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ABSTRACT

Robustness has become a popular issue in engineering
products, Taguchi suggests to adjust the design so 
product performance is insensitive to the effects 
uncontrolled environmental variations. For systems (to 
distinguished from products), we propose to adjust 
design so that the risk of getting poor performance
minimized. This risk is evaluated by simulating the syste
over a sample of environmental scenarios: this proced
yields an estimate of the probability distribution of th
outcome. We illustrate this risk/uncertainty approach 
robustness through the comparison of four pull producti
control systems, including Kanban and Conwip. W
conclude that the traditional approach consisting 
optimizing the design of a system for a specif
environment (base scenario) may be risky.

1 INTRODUCTION

Taguchi’s principle of robust product design is simple
instead of trying to eliminate or reduce the causes
product performance variability, adjust the design of t
product so that it is insensitive to the effects 
uncontrolled (noise) variation. However, this formulatio
of the parameter design problem (PDP) seems to be bia
Indeed, the terms ‘effects’ and ‘insensitivity’ refer t
sensitivity analysis and design of experiments. Th
formulating the PDP in these terms is already deciding 
a solution procedure. In this paper we use a more gen
formulation: instead of trying to eliminate or reduce t
causes for product performance variability, we adjust 
design of a product or process (system) so that it perfo
well in many environments. This formulation raises tw
managerial issues, namely what is good performance, 
in which environments should the product/system perfo

d

1533
or
at

e

-

f

d.

,
r
al

s

d

well? These issues, however, are not specific to the P
they arise during any product/system design proces
possible approach to the reformulated PDP is risk analysis:
designers do not know with certainty in which environm
the product/system will be used. The purpose of 
analysis is to derive an estimate of the output probab
from a sample of scenarios. In fact, in simulation-ba
design, two sources of uncertainty may coexist: (a) 
system uncertainty, also called intrinsic or aleator
uncertainty, is intrinsic to the simulation model (rand
number streams) and differentiates stochastic models 
deterministic ones, and (b) analysts uncertainty, also c
subjective or epistemic uncertainty, is due to the lim
availability of data on the model inputs (parameters
distributions, for instance). We consider both source
uncertainty.

This paper is organized as follows. First, 
summarize Taguchi’s approach to parameter selection
product design and its application to system des
Second, we propose a new approach based on
management. Third, we analyze some differences bet
the two approaches. Fourth, we illustrate our approac
comparing four pull production-control systems, us
stochastic simulation models and risk analysis.

2 PARAMETER DESIGN

2.1 Taguchi’s Approach

Robust design consists of searching for a prod
design that guarantees low variations in the performa
level when the environment changes, instead of design
product that is optimal for a single specific environm
(noise configuration). This quality-improvement approa
also known as parameter design, has been stated
popularized by Taguchi (Taguchi and Phadke 19
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Taguchi 1986). Later, Mayer and Benjamin (1992) giv
the following six steps for robust design:

i- Identify factors and specify targets
Distinguish between (a) design factors, which a
independent variables of the model with valu
(presumably) within the control of the designer, a
(b) noise factors, which are not within the control 
the designer. Define performance measure(s) 
possible target values. Taguchi proposes robustn
measures called signal to noise (S/N) ratios th
aggregate information on the average performance 
its variability (location and dispersion); see step iii.

ii-  Formulate the design of experiment (DOE): cross
arrays
Design factors are varied according to an orthogo
array (Taguchi 1959), called inner array. For each
combination in this array, noise factors a
systematically varied according to another orthogo
array called outer array. Thus, if there are m and n
factor combinations in the design and noise arra
respectively, then m x n runs have to be examined (se
Table 1). In the following, this DOE for robustnes
study is called a crossed array.

iii-  Execute the runs and compute the performan
statistics
Execute the m x n runs. Then, for each combination
design factors compute the S/N ratios, which meas
the effect of systematic noise variations on t
performance of the product. Concretely, if the smal
Y the better, then S/Ni = -10 log(1/n ∑yij

2). If the
larger Y the better, then
S/Ni = -10 log(1/n ∑1/yij

2). And, if the closer Y to

target the better, then S/Ni = 10 log( 2y /s2).

iv- Find parameter settings that maximize S/N

Perform an analysis of variance (ANOVA) using S/
ratios as response. Identify design factors with
significant effect on S/N. Then, set these factors 
levels that maximize S/N.
153
s

e
s
d
f
nd
ss

at
nd

d

al

al

ys

ce

of
re
e
r

a
at

v- Tune performance to target
Perform a second ANOVA using the performance
measure(s) averaged over the n noise combinations, a
response. Identify design factors with significant
effects on performance measure(s), among factors tha
have a negligible effect on S/N (identified in step iv).
Adjust the former factors to improve performance.

vi- Perform confirmation runs

Does the model perform as predicted? If not,
assumptions are not valid (for instance, ignoring factor
interactions may be wrong). Go back to ii.

