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ABSTRACT

When pricing options via Monte Carlo simulations, preci-
sion can be improved either by performing longer simula-
tions, or by reducing the variance of the estimators. In this
paper, two methods for variance reduction are combined,
the control variable and the change of measure (or like-
lihood) methods. We specifically consider Asian options,
and show that a change of measure can very significantly
improve the precision when the option is deeply out of the
money, which is the harder estimation problem. We also
show that the simulation method itself can be used to find
the best change of measure. This is done by incorporating
an updating rule, based on an estimate of the gradient of
the variance. The paper includes simulation results.

1 INTRODUCTION

Options are financial instruments traded on organized
markets as well as over the counter. Options are also
embedded in other financial instruments, such as bonds;
for instance, the possibility for the seller of a bond to buy
it back at some stated price is an option. While there is
a great variety of options, only a few explicit valuation
formulas are known. For a description of option pricing
the reader is referred to the book by Hull (1993) or to
Boyle et al. (1998).

Monte Carlo simulation is one of the preferred pricing
tools when no explicit formula is available. In this paper,
we introduce an apparently new method for improving the
efficiency of Monte Carlo simulation, based on a change
of measure; the method may also be used in conjunction
with a control variable. We focus on Asian (or average)
options, but it will be seen that the methodology can be
applied to other types of options. Further extensions of
the method will be examined in subsequent publications.

After a brief description of the probem of valuing
Asian options in Section 2, Section 3 shows how control
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variables and change of measure may be combined. Then
Section 4 introduces Infinitesimal Perturbation Analysis
(IPA) in order to find the optimal change of measure at
the same time the simulation is performed.

2 PRICING ASIAN OPTIONS

There are two assets: the risk-free asgétand the risky
assetS, with

St — Soe,u.t—',—an,

for 0 <t <T, where (1)r, So >0, p ando > 0 are
constants and (2)V is standard Brownian motion. Let
{F;0 <t < T} be the augmented filtration generated
by W. A European contingent claim is a non-negative
Fr-measurable random variable, such tBaPr is finite.
Here the expectatiof™ is with respect to the equivalent
measureP™ under which discounted asset prices "*S; }

form a martingale (the so-called risk-neutral measure, see
Harrison and Pliska 1981). This model is arbitrage-free
and, moreover, complete, meaning that (1) no strategies
exist that permit risk-less profits, (2) any European type
contingent claim with a timeél’ maturity can be exactly
replicated, and (3) the price at timieof such a contingent
claim, with payoff Pr at timeT is

Po=e"TUEY(Pp | F), 0<t<T,

In the sequel no more reference will be made toas
it has effectively disappeared from the problem, dtid
(resp. E*) will be denotedP (resp. E).

Asian (or average) options have payoffs which depend
on the average value of the risky asset at some specified
time points in[0, T']. In the literature, two cases have been
considered: (1) continuous averaging, see for example
Geman and Yor 1993; (2) discrete-averaging at equally
spaced time points (Turnbull and Wakeman 1991). In
either case no explicit formula for the distribution of the



Vazquez-Abad and Dufresne

average exists yet, though Geman and Yor derived the The “naive” Monte Carlo estimation of the option
Laplace transform of call option prices (with respect to is peformed by generating independent random variables
time, not exercise price), which can be inverted numerically {Z;} ~ AN(0, 1) to obtain the sample mean fod, — K ), .

(see Fu, Madan and Wang 1997). We describe below how This estimator is unbiased, and the Central Limit Theorem
to use simulation to produce discrete averages; if the yields confidence intervals for its precision. However, it is
number of averaging points is large enough, we obtain an well known now (Broadie and Glasserman 1996; Boyle,
approximation for the value of options on a continuous Broadie, and Glasserman 1997; Fu, Madan and Wang

average. 1997) that accuracy of Monte Carlo simulations can be
Suppose the payoff of the option is a function of improved by using control variables or changes of measure.
N
1 T
A= — Z Sin where h= —. (1) 3 CONTROL VARIABLES PLUS
N~ N CHANGE OF MEASURE

