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ABSTRACT

When pricing options via Monte Carlo simulations, prec
sion can be improved either by performing longer simul
tions, or by reducing the variance of the estimators. In th
paper, two methods for variance reduction are combin
the control variable and the change of measure (or lik
lihood) methods. We specifically consider Asian option
and show that a change of measure can very significan
improve the precision when the option is deeply out of t
money, which is the harder estimation problem. We al
show that the simulation method itself can be used to fi
the best change of measure. This is done by incorporat
an updating rule, based on an estimate of the gradien
the variance. The paper includes simulation results.

1 INTRODUCTION

Options are financial instruments traded on organiz
markets as well as over the counter. Options are a
embedded in other financial instruments, such as bon
for instance, the possibility for the seller of a bond to bu
it back at some stated price is an option. While there
a great variety of options, only a few explicit valuatio
formulas are known. For a description of option pricin
the reader is referred to the book by Hull (1993) or
Boyle et al. (1998).

Monte Carlo simulation is one of the preferred pricin
tools when no explicit formula is available. In this pape
we introduce an apparently new method for improving t
efficiency of Monte Carlo simulation, based on a chan
of measure; the method may also be used in conjunct
with a control variable. We focus on Asian (or averag
options, but it will be seen that the methodology can
applied to other types of options. Further extensions
the method will be examined in subsequent publication

After a brief description of the probem of valuing
Asian options in Section 2, Section 3 shows how contr
149
-
-
is
d,
-
,
tly
e
o
d
ng
of

d
so
s;

y
is

,
e
e
n

)
e
f
.

l

variables and change of measure may be combined. T
Section 4 introduces Infinitesimal Perturbation Analys
(IPA) in order to find the optimal change of measure
the same time the simulation is performed.

2 PRICING ASIAN OPTIONS

There are two assets: the risk-free assetert and the risky
assetS, with

St = S0e
µt+σWt

for 0 ≤ t ≤ T , where (1)r, S0 > 0, µ and σ > 0 are
constants and (2)W is standard Brownian motion. Let
{Ft; 0 ≤ t ≤ T} be the augmented filtration generate
by W . A European contingent claim is a non-negativ
FT -measurable random variable, such thatE∗PT is finite.
Here the expectationE∗ is with respect to the equivalent
measureP∗ under which discounted asset prices{e−rtSt}
form a martingale (the so-called risk-neutral measure, s
Harrison and Pliska 1981). This model is arbitrage-fre
and, moreover, complete, meaning that (1) no strateg
exist that permit risk-less profits, (2) any European typ
contingent claim with a timeT maturity can be exactly
replicated, and (3) the price at timet of such a contingent
claim, with payoffPT at time T is

Pt = e−r(T−t)E∗(PT | Ft), 0 ≤ t ≤ T,

In the sequel no more reference will be made toµ, as
it has effectively disappeared from the problem, andP∗

(resp. E∗) will be denotedP (resp. E).
Asian (or average) options have payoffs which depe

on the average value of the risky asset at some speci
time points in[0, T ]. In the literature, two cases have bee
considered: (1) continuous averaging, see for exam
Geman and Yor 1993; (2) discrete-averaging at equa
spaced time points (Turnbull and Wakeman 1991).
either case no explicit formula for the distribution of th
3
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average exists yet, though Geman and Yor derived th
Laplace transform of call option prices (with respect to
time, not exercise price), which can be inverted numerically
(see Fu, Madan and Wang 1997). We describe below how
to use simulation to produce discrete averages; if the
number of averaging points is large enough, we obtain an
approximation for the value of options on a continuous
average.

Suppose the payoff of the option is a function of

A =
1
N

N∑
i=1

Sih where h =
T

N
. (1)

Consider a call option on the indicated average, with
exercise priceK, that is to say, the payoff at maturity is
PT = (A − K)+ (other types of options on the average,
such as puts, can be treated in the same way). From th
previous discussion, the problem reduces to the estimatio
of

θ = E [(A − K)+] . (2)

We will suppose that we wish to value the option at
time 0. For dates between 0 and T, it is straightforward
to transform the problem so it becomes equivalent to the
valuation at time 0 (see Geman and Yor 1993 for details)
From our assumptions, and the fact that{e−rtSt} is a
martingale, the log-returns{Xi}, with

Xi = log
(

Sih

S(i−1)h

)
,

are independent with commonN ((r − σ2/2)h, σ2h) dis-
tribution.

