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ABSTRACT

Over the past several years importance sampling
conjunction with regenerative simulation has been prese
as a promising method for estimating reliability parame
in highly reliable systems. Existing methods fail
provide benefits over crude Monte Carlo for the analy
of systems that contain significant component redundan
This paper presents refined importance sampling techni
along with a generalized regenerative model. The propo
methods have solid theoretical properties and work w
in practice.

1 INTRODUCTION

Consider a system withnc components that are subject
failure and repair andnr repairmen. Suppose that ea
component has a single operating state denoted by1 and
a single failed state denoted by0. The system is modele
by a networkG = (V, A), where A = {1, . . . , a} is the
set of links andV is the set of vertices. Linki contains
ui components andu1 + · · · + ua = nc. Let Xi(t) be the
number of operating components on linki at timet and let
Ri(t) be the number of repairmen working on linki at time
t. Assume that only one repairman is needed to repa
failed component. Clearly,Ri(t)+Xi(t) ≤ ui for all i ∈ A
andR1(t) + · · · + Ra(t) ≤ nr. The state of the system
described by the stochastic processY (t) = (X(t), R(t)) =
(X1(t), . . . , Xa(t), R1(t), . . . , Ra(t)). The state spac
for X(t) is ⊗a

i=1INui
, where INj = {0, . . . , j} and ⊗

denotes a Cartesian product. The state space forR(t) is
{r ∈ (INnr

)a :
∑

i∈A ri ≤ nr} so the state space forY (t) is
S = ⊗a

i=1INui × {r ∈ (INnr )
a :

∑
i∈A ri ≤ nr}. The time

to failure for each component on linki is an exponentia
random variable with rateλi. Similarly the repair time for
a component on linki is an exponential random variab
with rate µi. All events are assumed to be independe
Consequently, the sojourn time in a generic state(x, r) =
1479
d

.
s

(x1, . . . , xa, r1, . . . , ra) ∈ S is an exponential random
variable with rateq(x,r) =

∑
i∈A(xiλi + riµi).

The structure functionφ is defined by

φ(x, r) =
{

1 if the system operates in state(x, r)
0 if the system is failed in state(x, r).

For a review of reliability definitions, see Barlow and
Proschan (1981). The definition of operating and failed
states depends on the performance measure(s) unde
consideration.

Assume thatXi(0) = ui and Ri(0) = 0, for i =
1, . . . , a. Let u = (u1, . . . , ua) and 0 = (0, . . . , 0). Now
define the setF = {(x, r) ∈ S : φ(x, r) = 0} of failed
states and the time to failure byΓ = inf{t : t > 0, Y (t) ∈
F}. The limit U = limt→∞ P [Y (t) ∈ F ] (when it exists)
is called the long-run system unavailability whereasE(Γ)
is the expected time to system failure. Although the system
is Markovian, the exact evaluation of these measures and
the computation of tight bounds are difficult problems even
for moderate-scale systems due to the size of the state spac
(see Ball et al. 1995). Consequently, computer simulation
frequently becomes the most suitable method for their
estimation. The demand for modern communications and
computer systems to be highly reliable makes the entrance
of Y (t) to the setF a rare event. This property causes
crude (standard) Monte Carlo simulation to be inefficient
in that it requires prohibitively long runs to produce precise
estimates.

Based on the above assumptions, the processY =
(X, R) is regenerative with return state(u,0), and
regeneration epochs0 = T0 < T1 < T2 < · · ·, where
Ti is the time of the ith entry into state(u,0) and
limn→∞ Tn = ∞ w.p.1 (for a review of results for
regenerative processes see Serfozo 1990, pp. 41-56). Le
Wi = Ti − Ti−1, i ≥ 1, be the length of cyclei.