Consi.der a call optiqn on the indicated average, vyith 31 The Estimators

exercise pricek, that is to say, the payoff at maturity is

Pr = (A - K), (other types of options on the average, The method of the control variable (see Bratley, Fox, and
such as puts, can be treated in the same way). From the Schrage 1997; Ross 1997) has been applied to the pricing of
previous discussion, the problem reduces to the estimation Asian options by Boyle, Broadie, and Glasserman (1997)

of among others, using the geometric average as control
0 =E[(A-K),]. ) variable. Let
N N
We will suppose that we wish to value the option at G — HS@ (5)
time 0. For dates between 0 and T, it is straightforward “ ey in ’

to transform the problem so it becomes equivalent to the

valuation at time 0 (see Geman and Yor 1993 for details). denate the geometric average, and let

From our assumptions, and the fact tHat™"*S;} is a VU — (A — K YU — (G — K
martingale, the log-returngX;}, with v= (A Jor Y= (G )

g The controlled estimator

ih
Xi = 1Og ( ) )

(i=1)h Dy =Y +a(EY; —Y5) (6)
are independent with commaN'((r — 0?/2)h,ah) dis- is an unbiased estimator af for any constante. In
tribution. particular, as shown in Ross (1997), the variaheed is

From now onr is a given risk-free interest rate, and  minimized when
the problem considered is the estimationkgfA — K') for
that particular value of. However, our method requires
that the risk-free rate be varied in the simulations. This
is why we use the following notation, wheterepresents It is well known (Hull 1993) that
any risk-free rate:

~ Cov(Y,Y3)
"~ VarY,

El(Gu — K)4] = e 20(dy) — K®(dy)  (7)

X' = (u—0%/2h+0oVhzZ;, 1<i<N
X = (X{..,XR) where:
Z = (Z41,...,Z N+1
(21,1 ZN) c = log&ﬂ—mhw
Bi = Zi+-+7Z, 1<i<N, By=0
w _ o X9 1<i<N 3 2 - g N1
i = SGoppexp(Xy), 1<i< 3) (2N + 1)(6N)
N 2
- 1 _cts"—logK _
A, = a(X“):NZ u 4) d = ———— dh=d-s
=1
re = r—0%/2, uy = u-—o/2, Straightforward calculations also lead to
where the{Z;} are independent with common distribution Var[(Gy — K)4] = &) (dg) — 2KE[Y,]
N(0,1). - K?®(dy) — (E[Y5))?, 8
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whereds = d; + s. Since the covariance betwe&ii’ and

Y3 is unknown, the optimal value of is generally replaced

by its usual estimatiod, also obtained from Monte Carlo
simulation. In Boyle, Broadie, and Glasserman (1997),
Fu, Madan, and Wang (1997), Lemieux (1996), a constant
coefficient« = 1 was used. In this paper, we use the
estimated optimal valué, as explained in Bratley, Fox,
and Schrage (1987) and in Ross (1997).

Another approach that can sometimes improve the
precision of Monte Carlo simulation is the change of
measure method, or “likelihood ratio method". In this
particular case, a well-known formula says that for any
measurablef : Ry — IR and anyv € IR

~ Nov2

Ef(Z)=Ee "2 VBN f(Z 4+ ).

(if one side of the equation exists, then the other exists as
well and the two are equal). For the valuation of Asian
options, we considef(2) = a(X*), v = (u — r)Vh/0,

and define

N
L, =exp -3 l

2 2
_ Uy — Ty
= exp

202

T (Sy
So

u—r N IS
T-—— ;X

w22
= e 202

We thus have
E [(Ar - K)+]

E [Lu(a(fﬁ ¥ (u—r)h) — K)@
E [Lu(Au - K)+] :

Hence, the likelihood ratial, changes the risk-neutral
rate fromu to r.

