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ABSTRACT well? These issues, however, are not specific to the PDP:

they arise during any product/system design process. A
Robustness has become a popular issue in engineering. Fopossible approach to the reformulated PDRsks analysis
products, Taguchi suggests to adjust the design so thatdesigners do not know with certainty in which environment
product performance is insensitive to the effects of the product/system will be used. The purpose of risk
uncontrolled environmental variations. For systems (to be analysis is to derive an estimate of the output probability
distinguished from products), we propose to adjust the from a sample of scenarios. In fact, in simulation-based
design so that the risk of getting poor performance is design, two sources of uncertainty may coexist: (a) the
minimized. This risk is evaluated by simulating the system system uncertainfy also called intrinsic or aleatory
over a sample of environmental scenarios: this procedure uncertainty, is intrinsic to the simulation model (random
yields an estimate of the probability distribution of the number streams) and differentiates stochastic models from
outcome. We illustrate this risk/uncertainty approach to deterministic ones, and (b) analysts uncertainty, also called
robustness through the comparison of four pull production- subjective or epistemic uncertainty, is due to the limited
control systems, including Kanban and Conwip. We availability of data on the model inputs (parameters of
conclude that the traditional approach consisting of distributions, for instance). We consider both sources of
optimizing the design of a system for a specific uncertainty.

environment (base scenario) may be risky. This paper is organized as follows. First, we
summarize Taguchi’s approach to parameter selection for
1 INTRODUCTION product design and its application to system design.

Second, we propose a new approach based on risk
Taguchis principle of robust product design is simple: management. Third, we analyze some differences between
instead of trying to eliminate or reduce the causes of the two approaches. Fourth, we illustrate our approach by
product performance variability, adjust the design of the comparing four pull production-control systems, using
product so that it is insensitive to the effects of stochastic simulation models and risk analysis.
uncontrolled (noise) variation. However, this formulation
of the parameter design problem (PDP) seems to be biased2 PARAMETER DESIGN
Indeed, the terms ‘effects’ and ‘insensitivity’ refer to
sensitivity analysis and design of experiments. Thus, 2.1 Taguchi's Approach
formulating the PDP in these terms is already deciding for
a solution procedure. In this paper we use a more general Robust design consists of searching for a product
formulation: instead of trying to eliminate or reduce the design that guarantees low variations in the performance
causes for product performance variability, we adjust the level when the environment changes, instead of designing a
design of a product or process (system) so that it performsproduct that is optimal for a single specific environment
well in many environments. This formulation raises two (noise configuration). This quality-improvement approach,
managerial issues, namely what is good performance, andalso known as parameter design, has been stated and
in which environments should the product/system perform popularized by Taguchi (Taguchi and Phadke 1984;
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Taguchi 1986). Later, Mayer and Benjamin (1992) gives

the fOIIOWing SiX StepS for robust deSign: v- Tune performance to target
Perform a second ANOVA using the performance
Identify factors and specify targets measure(s) averaged over the n noise combinations, as
Distinguish between (a) design factors, which are response. lIdentify design factors with significant
independent variables of the model with values effects on performance measure(s), among factors that
(presumably) within the control of the designer, and have a negligible effect on S/N (identified in step iv).
(b) noise factors, which are not within the control of Adjust the former factors to improve performance.

the designer. Define performance measure(s) andvj- Perform confirmation runs

possible target valges. Taguch? proposes ro_bustness Does the model perform as predicted? If not,
measures called signal to noise (S/N) ratios that assumptions are not valid (for instance, ignoring factor
aggregate information on the average performance and interactions may be wrong). Go back to ii.

its variability (location and dispersion); see step iii.

Formulate the design of experiment (DOE): crossed 2.2 Literature Review

arrays

Design factors are varied according to an orthogonal The contribution of Taguchi to robust design is undeniable.
array (Taguchi 1959), callethner array. For each However, his choices for robust design implementation are
combination in this array, noise factors are not unanimously accepted. For instance, Nair (1992)
systematically varied according to another orthogonal reports on a thorough panel discussion that criticized the
array calledouter array Thus, if there aren andn use of S/N ratios and crossed arrays. Yet, there seems to be
factor combinations in the design and noise arrays consensus about the fundaments of robust design:
respectively, them x n runs have to be examined (see conducting experiments in order to study the effects of
Table 1). In the following, this DOE for robustness controllable factors on both the location and the dispersion

study is called a crossed array. of the response. Thus, Pignatiello and Ramberg (1987)
Execute the runs and compute the performance Propose to distinguish the strategic aspect (namely,
statistics Taguchi’s philosophy of robustness) and the tactical issues