Let 1(·) denote the identity function, and letZi =∫ Ti

Ti−1
1(Y (t) ∈ F) dt denote the timeY spends in the set

F during the cycle[Ti−1, Ti). Then the limiting system
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unavailability is given by

U =
E(Z1)
E(W1)

. (1)

In addition, the mean time to failure (MTTF) starting from
state (u,0) can be expressed as a ratio of expectatio
(see Shahabuddin et al. 1988):

E(Γ) =
E[min(W1,Γ)]

P (Γ < W1)
=

E[min(W1,Γ)]
E[1(Γ < W1)]

. (2)

Suppose that one simulatesY overn cycles and collects
the data(Zi, Wi), i = 1, . . . , n. Let Z̄ and W̄ be the
respective sample means ofZi andWi. Then the classical
regenerative estimator of the limiting unavailability is

Û = Z̄/W̄

and confidence intervals forU can be computed by a
variety of methods (see Iglehart 1975).

The remainder of this paper is organized as follow
Section 2 reviews the main issues related to the imp
tance sampling method and existing methods. Section
proposes an alternative process with correlated cycles. S
tion 4 describes the proposed methods, Section 5 conta
experimental results, and Section 6 contains conclusion

2 ANALYZING HIGHLY RELIABLE SYSTEMS

When the system under study is highly reliable (e.g., t
component failure rates are significantly smaller that t
respective repair rates) or the system structure does not h
small minimum cuts (see Barlow and Proschan 1981), t
crude Monte Carlo estimation ofU and the MTTF based
on regenerative cycles with return state(u,0) presents
problems since cycles containing failures are infrequen

2.1 Importance Sampling

One way to overcome this problem is to use theimportance
sampling (IS) method. Let(Ω,=, P ) be the space of
sample paths of the processY . The IS method attempts to
produce an alternative estimator forEP (Z1) (the subscript
“P ” indicates the probability measure) that has small
mean squared error (MSE). LetP ′ be another probability
measure on= such thatP is absolutely continuous with
respect toP ′. Then one can write

EP (Z1) =
∫

Ω
Z1(ω)

P (dω)
P ′(dω)

P ′(dω) (3)

=
∫

Ω
Z1(ω)L1(ω)P ′(dω) = EP ′(Z1L1),

where the likelihood ratioL1(ω) is the Radon-Nikodym
derivative ofP with respect toP ′ (for a detailed discussion
see Royden 1968, pp. 276–278).
148
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Equation (3) forms the basis of IS. Suppose that o
draws n independent samplesZ ′

i(ω), i = 1, . . . , n, with
probability measureP ′. Then the estimator

Ẑ =
1
n

n∑
i=1

Z ′
i(ω)Li(ω).

is clearly unbiased. If in additionEP ′ [(Z ′
1L1)2] < ∞,

then a confidence interval forEP (Z1) can be derived by
using the central limit theorem.

In general, one would like to chooseP ′ so that
VarP ′(Z1L1) < VarP (Z1) or, equivalently,EP ′ [(Z1L1)2]
= EP (Z2

1L1) < EP (Z2
1 ). More specifically, for the

problems studied here, one would like to make th
probability of system failure (within a cycle) as large
as possible while maintaining these properties. Th
implies that importance sampling probabilities should b
as large as possible whenZ1(ω) is positive forcing the
associated likelihood ratios to be small.

2.1.1 The Balanced Failure Biasing (BFB) Method

This method was proposed by Shahabuddin (1994).
models the probability that the next event is a compone
failure by a single biasing parameter. Given that a
component failure event occurred, the event is allocat
to links uniformly. Unfortunately, the resulting likelihood
ratios can become unstable (see Shultes 1997, Chapte

2.1.2 Measure Specific Dynamic Importance
Sampling

The computation of confidence intervals for (1) and (2
requires the estimation of covariance terms. Using separ
simulation runs for estimating the numerator and th
denominator eliminates this problem and allows the u
of separate importance sampling distributions in ea
simulation run.