A call option is “out of the money" (at time 0) if
Sy < K; the more an Asian option is out of the money,
the largerP[A4, < K]. Suppose the option to be valued
is out of the money. Here is an intuitive interpretation of
the advantages of the likelihood ratio method. The larger
the drift u, the larger the probability that the option ends
up in the money at maturityS§: > K), and the smaller
the number of samples required to estimate the value
of E[L,(A, — K)4]. Changingu changes the way the
values of(A, — K), are weighted, so that the expectation
remains the same; this is achieved by multiplying by.
The variance of the estimator is

Var[L, (A~ K)4] =EL{(A- K)L -6 (9)
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which varies withu. The estimation of) becomes easier
if this variance is reduced. If we can choogesuch that
P(L, < 1,4, > K) is large, then we may hope that the
resulting variance does not hinder the gain in computational
effort (see L'Ecuyer 1994).The typical situation observed
is that the variance of the estimatér, (4, — K); has a
minimum for some value of: (see below). Unfortunately
we cannot solve for the optimal analytically.

In order to apply the change of measure method, we
define the estimator

Dy=L,(A,— K),. (10)
We can add a control variable to this estimator, which
yields

D3 = LY + a(EYy* — V) (11)

where nowYy = (G, — K) is estimated from (5) and
(3) in parallel toY*. This means that we use common
random numbers (CRN) to try to increase the correlation
betweenY* andY; . The coefficienta that we use is the
estimated optimal one.

Finally, we consider applying a change of measure to
the controlled estimator as well, which yields:

Dy = L,Y* 4 a(EYS — L, YY) (12)
where, again, the coefficient is estimated for the optimal
variance reduction. Since this quantity is not available
analytically, we estimated it.

3.2 Simulation Results

We show in Table 1 the results of experiments using
r = 0.05,02 =0.2,Sy = 50,7 = 1.0 and M = 10000
replications. The efficiency of the estimators is defined as
in L"Ecuyer (1994), namely the inverse of the product of
the CPU time and the variance of the estimator. Since our
simulations are rather short, all of the experiments reported
in Table 1 took the same 5 seconds of CPU time to run.
We show the estimators in order of decreasing variance
(in all but one case: wheii = 30 and so the option is
deep in the money). At the bottom, we have included the
estimated value o that minimizes the variance adp,.

Remark. Longer simulations could show differences in
CPU time, the naive being of course the fastest method,
followed by Dy, D, and thenDs; and D4, which have
the same computational effort.

We obtained the same pattern of results for other
parameter values, namely that the estimatbrsand D,
do better thanD, and D3, and thatD, appears to be
better thanDs;. While both D; and D, work better as
So/K decreasesp, is consistently better than the rest of
the estimators.
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Table 1: Comparison of the Methods

7 =0.05,0%2 = 02,5 = 50,T = 1.0 and M = 10,000

Estimators
Method K= 30 K= 45 K=50 K= 55 K=75
Naive 20.464 0.26 | 8.454 0.216| 5.804 0.189| 3.83 4 0.160| 0.6304 0.068
D, 20.34+ 0.137| 8.324+ 0.115| 5.66+ 0.096 | 3.74 4+ 0.075| 0.583 £ 0.020
D, 20.31+ 0.016| 8.284+ 0.013| 5.64+ 0.012| 3.72 4+ 0.011| 0.585+ 0.010
Ds 20.31+ 0.014| 8.284 0.011| 5.64+ 0.010| 3.71 4+ 0.010| 0.583 £ 0.009
Dy 20.31+ 0.014| 8.27 4+ 0.009 | 5.62 + 0.008| 3.70 4= 0.006| 0.573 £ 0.003
Variance
Method K= 30 K= 45 K=50 K= 55 K=75
Naive 176.09 121.70 92.58 66.28 12.04
D, 49.04 34.59 23.76 14.95 1.07
D, 0.64 0.42 0.36 0.33 0.25
Ds 0.48 0.28 0.25 0.24 0.23
Dy 0.53 0.207 0.150 0.095 0.028
a* 0.998 1.05 1.07 1.10 1.20

To simulate D3 and D, we proceed as follows. The
initial values areB; = 0, Sy, A, = 0,G, = 1.

of Dy, D3 and D, using functional estimation with CRN
as described, for 10 values aof The solid line is for
K = 30,45, the short dashed line is fok = 50, long
dashes are for' = 55 and the longer dashes are for
K = 75. For Figure 2 we used/ = 5,000 replications
and it took 9 seconds (for each value ) with 10 values

Algorithm 1: Simulation at .