Execute the m x n runs. Then, for each combination of (for instance, S/N ratios and DOE).

design factors compute the S/N ratios, which measure _Many tactical alternatives can be found in the
the effect of systematic noise variations on the literature. Table 2 shows that researchers sometimes prefer

performance of the product. Concretely, if the smaller using loss functions or studying the:= location and dispersion
Y the better, then SIN: -10 Iog(lanyijz). If the of the performance sgparately (instead of S/N ratios).
larger v the better then Moreover, crossed d§3|gns, guch as shpwn in Table 1, may
SIN = -10 log(1/ns 1/y;?). And, if the éloser Y to be replaced by combined designs, that is, a single array that
v o, does not distinguish noise factors from design factors.
target the better, then S/N10 log(y“ /<’). Taguchi originally proposed his technique for product
Find parameter settings that maximize S/N design. ILatgr, researchers have also aplpélied drobust deﬁign
. . . to simulated systems. For instance, Wild and Pignatiello
Perform an analysis of variance (ANOVA) using S/N . L
ratios as response. ldentify design factors with a (1991), Dooley and Mahmoodi (1992), Benjamin,

significant effect on S/N. Then, set these factors at Erraguntlg, and_Mayer (1995), and Sgnchezal. (1996)
levels that maximize S/N. propose simulation-based methodologies for the design of

robust jobshop manufacturing systems. Simulation allows

Table 1: Experimental Strategy for Robust Design: Crossed Arrays

Outer array

1 j n
- - N
D1 Dk - + Nl
1 - - SINy
Inner array i Vi SIN S/N ratios
m + - S/N,
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Table 2: Literature on Strategic Issues for Robustness Studies

Reference # Design/ Measure of robustness Design of Experiments
Noise factors
Sanchezt al. (1996) 5/2 quadratic loss function comparison:
- combined: 22 + two center points
- crossed: (2* + center points) x2
Mayer and Benjamin (1992) 4/2 close-to-target S/N crossetk 2
Lim et al. (1996) 4/6 smaller-the-better S/N farossed: b; X Lg
flowtime and larger-the- : 331°
better for throughput T2
Dooley et Mamoodi (1992) 2/4 signal-to-noise ratios 20k 2!
the performance mean and
dispersion.
Sanchezt al.(1993) 4/1 Y(x), log(S(x)) 2t x 2!, replicated four times
Moeeni, Sanchez, and 7/34 quadratic loss function "2 & noise factors oscillations,
Vakharia (1997) replicated four times

™ . frequency domain experiments

the use of larger samples than crossed and combinedfor uncertainty analyses (Morgan and Henrion 1990, p209).
arrays. Next, we discuss two recent examples of alternative Factor values change in a similar way as FDE:
experimental techniques.
X; = E[x] + vi sin(w.g), (2)
2.3 Experimental Alternatives to Taguchi
where v; is the half-spread of the variations; (varies
Moeeni, Sanchez, and Vakharia (1997) proposes anwithin [E[x] - v; E[x] + V), { w} is a set of frequencies so

original approach — based on simulation dfréquency
Domain ExperimentgFDE) — to design robust Kanban
systems. FDE consists of generating lewglsfor each
noise factorx, and for each noise configuratiprr 1...m,
according to a sinusoidal function:

Xj = Yoy + 1) + Y2 - I)cos(2tw.j), 1)
fori =1,...n and wherey, andl; are the upper and lower

bound of factorx respectively, g is the oscillation
frequency ofx. @ =Ti/m, whereT; is the driving integer

that factors are not correlated, agdis a parameter to
discretize the sinusoidal function and has equally space
values. So (1) and (2) are equivalent.

Kalagnanam and Diwelar (1997) propose an
optimization procedure for the design of robust systems
based on simulation and Monte Carlo methods, which they
apply to the design of a chemical tank reactor. They do not
consider system uncertainty: the simulation model is
deterministic. The robustness of the system is not studied
for a few extreme environments only, as in experimental
arrays, but for a large sample of environments. They