When simulating highly reliable systems, the primar
difficulty with crude Monte Carlo methods is infrequen
observations of system failure. Once a system fails, high
reliable systems tend to rapidly return to full functionality
Hence, it is reasonable to apply importance sampli
(within a cycle) up to the time of system failure and the
utilize crude Monte Carlo sampling for the remainder o
the cycle.

These two ideas were introduced by Goyal et a
(1987) and are jointly referred to asmeasure specific
dynamic importance sampling(MSDIS). These same ideas
are used within the new importance sampling strateg
presented here.
0
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3 A SEMI-STATIONARY PROCESS

To overcome problems associated with crude Monte Car
regenerative simulation, one can consider the stationa
portion of Y and “cycles” that start (and end) in a set of
statesD such that transitions withinD do not occur. An
example is the set of states withk failed components (k is
smaller than the size of the smallest minimal cut for the sta
(u,0)). We redefineTi to be the time of theith visit of Y
to D (Wi = Ti −Ti−1 remains the length of theith cycle).
The processζ̃i(t) = Y (Ti−1 + t)1(t ∈ [0, Wi)) contains
the information forY in the interval [Ti−1, Ti). Let Si

be the sequence of states visited byY during [Ti−1, Ti),
let H(Si) be the respective sequence of holding times
and let η̃i = (Si, H(Si)) be an alternative representation
of ζ̃i. One can show that the process{(Wi, η̃i) : i ≥ 1}
is stationary (see Shultes 1997, Lemma 2.2.1), and th
{(Wi, ζ̃i)} is stationary. If we assume that{(Wi, η̃i)}
is ergodic, part (i) of Theorem 2.2 from Serfozo (1972
implies that Y is semi-stationarywith respect to{Ti}
and part (iv) of the same theorem with Theorem 3.
from Serfozo (1972) implies that the limiting system
unavailability can be written as

U = lim
t→∞

1
t

∫ t

0
1(Y (z) ∈ F) dz =

E(Z1)
E(W1)

w.p.1.

Furthermore, since{(Wi, ζ̃i)} is φ-mixing (see Shultes
1997, Lemma 2.2.2), a confidence interval forU can be
computed by the method of batch means (see Fishm
1996, Chapter 6).

Hordijk et al. (1976) showed that it is sufficient
to simulate the embedded Markov chain and replac
exponential holding times with the corresponding expecte
value when utilizing regenerative methods to estimat
steady-state quantities. These results remain applica
when one utilizes semi-stationary processes instead
regenerative processes (see Shultes 1997, Theorems 3
and 3.3.3).

Analyzing the stationary portion ofY in terms of
a semi-stationary process and cycles that begin and e
in D is more complicated than regenerative simulation
The limiting hitting distribution forD, known as aPalm
distribution, must be maintained. Within an importance
sampling procedure, the simplest approach is to use
crude Monte Carlo simulation to generate sequential cyc
starting points in the setD and use these choices of
starting points for the cycles generated via importanc
sampling (i.e., at the end of an importance sampling cyc
the system jumps to the next crude Monte Carlo startin
state). This procedure is loosely related to the procedu
for simulatingA-cycles presented by Nicola et al. (1993)
148
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4 BALANCED LIKELIHOOD RATIO METHODS

The basic idea behind the proposed methods is that
likelihood ratios associated with individual events within
cycles (hereafter calledevent likelihood ratios) are forced
to be bounded from above, then the likelihood ratios
associated with regenerative and semi-stationary cycle
(the product of event likelihood ratios for events that form
a cycle) are also bounded from above.

Other authors have considered the problem of boundin
likelihood ratios. In particular, Juneja (1993) explored
methods of bounding likelihood ratios associated with
regenerative cycles. His method built on BFB by providing
an algorithm for choosing a biasing parameter that forced
the resulting likelihood ratios to be bounded. However,
the method does not eliminate the problems componen
redundancies cause for failure biasing methods.