From now onr is a given risk-free interest rate, and

the problem considered is the estimation ofE(A − K) for

that particular value ofr. However, our method requires

that the risk-free rate be varied in the simulations. This

is why we use the following notation, whereu represents

any risk-free rate:

Xu
i = (u − σ2/2)h + σ

√
hZi, 1 ≤ i ≤ N

X̃u = (Xu
1 , . . . , Xu

N )

Z̃ = (Z1, . . . , ZN )

Bi = Z1 + · · · + Zi, 1 ≤ i ≤ N, B0 = 0

Su
ih = Su

(i−1)h exp(Xu
i ), 1 ≤ i ≤ N (3)

Au = a(X̃u) =
1
N

N∑
i=1

Su
ih (4)

rσ = r − σ2/2, uσ = u − σ2/2,

where the{Zi} are independent with common distribution
N (0, 1).
1494
e

The “naive" Monte Carlo estimation of the option
is peformed by generating independent random variable
{Zi} ∼ N (0, 1) to obtain the sample mean for(Ar −K)+.
This estimator is unbiased, and the Central Limit Theorem
yields confidence intervals for its precision. However, it is
well known now (Broadie and Glasserman 1996; Boyle
Broadie, and Glasserman 1997; Fu, Madan and Wan
1997) that accuracy of Monte Carlo simulations can be
improved by using control variables or changes of measur

3 CONTROL VARIABLES PLUS
CHANGE OF MEASURE

3.1 The Estimators

The method of the control variable (see Bratley, Fox, and
Schrage 1997; Ross 1997) has been applied to the pricing
Asian options by Boyle, Broadie, and Glasserman (1997
among others, using the geometric average as contr
variable. Let

Gu =

(
N∏

i=1

Su
ih

) 1
N

, (5)

denote the geometric average, and let

Y u
1 = (Au − K)+, Y u

2 = (Gu − K)+.

The controlled estimator

D1 = Y r
1 + α(E Y r

2 − Y r
2 ) (6)

is an unbiased estimator ofθ for any constantα. In
particular, as shown in Ross (1997), the varianceVar θ̂ is
minimized when

α =
Cov(Y1, Y2)

VarY2
.

It is well known (Hull 1993) that

E [(Gu − K)+] = ec+s2/2Φ(d1) − KΦ(d2) (7)

where:

c = log S0 + mh
(N + 1)

2

s2 = σ2h
N + 1

(2N + 1)(6N)

d1 =
c + s2 − log K

s
, d2 = d1 − s.

Straightforward calculations also lead to

Var[(Gu − K)+] = e2(c+s2)Φ(d3) − 2KE[Y u
2 ]

− K2Φ(d2) − (E[Y u
2 ])2, (8)
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whered3 = d1 + s. Since the covariance betweenY u
1 and

Y u
2 is unknown, the optimal value ofα is generally replaced

by its usual estimation̂α, also obtained from Monte Carlo
simulation. In Boyle, Broadie, and Glasserman (199
Fu, Madan, and Wang (1997), Lemieux (1996), a const
coefficient α = 1 was used. In this paper, we use th
estimated optimal valuêα, as explained in Bratley, Fox
and Schrage (1987) and in Ross (1997).

Another approach that can sometimes improve
precision of Monte Carlo simulation is the change
measure method, or “likelihood ratio method". In th
particular case, a well-known formula says that for a
measurablef : IRN → IR and anyv ∈ IR

Ef(Z̃) = E e− Nv2
2 −vBN f(Z̃ + v).

(if one side of the equation exists, then the other exists
well and the two are equal). For the valuation of Asi
options, we considerf(Z̃) = a(X̃u), v = (u − r)

√
h/σ,

and define

Lu = exp


−N

2

[
(u − r)

√
h

σ

]2

− (u − r)
√

h

σ
BN




= exp

{
u2

σ − r2
σ

2σ2 T − u − r

σ2

N∑
i=1

Xr
i

}

= e
u2

σ−r2
σ

2σ2 T

(
Sr

N

S0

)− u−r

σ2

.

We thus have

E [(Ar − K)+] = E
[
(a(X̃r) − K)+

]
= E

[
Lu(a(X̃r + (u − r)h) − K)+

]
= E [Lu(Au − K)+] .

Hence, the likelihood ratioLu changes the risk-neutra
rate fromu to r.