for x. Jacobson, Buss, and Schruben (1991) proposes arcompare four sampling techniques: Monte Carlo, Latin
algorithm for determining the driving integers so that main Hypercube, Median Latin Hypercube, and Hammersley
effects, quadratic effects, and two-factor interactions are points. We give a brief description of these techniques in
not confounded. Moeeni, Sanchez, and Vakharia (1997) section 3.
uses FDE to measure the robustness of a Kanban system In Moeeni, Sanchez, and Vakharia (1997) and
design. Kalagnanam and Diwelar (1997), the sampling techniques
FDE has originally been designed for sensitivity are used to measure the effect of noise factors on the
analysis (Schruben and Cogliano 1981): the effect of each performance. However, unlike experimental arrays, these
input factor can be measured by the contribution of its techniques also provide estimates of the output
characteristic frequency to the output. This contribution is distribution. Thus, it is possible to quantify the probability
determined through discrete Fourier analysis. Previous of the output. This is the core of uncertainty/risk analysis.
research also used sinusoidal functions to examine Next, we propose to reformulate the design parameter
sensitivity to inputs. The approach is known as the Fourier problem.
Amplitude Sensitivity Test (Cukieat al. 1973), and is used
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3 RISK ANALYSIS all decision-makers with monotone utility functions and
monotone, strictly concave utility functions respectively;

During the design process, the environment in which the see Wolfstetter (1996) and section 5.
product/system will be used is not known with certainty. Risk management is popular in finance and investment
Moreover, the environment may vary during the problems, and compulsory for the design of potentially
product/system lifetime (for instance, the demand rate for dangerous systems, such as nuclear and waste isolation
finished goods in a manufacturing plant may fluctuate). plants (Heltoret al. 1997), and certain industrial activities,
Designing a product/system for a specific environmental such as chemical industry (Palle 1994); also see Brehmer,
scenario does not guarantee good performance for otherEriksson, and Wulff (1994). However, to our knowledge, it
environments: there is a risk associated with the chosenhas not been used to design stochastic systems such as
design; another design may lead to a lower risk. Thus, we production-control systems. For such systems, we think
reformulate the parameter design problem as follows: that risk management is an attractive alternative to
adjust the design of the system so that the risk of getting Taguchi’s robust design.
poor performance is minimized. This approach can be
considered asisk managemenand uses risk/uncertainty 4 RISK ANALYSIS VERSUS ROBUST DESIGN
analysis techniques to quantify the risk.

By definition, risk involves an ‘exposure to a chance 4.1 Physical versus Simulation Experiments
of injury or loss’ (Morgan and Henrion 1990, p. 1). Thus,
quantifying risk requires determining the output Mayer and Benjamin (1992) points out the main
probability. Risk/uncertainty analysis consists of sampling differences between product design and system design. In
each unknown parameter (namely, noise factor according product design, robustness is achieved through prototypes
to Taguchi's terminology) from statistical distribution and physical experiments; goods are generally produced in
functions, combining the sampled values into scenarios large quantities. In system design, a robustness study has to
(factor combinations), and conducting a simulation be performed on models using simulation experiments.
experiment for each scenario. The outcome of this Moreover, only a small number of systems are to be
procedure is an estimated probability distribution of the implemented. Thus, for feasibility reasons (it may not be
performance measures. Among the many sampling easy to reproduce a specific environment) and cost reasons
technigues, Monte Carlo sampling is probably best known. (prototypes usually are expensive), product design can use
Basically, the principle is to select values at random from only small experiments, whereas system design is limited
the distribution per input. Other techniques try to yield only by time constraints (any type of environment can be
better samples than Monte Carlo sampling. Latin simulated, and the major experimental cost is time).
Hypercube sampling (Iman and Shortencarier 1984), for Originally, robust design addressed product design
instance, is stratified sampling that divides the range of problems: it is a method designed for physical
each input parameter into non-overlapping intervals of experimentation. Now, physical experimentation is rarely
equal probability; from each interval, one value is selected possible for systems. Risk/uncertainty analysis, however, is
at random according to the probability distribution in that designed for simulated experiments. Thus, the second
interval. A refined technique is Median Latin Hypercube approach seems better suited for system parameter design.
sampling, which selects systematically the middle value of
the intervals; thus, the sample of each input parameter4.2 Sampling
depends only on the sample size. Hammersley points are
designed using a procedure based on “low discrepancy” Most robustness studies consider at most three levels for
pseudo-random numbers; for details, we refer t0 each environmental parameter. Then, mathematical
Hammersley (1960) and Kalagnanam and Diwekar (1997). techniques are used to choose the combinations of

