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ABSTRACT

This paper studies the application of the time segmentati
parallel simulation approach to efficient simulation o
simple manufacturing queueing systems, namely syste
of queues in tandem with manufacturing blocking at eac
station. We discuss the difficulties in the way of applyin
the time segmentation method to this class of manufacturi
systems and demonstrate that the time segmentation met
can efficiently provide very close approximate simulatio
results.

1 INTRODUCTION

Discrete event simulation has proven to be an effecti
tool in the study of complex real world systems. Howeve
because of the complexity of many discrete event system
obtaining reliable and accurate simulation results for su
systems may require a large amount of computation
resources. The goal of a parallel simulation method
to improve the efficiency of simulation experiments b
distributing the computational load of these experimen
among multiple processors. In this paper we discuss
parallel simulation method, namely the time segmentatio
approach, that can be used to simulate long sample pa
of several classes of discrete event systems. Furthermo
we investigate the application of the time segmentation a
proach to the simulation of a class of simple manufacturin
queueing systems.

In recent years, several parallel simulation method
have been proposed and extensively studied. Most
these parallel simulation methods can be classified in
two main categories:distributed simulation methodsand
time parallel simulation methods. In distributed simulation,
the system under study is partitioned into a number
subsystems and a separate processor is assigned to sim
the activities of each subsystem. The simulation algorith
establishes a communication mechanism between differ
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processors to guarantee that valid sample paths are be
simulated. In time parallel simulation, the goal is to
distribute the computational load of simulating a lon
sample path between multiple processors. This task
accomplished by partitioning the time horizon of the samp
path into smaller segments and assigning a processor
each segment. Processors that are assigned to simu
different segments of a sample path need to communic
to guarantee that a valid sample path is being simulate

It is clear that the choice of an appropriate paralle
simulation method for a specific system is directly relate
to the characteristics of the system under study. Co
prehensive surveys and comparative analyses of rec
developments in parallel simulation can be found in Fuj
moto and Nicol (1994) and Chapter 2 of Hoseyni-Nasa
(1998), among others.

The time segmentation approach is a time parallel sim
ulation method that was originally proposed by Andradóttir
and Ott (1995). This method can be applied to efficient
simulate long sample paths of many different models
discrete event systems. Applications of this method
efficient simulation of queueing models of communicatio
networks have been studied by Andradóttir and Ott (1995)
and Hoseyni-Nasab and Andradóttir (1996, 1997). In this
paper, we describe the time segmentation method a
study its application to parallel simulation of a tandem
network of queues with manufacturing blocking at eac
station (i.e., a transfer line). We show that despite the fa
that our model does not fully satisfy all the condition
required for valid application of the time segmentatio
method, the time segmentation method can be used
produce approximate simulation results efficiently.

The outline of this paper is as follows: In Section 2
we present the time segmentation method and discuss
conditions that are required for valid application of thi
method. In Section 3 we propose a model for transfer line
present an algorithm for simulating sample paths of th
model, and discuss the difficulties in the way of applying th
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time segmentation method to this model. Finally, Section
contains the results of a number of simulation experime
that indicate that the time segmentation method can
used to simulate long sample paths of transfer lines a
produce exact or approximate simulation results efficient

2 THE TIME SEGMENTATION APPROACH

In this section we present the time segmentation meth
and describe how this method can be used to efficien
simulate long sample paths of discrete event systems.
will also discuss factors that affect the applicability an
efficiency of the method. For more details on the tim
segmentation approach, the reader is referred to Andradóttir
and Ott (1995).