2.2 Literature Review

The contribution of Taguchi to robust design is undeniable.
However, his choices for robust design implementation are
not unanimously accepted. For instance, Nair (1992)
reports on a thorough panel discussion that criticized the
use of S/N ratios and crossed arrays. Yet, there seems to 
consensus about the fundaments of robust design
conducting experiments in order to study the effects of
controllable factors on both the location and the dispersion
of the response. Thus, Pignatiello and Ramberg (1987
propose to distinguish the strategic aspect (namely
Taguchi’s philosophy of robustness) and the tactical issue
(for instance, S/N ratios and DOE).

Many tactical alternatives can be found in the
literature. Table 2 shows that researchers sometimes pref
using loss functions or studying the location and dispersion
of the performance separately (instead of S/N ratios)
Moreover, crossed designs, such as shown in Table 1, ma
be replaced by combined designs, that is, a single array th
does not distinguish noise factors from design factors.

Taguchi originally proposed his technique for product
design. Later, researchers have also applied robust desig
to simulated systems. For instance, Wild and Pignatiello
(1991), Dooley and Mahmoodi (1992), Benjamin,
Erraguntla, and Mayer (1995), and Sanchez et al. (1996)
propose simulation-based methodologies for the design o
robust jobshop manufacturing systems. Simulation allows
Table 1: Experimental Strategy for Robust Design: Crossed Arrays

Outer array
1 j n

- … - Nl

… … … …
D1 … Dk - … + N1

1 - … - … S/N1

Inner array i … … … … yij … S/Ni S/N ratios
m + … - … S/Nm
4



Risk Analysis of Robust System Design
Table 2: Literature on Strategic Issues for Robustness Studies

Reference # Design/
Noise factors

Measure of robustness Design of Experiments

Sanchez et al. (1996) 5 / 2 quadratic loss function comparison:
- combined: 27-2 + two center points
- crossed: (25-1 + center points) x 22

Mayer and Benjamin (1992) 4 / 2 close-to-target S/N crossed: 24-1 x 22

Lim et al. (1996) 4 / 6 smaller-the-better S/N for
flowtime and larger-the-
better for throughput

crossed: L27
* x L8

**

* : 313-10

**  : 27

Dooley et Mamoodi (1992) 2 / 4 signal-to-noise ratios of
the performance mean and
dispersion.

22 x 24-1

Sanchez et al. (1993) 4 / 1 Y(x),  log(S(x)) 24-1 x 21, replicated four times

Moeeni, Sanchez, and
Vakharia (1997)

7 / 34 quadratic loss function 27-1 & noise factors oscillations*** ,
replicated four times
***  : frequency domain experiments
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the use of larger samples than crossed and comb
arrays. Next, we discuss two recent examples of alterna
experimental techniques.

2.3 Experimental Alternatives to Taguchi

Moeeni, Sanchez, and Vakharia (1997) proposes 
original approach – based on simulation and Frequency
Domain Experiments (FDE) – to design robust Kanba
systems. FDE consists of generating levels xij for each
noise factor xi and for each noise configuration j = 1…m,
according to a sinusoidal function:

xij =  ½(ui + li) + ½(ui - li)cos(2π.ωi.j), (1)

for i = 1,…,n and where ui and li are the upper and lowe
bound of factor xi respectively, ωi is the oscillation
frequency of xi. ωi = Ti/m, where Ti is the driving integer
for xi. Jacobson, Buss, and Schruben (1991) propose
algorithm for determining the driving integers so that ma
effects, quadratic effects, and two-factor interactions 
not confounded. Moeeni, Sanchez, and Vakharia (19
uses FDE to measure the robustness of a Kanban sy
design.

