author would like also to thank Denny Georg
and Rajiv Gupta for sharing their ideas, encouragin
discussions, and for their overall support.

REFERENCES

Kotov,V.E., Rokicki,T.M., and Cherkasova,L.A. 1998. CSL
Communicating Structures Library for Systems Mode
ing and Analysis. Hewlett-Packard Laboratories Repo
HPL-98-118.

Schwetman, H. 1995. Object-oriented simulation modelin
with C++/CSIM17. InProceedings of the 1995 Winter
Simulation Conference, Washington, D.C.. ed. C.
Alexopoulos, K. Kang, W. Lilegdon, D. Goldsman,
pp. 529 - 533, Washington, D.C.

Tanner, Mike. 1995. Practical Queueing Analysis. McGraw
Hill.

AUTHOR BIOGRAPHY

VADIM E. KOTOV is a Project Leader in the Future
Systems Department at the Hewlett-Packard Laboratories
Palo Alto. Previously he worked at the Russian Academ
of Sciences, heading several projects of concurrent a
distributed systems. He holds a M.Sc. from the Institu
of Physics Engineering in Moscow in 1963, and his Ph.D
from the USSR Academy of Sciences in 1971. His ma
research interest is in the theory and practice of concurre
and distributed systems with the emphasis on large-sc
integrated systems. He is a correspondent member
the Russian Academy of Sciences, a full member of th
Russian Academy of Natural Sciences, a member of t
IFIP’s Technical Committee on Foundations of Compute
Science, ACM, IEEE, and is at the editorial boards o
Theoretical Computer ScienceandParallel and Distributed
Computing Practice.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search
	Search Results
	Print