A choice between two systems can be made by parameter values to be simulated. Risk analysis, on the
comparing their performance probability distributions. other hand, uses a large sample size for each parameter.
Such a comparison is based on preference criteria, whichFor instance, Latin Hypercube Sampling (LHS) requires a
are often synthesized in a utility function, that is, a sample size of 100 at least. Moreover, DOE selects
mathematical expression that assigns values to all possibleextreme parameter value combinations, whereas risk
choices. In investment theory the utility function is the analysis samples values for each parameter over the whole
expression of preferences with respect to perceived risk domain. The probability distribution functions, from which
and expected return. The higher the values of the utility each parameter is sampled, are specified by the analyst,
function, the better. Preferences, however, are individual possibly with the support of experts.
perceptions: a preference may not be unanimous. First- and
second-order  stochastic dominance tests identify
probability distributions that are unanimously preferred by
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4.3 Dispersion versus Risk line randomly selects processing times from lognormal
distributions; times between failure and times to repair are
Robust design is based on the estimation of the exponentially distributed. The system is feeding an
performance’s location and dispersion over environmental assembly line, which is modeled as a deterministic demand
variations. Any deviation from the mean is penalized process. Thus, the demand interarrival time is constant, and
(quadratic loss function): dispersion does not differentiate any demand that cannot be satisfied from stock is lost. For
good and bad performance. We, however, are interestedthis system, those authors perform a search for the best
only in “bad” performance, that is, in performance below a configuration (that is, the number of authorizations

prespecified target. circulating along each information path) with the objective
of achieving a high service level (namely, 99.9%), while

5 COMPARISON OF PULL PRODUCTION- minimizing the inventory level. Gaury, Pierreval, and
CONTROL SYSTEMS (PPCSS) USING A RISK Kleijnen (1998) proposes a generalization of Hybrid
CRITERION systems based on evolutionary principles. They illustrate

the approach through the same model and the same

Next, we illustrate the risk approach through the Objective as in Bonvik, Couch, and Gershwin (1997). An
comparison of four pull production-control systems. We do optimization procedure based on an evolutionary algorithm
not intend to solve the design parameter problem, which is Yields a pull system that is significantly different from
an optimization problem, but simply show how risk Hybrid Kanban/Conwip. In the following, we call this new
analysis can be used to compare the performances ofsystemgeneric
production systems. We leave the optimization problem for Both Bonvik, Couch, and Gershwin (1997) and Gaury,
further research. Pierreval, and Kleijnen (1998) do not account for

In pull systems, the occurrence of finished goods robustness issues. Thus, we propose to compare the
delivery triggers production: a station cannot start fobustness of the best pull systems found in those two
production without an authorization, which conveys the Papers, but we use risk analysis. The uncertain parameters
information about a finished good delivery. Limiting the @are the various processing time averages and variances, the
number of authorizations sets an upper bound for the average times between failures and times to repair, and the
Work-In-Progress (WIP) level. For production lines, pull démand rate; altogether 17 parameters. Gdme scenario
systems can be specified by the way demand information 'S the set of values used for these parameters in Bonvik,
flows through the production system (Gstettner and Kuhn Couch, and Gershwirf1997). We choose to study the
1996). Kanban is a system in which information flows robustness to environmental variations within a range of
from a station to its immediate predecessor only (Monden 5% around the base scenario. LHS is used to generate a
1993). In a Conwip system, information is sent directly sample of 100 environmental scenarios. We assume that

from the finished goods inventory, to the first station; these scenarios are equally probable. Thus, each parameter
within the line, stations do not need authorizations to has a uniform distribution. For each scenario, we run a
produce (Spearman, Woodruff, and Wallace 1990). In a _slmulatlon cqrrespond|_ng to one month_of production, that
Hybrid Kanban/Conwip system, the information paths used iS 22 days with two shifts per day. All simulation runs use
in Kanban and Conwip are combined (Bonvik, Couch, and the same initial conditions. In Bonvik, Couch, and
Gershwin 1997): it is a Conwip system for which stations Gershwin(1997), the objective was to achieve a 99.9%
within the line need authorizations to produce. Figure 1 Service level, while minimizing the Work-In-Progress
shows models of these three pull systems using the samdWIP) level. We use the monthly WIP level and the
symbols as in Gstettner and Kuhn (1996). monthly proportion of shifts with a service level below
Bonvik, Couch, and Gershwin (1997) compares 99.9% as performance measures. A shift with a service
various pull systems for a four-stage production line
inspired by a Toyota factory. The simulation model of this

- -

Kanban Conwip Hybrid
: Finished good  ____ :
|:| Station A inventory » Information flow —» Product flow

Figure 1: Three Types of Pull Systems
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level below 99.9% is seen as a disaster (risk terminology): if and only if X >55p Y. Y is said to be “stochastically more
we want to minimize the probability of a disaster over the risky” thanX. The strictly concave condition on the utility

environmental sample.

function expresses the risk aversion of the agent.