FDE has originally been designed for sensitivi
analysis (Schruben and Cogliano 1981): the effect of e
input factor can be measured by the contribution of 
characteristic frequency to the output. This contribution
determined through discrete Fourier analysis. Previo
research also used sinusoidal functions to exam
sensitivity to inputs. The approach is known as the Fou
Amplitude Sensitivity Test (Cukier et al. 1973), and is used
1535
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for uncertainty analyses (Morgan and Henrion 1990, p20
Factor values change in a similar way as FDE:

xij = E[xi] + vi sin(ωi.sj), (2)

where vi is the half-spread of the variations (xij varies
within [E[xi] - vi; E[xi] + vi]), { ωi} is a set of frequencies so
that factors are not correlated, and sj is a parameter to
discretize the sinusoidal function and has equally sp
values. So (1) and (2) are equivalent.

Kalagnanam and Diwelar (1997) propose a
optimization procedure for the design of robust syste
based on simulation and Monte Carlo methods, which th
apply to the design of a chemical tank reactor. They do 
consider system uncertainty: the simulation model 
deterministic. The robustness of the system is not stud
for a few extreme environments only, as in experimen
arrays, but for a large sample of environments. Th
compare four sampling techniques: Monte Carlo, La
Hypercube, Median Latin Hypercube, and Hammers
points. We give a brief description of these techniques
section 3.

In Moeeni, Sanchez, and Vakharia (1997) an
Kalagnanam and Diwelar (1997), the sampling techniqu
are used to measure the effect of noise factors on 
performance. However, unlike experimental arrays, the
techniques also provide estimates of the outp
distribution. Thus, it is possible to quantify the probabili
of the output. This is the core of uncertainty/risk analys
Next, we propose to reformulate the design parame
problem.
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3 RISK ANALYSIS

During the design process, the environment in which t
product/system will be used is not known with certaint
Moreover, the environment may vary during th
product/system lifetime (for instance, the demand rate f
finished goods in a manufacturing plant may fluctuate
Designing a product/system for a specific environment
scenario does not guarantee good performance for ot
environments: there is a risk associated with the chos
design; another design may lead to a lower risk. Thus, 
reformulate the parameter design problem as follow
adjust the design of the system so that the risk of gett
poor performance is minimized. This approach can 
considered as risk management and uses risk/uncertainty
analysis techniques to quantify the risk.

By definition, risk involves an ‘exposure to a chanc
of injury or loss’ (Morgan and Henrion 1990, p. 1). Thus
quantifying risk requires determining the outpu
probability. Risk/uncertainty analysis consists of samplin
each unknown parameter (namely, noise factor accord
to Taguchi’s terminology) from statistical distribution
functions, combining the sampled values into scenari
(factor combinations), and conducting a simulatio
experiment for each scenario. The outcome of th
procedure is an estimated probability distribution of th
performance measures. Among the many sampli
techniques, Monte Carlo sampling is probably best know
Basically, the principle is to select values at random fro
the distribution per input. Other techniques try to yiel
better samples than Monte Carlo sampling. Lat
Hypercube sampling (Iman and Shortencarier 1984), f
instance, is stratified sampling that divides the range 
each input parameter into non-overlapping intervals 
equal probability; from each interval, one value is select
at random according to the probability distribution in tha
interval. A refined technique is Median Latin Hypercub
sampling, which selects systematically the middle value 
the intervals; thus, the sample of each input parame
depends only on the sample size. Hammersley points 
designed using a procedure based on “low discrepan
pseudo-random numbers; for details, we refer 
Hammersley (1960) and Kalagnanam and Diwekar (1997

A choice between two systems can be made 
comparing their performance probability distributions
Such a comparison is based on preference criteria, wh
are often synthesized in a utility function, that is, 
mathematical expression that assigns values to all poss
choices. In investment theory the utility function is th
expression of preferences with respect to perceived r
and expected return. The higher the values of the util
function, the better. Preferences, however, are individu
perceptions: a preference may not be unanimous. First- 
second-order stochastic dominance tests ident
probability distributions that are unanimously preferred b
1536
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all decision-makers with monotone utility functions an
monotone, strictly concave utility functions respectively
see Wolfstetter (1996) and section 5.

Risk management is popular in finance and investme
problems, and compulsory for the design of potential
dangerous systems, such as nuclear and waste isola
plants (Helton et al. 1997), and certain industrial activities,
such as chemical industry (Palle 1994); also see Brehm
Eriksson, and Wulff (1994). However, to our knowledge, 
has not been used to design stochastic systems such
production-control systems. For such systems, we thi
that risk management is an attractive alternative 
Taguchi’s robust design.