Suppose that we would like to generate a sample p
of a discrete event systemS on the interval[0, T ]. For all
t ≥ 0 and all sample pathsA of the systemS, let NA(t)
denote the state of the system at timet in sample path
A. Suppose that it is possible to generate multiple va
sample paths of the system using a common seque
of potential events. Furthermore, suppose that there e
sample pathsl andu, generated using a common sequen
of potential events, such that by the time sample pathl
andu couple(i.e., whenNl(t) = Nu(t)), all other sample
paths that are being generated with the same sequenc
potential events will have also coupled with sample pat
l and u. Moreover, suppose that after the coupling o
the sample pathsl and u, the state of the system in al
sample paths that are generated with a common seque
of potential events is identical. We refer to sample pat
l and u as the bounding sample paths.

Now, suppose that it is possible to conduct th
simulation of multiple sample paths of the system using
common sequence of potential events in such a way tha
NA(0) ≤ NB(0), whereA andB are two arbitrary sample
paths of the system, thenNA(t) ≤ NB(t), for all t > 0
(we refer to this property as themonotonicity condition).
Then, the existence of bounding sample pathsl and u
is guaranteed if we assume that there exist initial sta
Nl(0) and Nu(0) such thatNl(0) ≤ NA(0) ≤ Nu(0), for
any sample pathA. Clearly, these two properties imply
that the states of the system in sample pathsl andu bound
the state of the system in all sample paths simulated w
the same sequence of potential events, at all times, fr
below and above, respectively. This guarantees that
the time sample pathsl and u couple, all other sample
paths that are being generated with the same sequenc
potential events will have also coupled with sample pat
l and u.

Assuming that it is possible to simulate multipl
sample paths of the system using a common seque
of potential events and that bounding sample pathsl
1488
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and u exist, we proceed as follows: We partition th
time horizon of the simulation experiment intoP equal
segments,[0, T/P ], . . . , [(P − 1)T/P, T ], whereP is the
number of available processors. Suppose that intervai
refers to the interval[(i − 1)T/P, iT/P ], for 1 ≤ i ≤ P .
Each processor is assigned to one segment of the sam
path and is responsible for generating the sample p
over a time period of lengthT/P corresponding to that
segment. In order for a processor to initiate the simulati
of the sample path on its segment, the processor ne
to know the state of the system at the end of the sam
path on the previous segment.

We start the simulation of the sample path on th
interval [0, T/P ] from the true initial state of the sample
path. On the other subintervals, the initial states
the sample path are not known at the beginning of t
simulation period (note that all processors start process
at the same time). The processors assigned to segm
2, . . . , P of the sample path start simulating boundin
sample pathsl and u using a common sequence o
potential events for the sample paths of each interval. F
i = 2, . . . , P , let

T i
c = inf

{
t ∈

[
(i − 1)T

P
,
iT

P

]
: Nl(t) = Nu(t)

}

be the coupling time of sample pathsl and u generated
by processori. If T i

c < iT/P , then Nl(t) = Nu(t), for
all t ∈ [T i

c , iT/P ]. This means that after the boundin
sample paths of the system on subintervali couple, the
processor corresponding to that interval can start collect
data (because the state of the system no longer depe
on the initial state of the sample path). Therefore, t
information collected on the interval[T i

c , iT/P ] is valid
data for the true sample path.

If sample pathsl andu on intervali − 1 couple prior
to the end of that interval, then the real initial state of th
sample path on intervali is the same as the final stat
of the coupled bounding sample paths on intervali − 1.
Therefore, to complete the sample path on intervali, we
start the simulation from the true initial state (given b
the final state of the coupled bounding sample paths
interval i−1) and simulate the sample path on the interv
[(i − 1)T/P, min

{
T i

c , iT/P
}
] using the same sequenc

of potential events as the bounding sample paths of
interval.

On the other hand, if sample pathsl andu on interval
i−1 are not coupled prior to the end of that interval, the
we again simulate two (bounding) sample pathsl′ and u′

on interval i starting in the final statesNl((i − 1)T/P )
and Nu((i − 1)T/P ) of sample pathsl and u on interval
i − 1 and using the same sequence of potential events
the one used to generate sample pathsl andu on interval
i. By repeating this process, possibly several times, a



Time Segmentation Parallel Simulation of Tandem Queues with Manufacturing Blocking

e
the

hs

th
e
e

th
g

th

e
m.
e

on

d
le
of
to
e

f
s

n
re
n
m

,

s
e

-

-
t
e.
n

ct
o
ds
n
.
as
s

r

d

e
d
).
rs

s

a
re

n
.
ent

l

n

combining the data collected on all the subintervals, w
can generate a complete sample path of the system on
interval [0, T ].