Figures 2 and 3 show the cumulative probability of the We compute dominance tests for the monthly disaster
outcome in terms of monthly disaster proportion and WIP, proportions: Conwip second-order stochastically dominates
for the best configurations of Kanban, Conwip, Hybrid, all the other systems; Hybrid second-order stochastically
and generic found in Bonvik, Couch, and Gershwin (1997) dominates Kanban and Generic; it is not possible to choose
and Gaury, Pierreval, and Kleijnen (1998). The cumulative unanimously between Kanban and Generic.
probability functions of the monthly disaster proportions The monthly WIP distributions show large differences

show strong similarities.

The theory o$tochastic among PPCSs (Figure 3). Hybrid and Kanban lead to high

dominancgWolfstetter 1996) can be used to rank the four probabilities of low WIP levels, whereas Conwip and
PPCSs, as follows. L&t andY be two random variables. X ~ Generic lead to high probabilities of high WIP levels. So
first-order stochastically dominat&g(X >¢5p Y) if we can rank the four PPCSs — according to the WIP levels

averaged over the LHS scenarios — from best to worst: 1.

Pr{X>2 > Pr{Y>2, for all z. Hybrid, 2. Kanban, 3. Generic, and 4. Conwip.

In summary, Conwip is less risky than the three other

X is unanimously preferredto Y by all agents with systems in terms of service performance, but at the cost of
monotone increasing utility functions if and only if @& higher WIP level. Hybrid seems to be a good

X ZFDS Y.

X second-order stochastically domina¥eX >ssp V) if

compromise. It is interesting to note that when robustness
issues are not considered, the ranking of the four PPCSs is:
1. Generic, 2. Hybrid, 3. Conwip, and 4. Kanban. This

means that Generic is a system that is well adapted to the

J'k Pr{X > x}dsz’k PrY > y}dy, for allk. base scenario, but it looses its advantage over the other
a a

systems whenever the environment is uncertain. This
illustrates clearly the importance of considering robustness

X is unanimously preferredto Y by all agents with issues in systems design.
monotone increasing and strictly concave utility functions

100 —
90 f
80 —e— Conwip /
—=— Generic /
70 .
—o— Hybrid /
> 60 Kanban ]
3
S : :
B 40 -
30
20
10 1/
-
o T T T T T T T T T T T T T T T T T T T T T 1
0.00 0.09 0.18 0.27 0.36 0.45 0.55 0.64 0.73 0.82 0.91 1.00

Monthly proportion of shifts with a service below 99.9%

Figure 2: Cumulative Probability Functions of the Monthly Disaster Proportion for Four PPCSs
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100 & " ,
90 Conwip, Avg. WIP = 13.34 f /
80 -5 Generic, Avg. WIP = 11.61
—— Hybrid, Avg. WIP = 10.11
7071 -=Kanban, Avg. WIP = 10.31 P
> 60 o — i
5 / /
g ” )/0—0/ /E/
<)
& 40 / U’/
30 I
20 7 f _
. _M
O T T T T T T T T T T T T T T T T T T T T T T T T T T 1
45 55 65 75 85 95 105 115 125 135 145 155 165 175
Estimated monthly WIP level
Figure 3: Cumulative Probability Functions of the Monthly WIP Level for Four PPCSs
6 CONCLUSION Cukier, R.l, C.M. Fortuin, K.E. Schuler, A.G. Petschek,

and J.H. Schaibly. 1973. Study of the sensitivity of
In this paper we examined the robustness issue for system  coupled reaction systems to uncertainties in rate
design. We discussed the extension of the approach coefficients: | TheoryJournal of Chemical Physics
proposed by Taguchi for product design to system design 59: 3873-3878.
using simulation. We proposed a different procedure basedDooley, K.J., and F. Mahmoodi. 1992. Identification of
on risk analysis. This procedure uses Monte Carlo robust scheduling heuristics: application of Taguchi
sampling to build scenarios for the uncertain environmental methods in simulation studiesComputers and
parameters. Simulating the scenarios yields a measure of  Industrial Engineering22(4): 359-368.
the risk of getting poor performance. We believe this Gaury, E.G.A., H. Pierreval, and J.P.C. Kleijnen. 1998.
procedure is an advantageous alternative to Taguchi's New species of hybrid pull systems. CentER
robust design, even though the former needs more Discussion Paper No.9831, Tilburg University,
experiments. An analysis of the robustness of several Netherlands.
PPCSs illustrated the approach and showed how risk Gstettner, S., and H. Kuhn. 1996. Analysis of production
analysis combined with stochastic simulation can be used control systems Kanban and Conwimternational
to compare systems. It also demonstrated the importance of ~ Journal of Production Researd#(11): 3253-3274.
robust design: designing a system for a specific Helton, J.C., D.R. Anderson, M.G. Marietta, and R.P.
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40 CFR 191.130perations Researchb(2): 157-177.
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