4 RISK ANALYSIS VERSUS ROBUST DESIGN

4.1  Physical versus Simulation Experiments

Mayer and Benjamin (1992) points out the mai
differences between product design and system design
product design, robustness is achieved through prototy
and physical experiments; goods are generally produced
large quantities. In system design, a robustness study ha
be performed on models using simulation experimen
Moreover, only a small number of systems are to b
implemented. Thus, for feasibility reasons (it may not b
easy to reproduce a specific environment) and cost reas
(prototypes usually are expensive), product design can 
only small experiments, whereas system design is limit
only by time constraints (any type of environment can b
simulated, and the major experimental cost is time).

Originally, robust design addressed product desig
problems: it is a method designed for physica
experimentation. Now, physical experimentation is rare
possible for systems. Risk/uncertainty analysis, however
designed for simulated experiments. Thus, the seco
approach seems better suited for system parameter desig

4.2 Sampling

Most robustness studies consider at most three levels 
each environmental parameter. Then, mathematic
techniques are used to choose the combinations 
parameter values to be simulated. Risk analysis, on 
other hand, uses a large sample size for each parame
For instance, Latin Hypercube Sampling (LHS) requires
sample size of 100 at least. Moreover, DOE selec
extreme parameter value combinations, whereas r
analysis samples values for each parameter over the wh
domain. The probability distribution functions, from which
each parameter is sampled, are specified by the anal
possibly with the support of experts.
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4.3 Dispersion versus Risk

Robust design is based on the estimation of 
performance’s location and dispersion over environme
variations. Any deviation from the mean is penaliz
(quadratic loss function): dispersion does not differenti
good and bad performance. We, however, are intere
only in “bad” performance, that is, in performance below
prespecified target.

5 COMPARISON OF PULL PRODUCTION-
CONTROL SYSTEMS (PPCSS) USING A RISK
CRITERION

Next, we illustrate the risk approach through t
comparison of four pull production-control systems. We 
not intend to solve the design parameter problem, whic
an optimization problem, but simply show how ris
analysis can be used to compare the performance
production systems. We leave the optimization problem
further research.

In pull systems, the occurrence of finished goo
delivery triggers production: a station cannot st
production without an authorization, which conveys t
information about a finished good delivery. Limiting th
number of authorizations sets an upper bound for 
Work-In-Progress (WIP) level. For production lines, pu
systems can be specified by the way demand informa
flows through the production system (Gstettner and Ku
1996). Kanban is a system in which information flow
from a station to its immediate predecessor only (Mond
1993). In a Conwip system, information is sent direc
from the finished goods inventory, to the first statio
within the line, stations do not need authorizations 
produce (Spearman, Woodruff, and Wallace 1990). In
Hybrid Kanban/Conwip system, the information paths us
in Kanban and Conwip are combined (Bonvik, Couch, a
Gershwin 1997): it is a Conwip system for which statio
within the line need authorizations to produce. Figur
shows models of these three pull systems using the s
symbols as in Gstettner and Kuhn (1996).

Bonvik, Couch, and Gershwin (1997) compar
various pull systems for a four-stage production li
inspired by a Toyota factory. The simulation model of th
1537
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line randomly selects processing times from lognorma
distributions; times between failure and times to repair ar
exponentially distributed. The system is feeding an
assembly line, which is modeled as a deterministic deman
process. Thus, the demand interarrival time is constant, an
any demand that cannot be satisfied from stock is lost. Fo
this system, those authors perform a search for the be
configuration (that is, the number of authorizations
circulating along each information path) with the objective
of achieving a high service level (namely, 99.9%), while
minimizing the inventory level. Gaury, Pierreval, and
Kleijnen (1998) proposes a generalization of Hybrid
systems based on evolutionary principles. They illustrat
the approach through the same model and the sam
objective as in Bonvik, Couch, and Gershwin (1997). An
optimization procedure based on an evolutionary algorithm
yields a pull system that is significantly different from
Hybrid Kanban/Conwip. In the following, we call this new
system generic.