In the above procedure, if all the bounding sample pat
l and u couple prior to the end of their corresponding
intervals, then the true initial state of the sample pa
on each subinterval will be known upon completing th
simulation of the coupled bounding sample paths on th
previous interval. Also, it is clear that if the coupling times
are small, then a larger portion of the true sample pa
will be generated during the simulation of the boundin
sample pathsl and u of the subintervals. This suggests
that the amount of time spent on generating a sample pa
of S on the interval[0, T ] using the time segmentation
approach is an increasing function of the magnitude of th
coupling times of the bounding sample paths of the syste
Therefore, the magnitude of the coupling times can b
used to measure the efficiency of the time segmentati
approach.

3 SIMULATION MODEL AND ALGORITHM

In this section we present a model for transfer lines an
present an algorithm that can be used to simulate multip
sample paths of this model using a common sequence
potential events. Furthermore, we discuss the extent
which this model satisfies the conditions required for th
applicability of the time segmentation method.

Suppose thatS is a tandem network ofn > 1 single
server queueing stations with an infinite buffer in front o
station 1 and finite buffers in front of the other station
in the system. LetBi be the size of the buffer in front
of station i, for i = 2, . . . , n. Moreover, suppose that we
always have an unlimited number of jobs in the buffer i
front of station 1 (i.e., as soon as we have a departu
from station 1, the server at station 1 starts working o
a new job). Finally, suppose that jobs leave the syste
after completing service at stationn (i.e., there is always
room for departing jobs after stationn), and that stations
1 through n − 1 operate under the following blocking
mechanism:

Manufacturing Blocking: Upon completing service at
station i, i = 1, . . . , n − 1, a job attempts to move to
station i + 1. If there is no room at stationi + 1 for
this job (either in the buffer or in the service area)
the job is forced to wait at stationi until there is room
for it at stationi + 1. The server of stationi cannot
operate during this waiting time (i.e., the server i
blocked) and it will resume operating as soon as th
departing job moves to stationi + 1, provided that
there is a job waiting to enter service at stationi.
1489
We refer to a systemS that satisfies all the above conditions
as a transfer line.

The manufacturing blocking mechanism creates diffi
culties in the way of modeling and simulating the system
S by time segmentation. In particular, knowing the num
ber of jobs at the stations of a transfer line does no
completely determine the state of the system at that tim
Furthermore, the occurrence of an event at one statio
of a manufacturing queueing system can potentially affe
the state of many other stations. Therefore, in order t
capture the dynamics of the system properly, one nee
to develop a model which contains more information tha
merely the number of jobs at the stations in the system

We now describe one of the standard models that h
been studied in the literature for analyzing transfer line
(see Chapter 6 in Buzacott and Shantikumar, 1993).

Transfer Line Model: Suppose thatS is a transfer line
(as defined at the beginning of this section) and, fo
all t ≥ 0, let K(t) = (K1(t), . . . , Kn−1(t)), where
Ki(t) is the number of jobs that have been serve
by the server at stationi but have not yet completed
service at stationi + 1 at time t, for i = 1, . . . , n− 1.

To determine the state of a station completely, w
need to know both the number of jobs at the station an
the state of the server of the station (i.e, blocked or not
It can be shown that when the service times of all serve
are exponentially distributed, thenK(t) completely and
uniquely determines the state of the system at timet. Note
that the state of the last station (i.e., the number of job
and the state of the server of stationn) at time t can be
completely determined by the value ofKn−1(t) and the
state of any stationi, i = 1, . . . , n − 1, at time t can be
uniquely determined using the state of stationi+1 at time
t and Ki(t). Therefore, we can inductively determine the
states of all stations at timet using the vectorK(t).