1. ForO0<+¢< N do:

(@ GenerateZ; ~ N(0,1), setB; = B; 1 + Z;, of u in the range shown. To produce Figure 1 and Figure
(b) Define X* = u,h + Vo2h Z; 3 we usedM = 10,000, which took 20 to 28 seconds,
T B ., for each value ofk.
(C) Set Sih - S(ifl)he i Au = Au + S“” Gu =
G, * S} oo 70
2. Calculate4, = 4,/N,G, = VG, 00 -
3. L, =exp {0y (o0 /o2 Byy -

200

At the end of this loop, a single trajectory of the
process with driftu has been simulated, and,, D3 and
D, can be computed. Then this simulation is repeated
M times to obtain the estimated and the corresponding
confidence interval as usual.

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Remark. In our simulations, we have used the accelerated
Box-Muller method (see Ross 1997 for the details) where
trigonometric functions are not used. At each iteration
i < N/2 we use two independent seeds for our uniform
variates and produce two independent sampled/@, 1)
Variab|ESZ2i_1, Z9;.

-0.05 ' 0.05 0.1 0.15 0.2

In order to estimate the optimal value of CRNs Figure 2: Variance ofD;

were used: in steps 1(b) and 3 of Algorithm 1, several

trajectories were evluated in parallel, each corresponding To summarize, the estimated optimal values.afsed

to a different value ofu (functional estimation). Figure in Table 1 are shown in Table 2, and the best estimator

1, Figure 2, and Figure 3 show the estimated variance is the one that uses the change of measure in both the
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Figure 3: Variance ofD,

Arithmetic Asian Option as well as in the control variable,
and the corresponding gain in variance reduction can be
considerably high. The problem with this estimator is
that in order to determine the optimal value «af several
preliminary simulations must be performed for functional
estimation. The rest of the paper deals with this problem.

Table 2: Optimal Values.* for the Change of Measure

[ ][ K=30 [ K=45 | K=50 [ K=55 | K=75 |

Dy || 025 | 040 | 050 | 0.60 | 0.80
Ds || 0.07 | 0.07 | 0.07 | 0.07 | 0.07
Dy || 025 | 040 | 050 | 0.60 | 0.80

4 SPEEDING UP THE SIMULATION

Knowledge of the optimal parameterwill lead to faster
estimation ofd. In the preceeding section, pilot tests
had to be performed to estimate the best valubefore
performing the simulation. Since the optimal and the
gain in variance reduction are both problem dependent,
it is not clear that such a procedure actually improves
the efficiency with respect td),. Here we propose the
algorithm to adapt and find the optimal valug as it
estimates the price of the option.

Our method consists in varying the parametemls
the simulation progresses, in the following fashion:

Un+1 = Up — 67LFn(un)

(13)

whereF,, (u) is an estimator of the derivative with respect to
u of thevariance of the estimatab,. Such recursions are
known as stochastic approximation, or “Robbins-Monroe
procedures” (Robbins and Monro 1951) whep is a
suitably decreasing sequence.

Let u be constrained to some compact inter&/aland
call J(u) = Var(D,). Call F,, the o-algebra generated by
{ug, Fy,...,F,_1}. we state the following result without
proof. The result follows from Fu (1990), Kushner and
Yin (1997), Kushner and &zquez-Abad (1996).
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Assumptions:
0 . . :
e YueU, —J(-) is continuous inu,
ou
e supE[F%(u)] < K < oo,
uelU

ﬁJ(un) + 3, where

) E[F,L (un) |f7z,] 871/

oo
> lleiBill < oo,

j=n
e

] g €n
n=1

e J(:) is convex and therefore has a uniqgue minimum
u* eU.

oo
= +o00, Zei < 0o, and

n=1

Theorem 1 Under the stated Assumptions, the sequence
{u,} converges strongly to the optimum;, — u* a.s.