4.1 Basic Technique

The proposed methods represent a significant departu
from the failure biasing methods. The basic technique is
based on some simple observations: Since every compone
repair must be preceded by a component failure, one ca
force the product of the respective pairs of event likelihood
ratios to be one. This assignment causes the likelihoo
ratio associated with a cycle to be bounded from above
by one.

Let p(x, r) denote the transition probability from state
(x, r) to (x − ei, r), for somei ∈ A, and letp′(x, r) be
the respective importance sampling probability.

4.1.1 Implementation

Assume thatF does not contain states with a single
failed component. As a result, the first two events in any
(regenerative or semi-stationary) cycle that includes a visi
to F must be components failing. This guarantees that a
least one of the corresponding event likelihood ratios is
less than one.

A system is said to bebalanced if all component
failure rates are of the same order of magnitude (i.e.
within a factor of ten). Suppose that the set of links
is partitioned into setsA1, A2, . . . such that the setAj

contains all links with failure rates of thejth largest order
of magnitude. Throughout the simulation of a cycle, we
store the event likelihood ratios associated with componen
failure events fromAj in a stackLj . Let `j be the event
likelihood ratio on the top of stackLj . Then p′(x, r) is
set to

p′(x, r) = 1 − q−1
(x,r)

∑
j

`j

∑
i∈Aj

riµi.

If the event is a component failure in setAk, we push
the event likelihood ratio containingp(x, r)/p′(x, r) onto
1
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stackLk. Otherwise, we pop the top element of the sta
corresponding to the component completing repair a
discard it. There are several ways to allocate compon
failure events to operating components in the netwo
Some procedures lead to estimates with bounded rela
error (BRE).

4.1.2 Bounded Relative Error

Estimates with BRE deserve attention because the am
of computational effort (sample size) required to yie
a desired level of accuracy (relative confidence inter
half-width) remains bounded as the quantity of inter
approaches zero; see Fishman (1996), Nakayama (19
and Shahabuddin (1994). This is important in the study
highly reliable systems as quantities of interest (e.g.,
mean downtime within a cycle) go to zero as compon
failure rates approach zero.

Theorem 1 When utilizing BLR estimation procedure
for the estimation ofE(Z1) and P (Γ < W1):

(a) For balanced systems, the allocation of compon
failure events to links proportionally to the rate o
failure on each link yields BRE.

(b) For non-balanced systems, the allocation of compon
failure events to links proportionally to the number
operating components on each link yields BRE.

(c) Any allocation method that is independent of t
component failure rates will yield BRE.

The proof of Theorem 1 appears in Alexopoulos a
Shultes (1998). Numerical results for a BLR algorith
utilizing case (a) in Theorem 1 are shown in Section 5

4.2 Utilizing Structural Information

One can use minimum cuts to identify events on shor
paths to failure. See Ahuja et al. (1996) for a revie
of network flow properties and Section 5.5.2 of Shul
(1997) for efficient ways to maintain information abo
minimum cuts. LetC−(x, r) be the set of linksi on
a minimum cut for the network state(x, r), and let
P (C−(x, r)) be the probability that the next event is
failure in C−(x, r). Let Cc

−(x, r) = A − C−(x, r), and
let P (Cc

−(x, r)) be the probability that the next event
a failure in Cc

−(x, r). Similarly, defineC+(x, r) as the
set of links i with components undergoing repair that a
on a minimum cut for network state(x + ei, r), and let
P (C+(x, r)) be the probability of a state transition from
(x, r) that lengthens the shortest path to failure by o
Let Cc

+(x, r) be the set of links not inC+(x, r) with
components completing repair.
1482
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4.2.1 Implementation Issues

We store the event likelihood ratios in stacks: StackLj

contains event likelihood ratios for components inAj that
were on a minimum cut when they failed (i.e., selecte
from C−(x, r)), and stackLc

j contains event likelihood
ratios for components inAj that were not on a minimum
cut. Thestatusof the links in the network depends on th
current state of the system. The following heuristic tak
this into account: For each component inAj completing
repair, if the component is inCc

+(x, r) or stack Lj is
empty, then we multiply the repair probability by the even
likelihood at the head of stackLc

j ; otherwise, we multiply
the IS repair probability by the event likelihood ratio a
the head of stackLj .