Suppose that the service times of stationi are
independent and exponentially distributed and thatµi

denotes the rate of the service times at stationi, for
i = 1, . . . , n. Then, the stochastic process{K(t)} is
clearly a continuous time Markov chain. The following
algorithm explains howM sample paths of the Markov
chain {K(t)} can be generated simultaneously using
common sequence of potential events. More details a
given in Hoseyni-Nasab (1998). In Algorithm 3.1,T s

i and
T denote the time of the next potential service completio
at stationi and the elapsed simulation time, respectively
Furthermore, we assume that we can generate independ
sequences{Us

i (k)}, i = 1, . . . , n, of independent and
uniformly distributed random variables on the interva
[0, 1]. The sequence{Us

i (k)} will be used to generate the
sequence of potential service completion times at statio
i, for i = 1, . . . , n. Finally, for i = 1, . . . , n, let ns

i be the
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number of uniform random numbers from the sequenc
{Us

i (k)} that have been used to generate observations
the potential service times at stationi.

Algorithm 3.1 (Simulation of Markovian Transfer
Lines)

Step 0: Initialization.
For m = 1, . . . , M , select a feasible starting state
(Km

1 , . . . , Km
n−1) for the systemS. For i = 1, . . . , n,

generateUs
i (1) and let T s

i = − log(Us
i (1))/µi. Let

T = 0 and ns
i = 1, for i = 1, . . . , n. Go to Step 1.

Step 1: Determination of the next event.
Let T ∗ = mini=1,...,n {T s

i }. If T ∗ = T s
i , where

i ∈ {1, . . . , n}, then lete∗ = i. If 1 < e∗ < n, then
go to Step 2. Ife∗ = 1, then go to Step 3. Ife∗ = n,
then go to Step 4.

Step 2: Service completion at statione∗ with 1 < e∗ <
n.
Let T = T ∗. For m = 1, . . . , M , if Km

e∗−1 > 0 and
station e∗ is not blocked, then letKm

e∗ = Km
e∗ + 1

and Km
e∗−1 = Km

e∗−1 − 1. Let ns
e∗ = ns

e∗ + 1 and
T s

e∗ = T ∗ − log(Us
e∗(ns

e∗))/µe∗ . Go to Step 1.

Step 3: Service completion at statione∗ = 1.
Let T = T ∗. For m = 1, . . . , M , if station e∗ is not
blocked, then letKm

e∗ = Km
e∗ + 1. Let ns

e∗ = ns
e∗ + 1

and T s
e∗ = T ∗ − log(Us

e∗(ns
e∗))/µe∗ . Go to Step 1.

Step 4: Service completion at statione∗ = n.
Let T = T ∗. For m = 1, . . . , M , if Km

e∗−1 > 0,
then letKm

e∗−1 = Km
e∗−1 − 1. Let ns

e∗ = ns
e∗ + 1 and

T s
e∗ = T ∗ − log(Us

e∗(ns
e∗))/µe∗ . Go to Step 1.

Algorithm 3.1 explains how multiple sample paths
of the transfer lineS can be generated simultaneously
using a common sequence of potential events. In ord
to apply the time segmentation approach to our transfe
line model (using Algorithm 3.1), we need to identify the
bounding sample paths. One difficulty with applying the
time segmentation method to the above model is that the
is not a unique sample path that would initially bound al
other sample paths from above. For example, consider tw
sample pathsK1 and K2 that start from the initial states
K1(0) = (B2 + 1, B3 + 2, B4, B5 + 2, B6, . . . , B

1
∗) and

K2(0) = (B2 + 2, B3, B4 + 2, B5, . . . , B
2
∗), respectively,

whereBj
∗ = Bn + 1 or Bn + 2, if Kj

n−2 = Bn−1 + 2 or
Bn−1, respectively, forj = 1, 2. It is clear that neither one
of these sample paths bounds the other one from abov
However, the initial states of the sample pathsK1 and
K2 together bound all the other initial states from above
This suggests that we can use multiple upper boundin
sample paths in our time segmentation simulation. We wi
1490
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investigate the effects of using multiple upper boundin
sample paths in the simulation results in Section 4.