A call option is “out of the money" (at time 0) if
S0 < K; the more an Asian option is out of the mone
the largerP[Au < K]. Suppose the option to be value
is out of the money. Here is an intuitive interpretation
the advantages of the likelihood ratio method. The lar
the drift u, the larger the probability that the option end
up in the money at maturity (Su

T > K), and the smaller
the number of samples required to estimate the va
of E [Lu(Au − K)+]. Changingu changes the way the
values of(Au −K)+ are weighted, so that the expectatio
remains the same; this is achieved by multiplying byLu.
The variance of the estimator is

Var[Lu(A − K)+] = E L2
u(A − K)2+ − θ2, (9)
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which varies withu. The estimation ofθ becomes easier
if this variance is reduced. If we can chooseu such that
P(Lu < 1, Au > K) is large, then we may hope that the
resulting variance does not hinder the gain in computation
effort (see L’Ecuyer 1994).The typical situation observed
is that the variance of the estimatorLu(Au − K)+ has a
minimum for some value ofu (see below). Unfortunately
we cannot solve for the optimalu analytically.

In order to apply the change of measure method, w
define the estimator

D2 = Lu(Au − K)+. (10)

We can add a control variable to this estimator, which
yields

D3 = LuY u
1 + α(EY u

2 − Y u
2 ) (11)

where nowY r
2 = (Gr − K)+ is estimated from (5) and

(3) in parallel toY u
1 . This means that we use common

random numbers (CRN) to try to increase the correlatio
betweenY u

1 andY r
2 . The coefficientα̂ that we use is the

estimated optimal one.
Finally, we consider applying a change of measure t

the controlled estimator as well, which yields:

D4 = LuY u
1 + α(EY r

2 − LuY u
2 ) (12)

where, again, the coefficientα is estimated for the optimal
variance reduction. Since this quantity is not available
analytically, we estimated it.

3.2 Simulation Results

We show in Table 1 the results of experiments using
r = 0.05, σ2 = 0.2, S0 = 50, T = 1.0 and M = 10000
replications. The efficiency of the estimators is defined a
in L"Ecuyer (1994), namely the inverse of the product o
the CPU time and the variance of the estimator. Since ou
simulations are rather short, all of the experiments reporte
in Table 1 took the same 5 seconds of CPU time to run
We show the estimators in order of decreasing varianc
(in all but one case: whenK = 30 and so the option is
deep in the money). At the bottom, we have included th
estimated value ofα that minimizes the variance ofD4.

Remark. Longer simulations could show differences in
CPU time, the naive being of course the fastest metho
followed by D2, D1 and thenD3 and D4, which have
the same computational effort.

We obtained the same pattern of results for othe
parameter values, namely that the estimatorsD1 and D4
do better thanD2 and D3, and thatD4 appears to be
better thanD3. While both D3 and D4 work better as
S0/K decreases,D4 is consistently better than the rest of
the estimators.
5
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Table 1: Comparison of the Methods

r = 0.05, σ2 = 0.2, S0 = 50, T = 1.0 and M = 10, 000
Estimators

Method K= 30 K= 45 K=50 K= 55 K = 75
Naive 20.46± 0.26 8.45 ± 0.216 5.80 ± 0.189 3.83 ± 0.160 0.630± 0.068
D2 20.34± 0.137 8.32 ± 0.115 5.66 ± 0.096 3.74 ± 0.075 0.583± 0.020
D1 20.31± 0.016 8.28 ± 0.013 5.64 ± 0.012 3.72 ± 0.011 0.585± 0.010
D3 20.31± 0.014 8.28 ± 0.011 5.64 ± 0.010 3.71 ± 0.010 0.583± 0.009
D4 20.31± 0.014 8.27 ± 0.009 5.62 ± 0.008 3.70 ± 0.006 0.573± 0.003

Variance
Method K= 30 K= 45 K=50 K= 55 K = 75
Naive 176.09 121.70 92.58 66.28 12.04
D2 49.04 34.59 23.76 14.95 1.07
D1 0.64 0.42 0.36 0.33 0.25
D3 0.48 0.28 0.25 0.24 0.23
D4 0.53 0.207 0.150 0.095 0.028
α̂∗ 0.998 1.05 1.07 1.10 1.20
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To simulateD3 and D4 we proceed as follows. The
initial values areBi = 0, S0, Au = 0, Gu = 1.

Algorithm 1: Simulation at u.