For each setAj that contains links with failed
components, let̀j be the event likelihood ratio on the top
of stack Lj , and let `c

j be the event likelihood ratio on
top of stackLc

j . If Lj is empty, we set̀ j = `c
j .

4.2.2 Greedy Algorithm

A natural way to define the IS probabilities for allocatin
component failure events to links is to let

P ′(Cc
−(x, r)) =

p(x, r)
p′(x, r)

P (Cc
−(x, r)),

wherep′(x, r) is given by

p′(x, r) =

1 − q−1
(x,r)

∑
j

[
`j

∑
i∈C+(x,r)

riµi + `c
j

∑
i∈Cc

+(x,r)

riµi

]
.

Suppose that component failure events are alloca
to links in C−(x, r) and Cc

−(x, r) based on probabilities
that are proportional to component failure rates. This co
struction makes the event likelihood ratio for a compone
failure event inC−(x, r)

p(x, r)
p′(x, r)

P (C−(x, r))
P ′(C−(x, r))

= 1

and the event likelihood ratio for a component failur
event inCc

−(x, r) much smaller than one. In fact, it also
forces components inCc

+(x, r) to have significantly larger
repair probabilities than the components fromC+(x, r).

4.2.3 Expected Downtime Heuristic

The derivation of a near-optimal IS distribution fo
estimating the expected downtime within a regenerati
cycle in ak-out-of-n system suggests another alternativ
(see Shultes 1997, Chapter 4). For each component fail
event that occurs inCc

−(x, r) the potential number of events
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needed to restore the system (i.e., leave the setF) increases
by one. Therefore, by keeping track of the number o
component failure events that occur inCc

−(x, r), one can
attempt to counter the potential for inflated downtimes.

Suppose thatj components, chosen from setsCc
−(x, r),

are in failed states. If all these components are repair
before the system leavesF , then an estimate for the
contribution of thesej components to the system downtime
within a cycle isj+1 times the holding time in a state (the
one is for the single component fromC−(x, r) that must be
repaired in order for the system to operate). Therefore, o
can setP ′(Cc

−(x, r)) so that if a component failure event
occurs withinCc

−(x, r), then the resulting event likelihood
ratio is (j + 1)/(j + 2) causing the product of the even
likelihood ratios associated with component failure even
from Cc

−(x, r) to be 1/(j + 2).
In some cases, the choice ofp′(x, r) might cause

P ′(Cc
−(x, r)) to be greater thanP (Cc

−(x, r)). This
can be avoided by using the minimum of the propose
P ′(Cc

−(x, r)) and

[p(x, r)/p′(x, r)]P (Cc
−(x, r))

P (C−(x, r)) + [p(x, r)/p′(x, r)]P (Cc−(x, r))
,

a normalizedform of the importance sampling probability
in the Greedy Algorithm.

4.3 Ensuring Bounded Relative Error

Generating shortest paths to failure is an intuitive approa
to reducing simulation runtimes. However, the mos
likely paths to failure are the most-important paths whe
estimating a quantity that is nonzero only when the syste
visits the setF within a cycle. If all component failure
rates in a system are of the same order of magnitud
then it suffices to consider the shortest paths to failur
Otherwise, solely focusing on shortest paths to failu
may ignore some of the most-likely paths to failure an
does not lead to BRE. Similar results have been prov
by Nakayama (1996), who developed a set of path-wi
criteria that must be met to ensure BRE.

Theorem 2 For balanced systems, the Greedy Algorithm
or the Expected Downtime Heuristic with allocation o
component failure events to links proportionally to th
component failure rates yield estimates forE(Z1) and
P (Γ < W1) with BRE.