Another difficulty with applying the time segmentation
method to our transfer line model is lack of monotonicity
More specifically, if we are simulating sample pathsA
andB using Algorithm 3.1 and sample pathA is initially
below sample pathB, then we are not guaranteed tha
sample pathA will stay below sample pathB throughout
the simulation process (i.e., sample pathA may eventually
cross sample pathB). This implies that if we initially
bound all sample paths between a number of boundin
sample paths, then the coupling of the bounding samp
paths may not necessarily guarantee the coupling of th
other sample paths. The following proposition exactly
determines the situations where two sample paths cou
cross each other without getting coupled. This result
proved in Hoseyni-Nasab (1998).

Proposition 3.1 Suppose thatS is a transfer line with
n stations and independent and exponentially distribute
service times at each station. LetA and B be two
sample paths of the system and for allt ≥ 0, let
(a1(t), . . . , an−1(t)) and (b1(t), . . . , bn−1(t)) denote the
states of the system at timet in sample pathsA and
B, respectively. Let sample pathsA and B be simulated
simultaneously by Algorithm 3.1 and supposeai(0) ≤ bi(0),
for i = 1, . . . , n − 1. Furthermore suppose that the first
scheduled event is a service completion at stationj
that is scheduled to occur at timet0. Then we have
ai(t0) ≤ bi(t0), for i = 1, . . . , n − 1 if and only if the
following condition is not satisfied (i.e., if and only if
at least one of the logical statements of the following
condition does not hold):

Crossing Condition: j < n, aj(0) = bj(0) = Bj+1+1,
station j in sample pathB is blocked at timet = 0
and stationj in sample pathA is not blocked at time
t = 0.

Proposition 3.1 describes the only situation in which
sample paths of the transfer lineS can cross each other.
Since a number of extreme conditions need to be satisfi
simultaneously in order for crossing to take place, we expe
that sample paths generated in parallel by Algorithm 3.
will rarely cross in practice (the numerical results given
in Section 4 support this conclusion). Moreover, we ca
modify the time segmentation approach in such a wa
that crossing is nonexistent for our transfer line model. A
thorough study of this issue is a subject of our curren
research.

4 NUMERICAL RESULTS

In this section we present a selection of numerica
results aiming at studying the effectiveness of the tim
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Table 1: Effects of Multiple Upper Bounding Sample Pa
in Time Segmentation Simulation of Markovian Trans
Lines whenn = 5

Buffer Coupling Times of Coupling Times of
Size, Upper Bounding All Bounding
B Sample Paths Sample Paths

(95% C.I.) (95% C.I.)

5 12.79 (± 3.19) 60.00 (± 3.87)
10 21.85 (± 6.37) 154.08 (± 12.11)
20 30.97 (± 11.09) 506.63 (± 38.40)

segmentation method in efficient simulation of trans
lines. More specifically, we present results that investig
the effects of using multiple upper bounding sample pa
Furthermore, we study the efficiency of the approach
providing estimates for the expected coupling times of
systems under study.

In all of our experiments we have simulated a trans
line with n queueing stations and a common buffer capa
B at each stationi, for i = 2, . . . , n. Furthermore, in al
of our experiments we use the service rateµi = 1, for
i = 1, . . . , n. The confidence intervals (c.i.) are obtain
by simulating 100 independent replications of the sam
paths of the systems under study. In all simulations
have used Algorithm 3.1 for generating multiple sam
paths of the systems under study using a common sequ
of potential events.