1. For 0 < i ≤ N do:

(a) GenerateZi ∼ N (0, 1), setBi = Bi−1 + Zi,

(b) DefineXu
i = uσh +

√
σ2h Zi,

(c) Set Su
ih = Su

(i−1)heXu
i , Au = Au + Su

ih, Gu =
Gu ∗ Su

i .

2. CalculateAu = Au/N, Gu = N
√

Gu

3. Lu = exp {− (u−r)2

2σ2 T − (u−r)
σ2

√
σ2hBN}

At the end of this loop, a single trajectory of the
process with driftu has been simulated, andD2, D3 and
D4 can be computed. Then this simulation is repeat
M times to obtain the estimatedα and the corresponding
confidence interval as usual.

Remark. In our simulations, we have used the accelerat
Box-Muller method (see Ross 1997 for the details) whe
trigonometric functions are not used. At each iteratio
i ≤ N/2 we use two independent seeds for our unifor
variates and produce two independent samples ofN (0, 1)
variablesZ2i−1, Z2i.

In order to estimate the optimal value ofu, CRNs
were used: in steps 1(b) and 3 of Algorithm 1, sever
trajectories were evluated in parallel, each correspond
to a different value ofu (functional estimation). Figure
1, Figure 2, and Figure 3 show the estimated varian
1496
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of D2, D3 and D4 using functional estimation with CRN
as described, for 10 values ofu. The solid line is for
K = 30, 45, the short dashed line is forK = 50, long
dashes are forK = 55 and the longer dashes are for
K = 75. For Figure 2 we usedM = 5, 000 replications
and it took 9 seconds (for each value ofK) with 10 values
of u in the range shown. To produce Figure 1 and Figure
3 we usedM = 10, 000, which took 20 to 28 seconds,
for each value ofK.
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Figure 1: Variance ofD2 (at left is the caseK = 30)
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Figure 2: Variance ofD3

To summarize, the estimated optimal values ofu used
in Table 1 are shown in Table 2, and the best estimato
is the one that uses the change of measure in both th
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Figure 3: Variance ofD4

Arithmetic Asian Option as well as in the control variab
and the corresponding gain in variance reduction can
considerably high. The problem with this estimator
that in order to determine the optimal value ofu, severa
preliminary simulations must be performed for functio
estimation. The rest of the paper deals with this probl

Table 2: Optimal Valuesu∗ for the Change of Measur

K=30 K=45 K=50 K=55 K=75

D2 0.25 0.40 0.50 0.60 0.80
D3 0.07 0.07 0.07 0.07 0.07
D4 0.25 0.40 0.50 0.60 0.80

4 SPEEDING UP THE SIMULATION

Knowledge of the optimal parameteru will lead to faster
estimation of θ. In the preceeding section, pilot tes
had to be performed to estimate the best valueu before
performing the simulation. Since the optimalu∗ and the
gain in variance reduction are both problem depend
it is not clear that such a procedure actually impro
the efficiency with respect toD1. Here we propose th
algorithm to adapt and find the optimal valueu∗ as it
estimates the price of the option.

Our method consists in varying the parameteru as
the simulation progresses, in the following fashion:

un+1 = un − εnF̄n(un) (13)

whereF̄n(u) is an estimator of the derivative with respec
u of thevariance of the estimatorD4. Such recursions ar
known as stochastic approximation, or “Robbins-Mon
procedures” (Robbins and Monro 1951) whenεn is a
suitably decreasing sequence.

Let u be constrained to some compact intervalU , and
call J(u) = Var(D4). Call Fn the σ-algebra generated b
{u0, F̄1, . . . , F̄n−1}. we state the following result withou
proof. The result follows from Fu (1990), Kushner a
Yin (1997), Kushner and V́azquez-Abad (1996).
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Assumptions:

• ∀u ∈ U,
∂

∂u
J(·) is continuous inu,

• sup
u∈U

E[F̄ 2
n(u)] < K < ∞,

• E[F̄n(un)|Fn] =
∂

∂u
J(un) + βn, where

∞∑
j=n

‖εjβj‖ < ∞,

•
∞∑

n=1

εn = +∞,
∞∑

n=1

ε2n < ∞, and

• J(·) is convex and therefore has a unique minimum
u∗ ∈ U .

Theorem 1 Under the stated Assumptions, the sequence
{un} converges strongly to the optimum:un → u∗ a.s.