In order to use Theorem 1 it is necessary to have
an estimator of the desired derivative that satisfies the
assumptions. Infinitesimal Perturbation Analysis (IPA)
can be used, as we proceed to establish. Recall that
D, = L,Y; and notice that:

Dy = Dy + a(E(Y) — LuYy")
where, as beforey = (4, — K)+ andYy = (G, —K) .
Call F;(u),i = 2,4 the IPA estimators such that:

0 0
= EEVaQA[h)::EEELD?}
The IPA estimatorF; is defined, as usual (see Glasserman
1991), as the stochastic derivative d@¥?: if we fix
Z1,...,Zn, the square ofD; is a piecewise differentiable
function of w and F; is its derivative.

Define the following path-dependent quantities:

_< )

(u—1r)T +Vo?hBy

o2

l/

1 N

A; = szh zuhv
=0
T+h

o, = T,

Theorem 2 The IPA estimatord’, and F,; are unbiased
and are given by:

Fo(u) = 2L5(1,)(Y(")? +2L°Y{ A, (14)
Fy(u) = 2L5(Y)" = oY ){l, (Y — aYy")
+ A'/T]'{Ylu >0} — O[GI/T]_{Y;I >0}}. (15)
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Proof : We shall state the proof foF, only, since
the proof for F; is completely analogous. >From (9),

D2 (a, -

EVar[Lu(Au - 5

o K)?).

K)i] =
Let G(u) = L2(A, — K)%, andm € I, where[ is any
compact interval ofR. Then ZG(u) is given by (14),
and is seen to be a continuous functionwof Moreover,
its absolute value is uniformly bounded (farc U) by a
variable of the form

(wherew and C; to C are constants), which has a finite
expectation. Observing that from Taylor's Theorem

N
CpeP2By {Auz iSP + C3(Az)? [Cy + C5eC0BY]
i=1

(Glu+6)—G) 9
6 - Op

G (p)\

p=¢’
where¢ is betweenu and u + 8§, we get

0

0
=E 8UG(u)
from the Dominated Convergence Theorem. 0
Calculation of both IPA formulas can be done while
simulating one path with minimal extra effort: indeed
all quantities butA! are available at the end of the
N readings, and this extra summation adds a negligible
computational effort. Table 3 shows the result from
simulations performed to estimate the IPA derivatives
using M = 50,000 replications, which took 31 seconds
for each value ofu.

Our first simulations used

(n+1)M

Z Fy(k)

k=nM+1

Fn(un) =37

whereM independent replications were performed at value
u = u, to obtain F;(k),D;(k),k = 1,...,M,i = 2,4.
Then (13) is applied using, = ¢y/n. Itis straightforward

to verify the Assumptions for this case, whefg = 0.
While we obtained convergence to the correct optimal
the procedure was very slow. The reason for this is that
the values ofF, are very small: as it should be obvious
from Table 3, estimating the derivative is a harder problem
for the reduced variance estimatdy, than is estimating

F5. Yet the two estimators seem to have the same optimal

value foru, or at least very close, which happened for

a convex combination of the two derivatives, or:

| ()M
Fo(un) = pnos Z Fy(k)
k=nM+1
1 (n+1)M
+ (lfpn)ﬂ Z F4(k),
k=nM+1

where p, = pj, so thatlim, .. p, = 0. Theorem 1
asserts that,, — u* a.s. still holds, but the convergence
is accelerated (we used= 0.98).

Summarizing, the accelerated estimation is achieved
with:

1 m B
D5 = — D n)s
where D4 (u,,) is the sample mean estimator obtained with

M replications of Algorithm 1 at value,, as F,(u,) is
estimated.