Our first experiment aims at better understanding
effects of using multiple upper bounding sample paths
the simulation results. The simulations are conducted
n ∈ {5, 10} andB ∈ {5, 10, 20}. We have used Algorithm
3.1 with M = 5 to simulate sample paths 1, 2, 3, 4, and
starting from the initial states(0, . . . , 0), (B−1, . . . , B−1),
(B, . . . , B), (B + 1, B + 2, B, B + 2, B, . . . , B1

∗) and
(B + 2, B, B + 2, B, . . . , B2

∗), respectively, whereBj
∗ =

B + 1 or B + 2, if Kj
n−2 = B + 2 or B, respectively, for

j = 1, 2. Clearly sample path 1 is the lower boundi
sample path and sample paths 4 and 5 initially bound
other sample paths from above. The results are prese
in Tables 1 and 2.

In Tables 1 and 2, the second column prese
confidence intervals for the expected coupling time
the upper bounding sample paths and the third colu
presents confidence intervals for the expected coup
time of all bounding sample paths. In all cases,
middle sample paths (i.e., sample paths 2 and 3) h
coupled with the bounding sample paths prior to
coupling of all the bounding sample paths. Consider
the crossing condition, we selected the initial states
the middle sample paths near the upper boundary
the state space in order to increase the likelihood
14
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Table 2: Effects of Multiple Upper Bounding Sample Path
in Time Segmentation Simulation of Markovian Transfe
Lines whenn = 10

Buffer Coupling Times of Coupling Times of
Size, Upper Bounding All Bounding
B Sample Paths Sample Paths

(95% C.I.) (95% C.I.)

5 28.12 (± 6.48) 181.17 (± 14.33)
10 46.01 (± 11.69) 466.14 (± 38.34)
20 58.20 (± 17.27) 1,405.55 (± 102.36)

crossings in the simulation process. The results indica
that the upper bounding sample paths couple early
the simulation process. Furthermore, the coupling of th
bounding sample paths appears to guarantee the coupl
of the middle sample paths with high probability. This
suggests that we can use the time segmentation approa
with these bounding sample paths and expect to obta
simulation results that are very close approximations fo
the performance measures of interest.

Table 3: Dependence of the Expected Coupling Times o
Transfer Lines on the Buffer Sizes and the Number o
Stations in the System

Number of Buffer Coupling Times
Stations,n Size,B (95% C.I.)

5 5 60.00 (± 3.87)
5 10 154.08 (± 12.11)
5 20 506.63 (± 38.40)
5 40 1,711.80 (± 137.19)

10 5 181.17 (± 14.33)
10 10 466.14 (± 38.34)
10 20 1,405.55 (± 102.36)
10 40 4,999.01 (± 345.22)

20 5 491.94 (± 33.45)
20 10 1,313.44 (± 82.20)
20 20 3,903.43 (± 266.25)
20 40 12,560.84 (± 1,016.57)

Our second set of simulation results investigate
the efficiency of the time segmentation approach b
studying the behavior of the expected coupling times
The simulations are conducted forn ∈ {5, 10, 20} and
B ∈ {5, 10, 20, 40}. We have used Algorithm 3.1 with
M = 3 to simulate bounding sample paths 1, 4, and
(note that our previous results suggest that all sample pat
that are simulated with a common sequence of potenti
events are likely to couple no later than the coupling tim
of these three bounding sample paths). The results a
presented in Table 3.
91
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As we see in Table 3, the expected coupling time
of the system do not appear to grow linearly with respe
to the number of stations or the buffer capacities of th
system. However, the expected coupling times appear
grow no faster than quadratically with respect to bothn
and B. Depending on the length of the sample path th
needs to be generated, these numerical results can be u
as a guideline to determine what choices of the length
the segments of the time segmentation simulation have
property that the coupling of the bounding sample pat
prior to the end of the segments is very probable. Furth
studies of the dependence of the coupling times of trans
lines on the parameters of the system is a subject of o
future research.
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