In order to use Theorem 1 it is necessary to have
an estimator of the desired derivative that satisfies the
assumptions. Infinitesimal Perturbation Analysis (IPA)
can be used, as we proceed to establish. Recall tha
D2 = LuY1 and notice that:

D4 = D2 + α(E(Y r
2 ) − LuY u

2 )

where, as before,Y u
1 = (Au−K)+ andY u

2 = (Gu−K)+.
Call Fi(u), i = 2, 4 the IPA estimators such that:

EFi(u) =
∂

∂u
Varu(Di) =

∂

∂u
E[D2

i ].

The IPA estimatorFi is defined, as usual (see Glasserman
1991), as the stochastic derivative ofD2

i : if we fix
Z1, . . . , ZN , the square ofDi is a piecewise differentiable
function of u and Fi is its derivative.

Define the following path-dependent quantities:

l′u = −
(

(u − r)T +
√

σ2hBN

σ2

)
,

A′
u =

1
N

N∑
i=0

ihSu
ih,

G′
u =

(T + h)
2

Gu.

Theorem 2 The IPA estimatorsF2 and F4 are unbiased
and are given by:

F2(u) = 2L2
u(l′u)(Y u

1 )2 + 2L2Y u
1 A′

T , (14)

F4(u) = 2L2
u(Y u

1 − αY u
2 ){l′u(Y u

1 − αY u
2 )

+ A′
T 1{Y u

1 >0} − αG′
T 1{Y u

2 >0}}. (15)
7
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Proof : We shall state the proof forF2 only, since
the proof forF4 is completely analogous. >From (9),

∂

∂u
Var[Lu(Au − K)+] =

∂

∂u
E[L2

u(Au − K)2+].

Let G(u) = L2
u(Au − K)2+, and m ∈ I, where I is any

compact interval ofIR. Then ∂
∂uG(u) is given by (14),

and is seen to be a continuous function ofu. Moreover,
its absolute value is uniformly bounded (foru ∈ U ) by a
variable of the form

C1e
C2BN

{
Au

N∑
i=1

iSu
i + C3(Au)2

[
C4 + C5e

C6BN
]}

(whereu and C1 to C6 are constants), which has a finite
expectation. Observing that from Taylor’s Theorem

(G(u + δ) − G(u)
δ

=
∂

∂p
G(p)

p=ξ
,

whereξ is betweenu and u + δ, we get

∂

∂u
E G(u) = E

∂

∂u
G(u)

from the Dominated Convergence Theorem.
Calculation of both IPA formulas can be done while

simulating one path with minimal extra effort: indeed
all quantities butA′

u are available at the end of the
N readings, and this extra summation adds a negligibl
computational effort. Table 3 shows the result from
simulations performed to estimate the IPA derivatives
using M = 50, 000 replications, which took 31 seconds
for each value ofu.

Our first simulations used

F̄n(un) =
1
M

(n+1)M∑
k=nM+1

F4(k)

whereM independent replications were performed at value
u = un to obtain Fi(k), Di(k), k = 1, . . . , M, i = 2, 4.
Then (13) is applied usingεn = ε0/n. It is straightforward
to verify the Assumptions for this case, whereβn = 0.
While we obtained convergence to the correct optimalu,
the procedure was very slow. The reason for this is tha
the values ofF4 are very small: as it should be obvious
from Table 3, estimating the derivative is a harder problem
for the reduced variance estimatorD4 than is estimating
F2. Yet the two estimators seem to have the same optima
value for u, or at least very close, which happened for
other parameter values as well. We therefore accelerate
the procedure by driving the stochastic approximation with
1498
l
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a convex combination of the two derivatives, or:

F̄n(un) = ρn
1
M

(n+1)M∑
k=nM+1

F2(k)

+ (1 − ρn)
1
M

(n+1)M∑
k=nM+1

F4(k),

where ρn = ρn
0 , so that limn→∞ ρn = 0. Theorem 1

asserts thatun → u∗ a.s. still holds, but the convergence
is accelerated (we usedρ = 0.98).

Summarizing, the accelerated estimation is achiev
with:

D5 =
1
m

m∑
n=m

D̄4(un),

whereD̄4(un) is the sample mean estimator obtained wit
M replications of Algorithm 1 at valueun as F̄n(un) is
estimated.

Algorithm 2: Accelerated Simulation

1. Choose an initial valueu(0)

2. For n = 0, . . . m do:

(a) Setu = u(n)

(b) For m = 1, . . . , M do

i. For 0 < i ≤ N do:

A. GenerateZi ∼ N (0, 1) and setBi =
Bi + Zi,

B. DefineXu
i = uσh +

√
σ2h Zi,

C. SetSi = Si−1e
Xi , Au = Au+Si, Gu =

Gu ∗ Si.