Both Bonvik, Couch, and Gershwin (1997) and Gaury
Pierreval, and Kleijnen (1998) do not account for
robustness issues. Thus, we propose to compare t
robustness of the best pull systems found in those tw
papers, but we use risk analysis. The uncertain paramete
are the various processing time averages and variances, 
average times between failures and times to repair, and t
demand rate; altogether 17 parameters. The base scenario
is the set of values used for these parameters in Bonvi
Couch, and Gershwin (1997). We choose to study the
robustness to environmental variations within a range o
±5% around the base scenario. LHS is used to generate
sample of 100 environmental scenarios. We assume th
these scenarios are equally probable. Thus, each parame
has a uniform distribution. For each scenario, we run 
simulation corresponding to one month of production, tha
is 22 days with two shifts per day. All simulation runs use
the same initial conditions. In Bonvik, Couch, and
Gershwin (1997), the objective was to achieve a 99.9%
service level, while minimizing the Work-In-Progress
(WIP) level. We use the monthly WIP level and the
monthly proportion of shifts with a service level below
99.9% as performance measures. A shift with a service
Kanban HybridConwip

Station
Finished good
inventory

Information flow Product flow

Figure 1: Three Types of Pull Systems
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level below 99.9% is seen as a disaster (risk terminology)
we want to minimize the probability of a disaster over th
environmental sample.

Figures 2 and 3 show the cumulative probability of th
outcome in terms of monthly disaster proportion and WIP
for the best configurations of Kanban, Conwip, Hybrid
and generic found in Bonvik, Couch, and Gershwin (1997
and Gaury, Pierreval, and Kleijnen (1998). The cumulativ
probability functions of the monthly disaster proportion
show strong similarities. The theory of stochastic
dominance (Wolfstetter 1996) can be used to rank the fou
PPCSs, as follows. Let X and Y be two random variables. X
first-order stochastically dominates Y (X ≥FSD Y) if

Pr{X>z} ≥ Pr{Y>z}, for all z.

X is unanimously preferred to Y by all agents with
monotone increasing utility functions if and only if
X ≥FDS Y.

X second-order stochastically dominates Y (X ≥SSD Y) if

∫ ∫ >≥>
k

a

k

a
kdyyYdxxX . allfor  ,}Pr{}Pr{

X is unanimously preferred to Y by all agents with
monotone increasing and strictly concave utility function
1538
if and only if X ≥SSD Y. Y is said to be “stochastically more
risky” than X. The strictly concave condition on the utilit
function expresses the risk aversion of the agent.

We compute dominance tests for the monthly disas
proportions: Conwip second-order stochastically domina
all the other systems; Hybrid second-order stochastic
dominates Kanban and Generic; it is not possible to cho
unanimously between Kanban and Generic.

The monthly WIP distributions show large difference
among PPCSs (Figure 3). Hybrid and Kanban lead to h
probabilities of low WIP levels, whereas Conwip an
Generic lead to high probabilities of high WIP levels. S
we can rank the four PPCSs – according to the WIP lev
averaged over the LHS scenarios – from best to worst
Hybrid, 2. Kanban, 3. Generic, and 4. Conwip.

In summary, Conwip is less risky than the three oth
systems in terms of service performance, but at the cos
a higher WIP level. Hybrid seems to be a go
compromise. It is interesting to note that when robustn
issues are not considered, the ranking of the four PPCS
1. Generic, 2. Hybrid, 3. Conwip, and 4. Kanban. Th
means that Generic is a system that is well adapted to
base scenario, but it looses its advantage over the o
systems whenever the environment is uncertain. T
illustrates clearly the importance of considering robustn
issues in systems design.
Figure 2: Cumulative Probability Functions of the Monthly Disaster Proportion for Four PPCSs
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Figure 3: Cumulative Probability Functions of the Monthly WIP Level for Four PPCSs
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6 CONCLUSION

In this paper we examined the robustness issue for sys
design. We discussed the extension of the approa
proposed by Taguchi for product design to system des
using simulation. We proposed a different procedure bas
on risk analysis. This procedure uses Monte Ca
sampling to build scenarios for the uncertain environmen
parameters. Simulating the scenarios yields a measure
the risk of getting poor performance. We believe th
procedure is an advantageous alternative to Taguc
robust design, even though the former needs mo
experiments. An analysis of the robustness of seve
PPCSs illustrated the approach and showed how r
analysis combined with stochastic simulation can be us
to compare systems. It also demonstrated the importanc
robust design: designing a system for a speci
environment – ignoring environmental variations an
uncertainties – may be risky.
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