Algorithm 2: Accelerated Simulation
1. Choose an initial value(0)

2. Forn=0,...m do:

(@) Setu=u(n)
(b) Form=1,...,M do
i. For0<i<N do:
A. GenerateZ; ~ N(0,1) and setB; =
B; + Z;,
B. Define X* = u,h + Vo2h Z;,
C. SetS;=S;_1eX, A4, =4,+8;,G, =
Gy * S;.
D. Setd' = A'+1i5;.
ii. Setd,=A4,/N,G,= NG, A" =AA/N,
calculateL, I
iii. Update the sample mean§, Y5, F> and F}
(c) Setp=pxpo,Fp=pF+(1—p)F,
(d) Updateu, 1 = u, — (eo/n)Fy

Figure 4 shows a plot of typical trajectories of the
values ofu,, vsn for our estimator, the solid line foK =
75,¢0 = 0.008, the long dashes foK = 50,¢y = 0.001
and the short dashes fdk = 30,¢, = 0.0001. Initial
values of u were chosen far from the optimum. The
update intervals were all of lengtif = 500, with m = 20
updates, and the computational effort was 6 seconds for
each simulation.

The variance ofD; is very close to the optimal one
in Table 1, since in all cases convergence was achieved

other parameter values as well. We therefore acceleratedwithin the first three or four iterations of the stochastic

the procedure by driving the stochastic approximation with
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Derivative Estimation via IPA
Value of u H Var(Dg) ‘ Fy ‘ Var(D4) ‘ Fy
0.2 4532 | —175.5£15.7 0.21 —2.08 £0.29
0.3 32.01 —-93.4+9.2 0.16 —1.13£0.17
0.4 25.44 —387+73 0.15 —0.28£0.35
0.5 23.69 3.890 +£8.3 0.17 0.254+0.77
0.6 26.05 45.44 +£12.0 0.20 0.34 £0.53
0.7 32.94 94.88 4 20.2 0.22 0.36 £0.78
0.8 45.80 168.82 +-41.6 0.49 6.29 £ 21.68

Table 3:r = 0.05,02 = 0.2, Sy = 50, K = 50,7 = 1.0 and M = 50, 000

Table 4: Statistical Properties the Self-Optimized Estimator

| r =0.05,02 = 0.2,50 = 50,7 = 1.0 and M = 10,000

Estimators

Method K= 30 K=50 K=75 K=90

D, 20.31+ 0.016| 5.64 4+ 0.012| 0.585+ 0.010| 0.14154 0.0085

Dy 20.31+ 0.014| 5.62 4 0.008| 0.573 4+ 0.003 | 0.13054 0.0018

Dy 20.31+ 0.015| 5.62 4+ 0.008| 0.578+ 0.004 | 0.1304+ 0.0017

Variance CPU Time

Method K= 30 K=50 K=75 K =290 in seconds

Dy 0.64 0.36 0.25 0.1869 5

Dy 0.53 0.15 0.03 0.0080 31

Ds 0.54 0.18 0.04 0.0081 6

2000

4000 6000 8000 10000

Figure 4: u,, vs n for three different systems.

Figure 5 gives the results of the algorithm for
K = 30,¢ = 0.0005 with different values of the initial
condition.

In practice, it may be difficult to know how to choose
the parameters. We suggest an initial guess atr and
proceed with the updates.

The estimated variances @¥5; are shown in Table 4,
as well as those o, and D, for ease of comparison.
The computational effort is also shown, including the time
required for the pilot simulations in order to set-up the
estimation of D4. Using our self-optimized method, we
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|
2000

N

4000 6000 8000 10000

Figure 5: Values ofu for K = 30 and differentu,.

can achieve nearly optimal variance in 6 seconds without
previous knowledge of the behaviour or preliminary tests.

For the casek = 90 (with & = 1.44, v* = 1.16), which

is deeply out of the money, the advantages of the change
of measure are more dramatic.

5 CONCLUDING REMARKS

We have presented a Self-Optimized estimator with Ac-
celerated Simulation. It is based on the usual control
variable estimator, but changes the measure in the hope
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of decreasing the variance, which is justified when the
option is out of the money. Our method is applicable in
conjunction with other methods, such as indirect simulation
using the put and call parity, quasi-MonteCarlo methods,
and antithetic variables. We are currently extending our
results to include other financial instruments besides Asian
Options.

The idea of speeding up the simulation by adjusting

the parameter of the change of measure can of course

be applied to other simulations outside derivative pricing,
including simulation of stochastic processes with memory.
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