D. SetA′ = A′ + iSi.

ii. SetAu = Au/N, Gu = N
√

Gu, A′ = ∆A′/N ,
calculateL, l′

iii. Update the sample meansY1, Y2, F2 andF4

(c) Setρ = ρ ∗ ρ0, F̄n = ρF2 + (1 − ρ)F4

(d) Updateun+1 = un − (ε0/n)Fn

Figure 4 shows a plot of typical trajectories of the
values ofun vs n for our estimator, the solid line forK =
75, ε0 = 0.008, the long dashes forK = 50, ε0 = 0.001
and the short dashes forK = 30, ε0 = 0.0001. Initial
values of u were chosen far from the optimum. The
update intervals were all of lengthM = 500, with m = 20
updates, and the computational effort was 6 seconds
each simulation.

The variance ofD5 is very close to the optimal one
in Table 1, since in all cases convergence was achiev
within the first three or four iterations of the stochasti
approximation.
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Derivative Estimation via IPA
Value of u Var(D2) F2 Var(D4) F4

0.2 45.32 −175.5 ± 15.7 0.21 −2.08 ± 0.29
0.3 32.01 −93.4 ± 9.2 0.16 −1.13 ± 0.17
0.4 25.44 −38.7 ± 7.3 0.15 −0.28 ± 0.35
0.5 23.69 3.89 ± 8.3 0.17 0.25 ± 0.77
0.6 26.05 45.44 ± 12.0 0.20 0.34 ± 0.53
0.7 32.94 94.88 ± 20.2 0.22 0.36 ± 0.78
0.8 45.80 168.82 ± 41.6 0.49 6.29 ± 21.68

Table 3: r = 0.05, σ2 = 0.2, S0 = 50, K = 50, T = 1.0 and M = 50, 000

Table 4: Statistical Properties the Self-Optimized Estimator

r = 0.05, σ2 = 0.2, S0 = 50, T = 1.0 and M = 10, 000
Estimators

Method K= 30 K=50 K = 75 K=90
D1 20.31± 0.016 5.64 ± 0.012 0.585± 0.010 0.1415± 0.0085
D4 20.31± 0.014 5.62 ± 0.008 0.573± 0.003 0.1305± 0.0018
D5 20.31± 0.015 5.62 ± 0.008 0.578± 0.004 0.1304± 0.0017

Variance CPU Time
Method K= 30 K=50 K = 75 K = 90 in seconds

D1 0.64 0.36 0.25 0.1869 5
D4 0.53 0.15 0.03 0.0080 31
D5 0.54 0.18 0.04 0.0081 6
r
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Figure 4: un vs n for three different systems.

Figure 5 gives the results of the algorithm fo
K = 30, ε = 0.0005 with different values of the initial
condition.

In practice, it may be difficult to know how to choos
the parameters. We suggest an initial guess atu = r and
proceed with the updates.

The estimated variances ofD5 are shown in Table 4,
as well as those ofD1 and D4 for ease of comparison
The computational effort is also shown, including the tim
required for the pilot simulations in order to set-up th
estimation ofD4. Using our self-optimized method, w
1499
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Figure 5: Values ofu for K = 30 and differentµ0.

can achieve nearly optimal variance in 6 seconds withou
previous knowledge of the behaviour or preliminary tests.
For the caseK = 90 (with α̂ = 1.44, u∗ = 1.16), which
is deeply out of the money, the advantages of the chang
of measure are more dramatic.

5 CONCLUDING REMARKS

We have presented a Self-Optimized estimator with Ac-
celerated Simulation. It is based on the usual contro
variable estimator, but changes the measure in the hop
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of decreasing the variance, which is justified when th
option is out of the money. Our method is applicable i
conjunction with other methods, such as indirect simulatio
using the put and call parity, quasi-MonteCarlo method
and antithetic variables. We are currently extending o
results to include other financial instruments besides Asi
Options.

The idea of speeding up the simulation by adjustin
the parameter of the change of measure can of cou
be applied to other simulations outside derivative pricing
including simulation of stochastic processes with memor
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FELISA J V ÁZQUEZ-ABAD is Professor at the Depart-
ment of Computer Science and Operations Research a
the University of Montreal. She received her B.Sc. degree
in Physics in 1983 and her M.Sc. degree in Statistics
and OR in 1984 from Universidad Nacional Autónoma
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