The proof of Theorem 2 is in Alexopoulos and Shulte
(1998). Numerical results for an algorithm (BLRC)
utilizing Theorem 2 are shown in Section 5.
1483
5 NUMERICAL RESULTS

Consider the communications network depicted in F
ure 1. This network contains21 links, each containing
two identical components (e.g., dedicated communica
lines). For simplicity, let each component represent
unit of capacity between respective nodes. There
numerous factors that could cause a component to
(e.g., hardware failure, software failure, or other exter
factors). Components fail at a rate of one every331

3 hours.
There are4 repairmen that repair components, as good
new, at rate of one every2 1

2 hours. Upon completing
repair, a repairman selects the next component to re
uniformly over the links in the network that contain faile
components.

A variety of reliability parameters can be define
Assume that the network is functional if nodes1 and 10
communicate (via a path with an operating componen
each link). Table 1 compares90% confidence intervals fo
the limiting network unavailability from the crude Mon
Carlo and BFB methods in regenerative simulations.
crude Monte Carlo simulation utilized 10,000,000 cycles
establish a benchmark. The BFB algorithm used MSD
with 10,000,000 cycles to estimate the mean downt
E(Z1) within a cycle and 100,000 cycles to estimate
mean cycle timeE(W1). The runtime required for th
BFB estimate is significantly less than the runtime
the crude Monte Carlo estimate, but the half-width
the crude Monte Carlo confidence interval is significan
smaller than the corresponding BFB half-width. Based
the variance reduction time ratio (VRTR), i.e., the prod
of the ratio of variances and the ratio of runtimes, BFB
dramatically less efficient than crude Monte Carlo in t
instance.

4 9

2 7

1 3 8

6

5

10

ui = 2 for all i ∈ A

λi = 0.030 for all i ∈ A

µi = 0.40 for all i ∈ A

Figure 1: Communications Network
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Table 1: Estimation ofU Using Crude Monte Carlo and
Balanced Failure Biasing

IS Algorithm
Quantity Crude∗ BFB∗∗ Reduction

Estimate 1.377E-05 1.502E-05 —
Half-width 7.060E-07 2.785E-06 0.25
Runtime 63081.00 49133.67 1.28

VRTR — 0.08 —

* Estimates based on 10,000,000 cycles
** Estimates based on 10,000,000 cycles for

E(Z1) and 100,000 forE(W1)

Results from applying BLR (Theorem 1, case (a)
and BLRC (Theorem 2) within regenerative simulations
are shown in Table 2. Each method was implemente
using MSDIS. The BLRC method yielded the tightest90%
confidence interval half-width, but an examination of the
VRTRs shows that the runtime associated with maintainin
information about minimum cuts in the network outweighed
the improvement in half-width over the BLR method. Both
methods illustrate modest improvement over the crud
Monte Carlo method.

The use of semi-stationary cycles dramatically im
proves the performance of the BLRC method. Table
displays numerical results from applying BLRC and MS-
DIS with D being the set of states with 3 failed components
The confidence intervals were computed by the method
batch means (Fishman 1996) with 30 batches. The cru
Monte Carlo results based on regenerative simulation a
redisplayed. Notice that semi-stationary cycles dramat
cally reduce the runtime for BLRC over the corresponding
runtime with regenerative cycles in Table 2. The BLRC
algorithm utilized event likelihood ratios associated with
component failure events within the importance samplin
distribution, so the method’s ability to quickly force sys-
tems to fail depends on the magnitude of these eve
likelihood ratios. For states inD the repair probability is
much greater than the repair probability for the regenerativ
state(u,0), which leads to smaller event likelihood ratios.

To emphasize the power of the balanced likelihood
ratio methods, a sequence of simulation experiments w
performed by varying the failure rate of the component
in the computer network and checking the performanc
of the regenerative method using BFB with MSDIS, the
regenerative method using BLRC with MSDIS, and the
semi-stationary method using BLRC with MSDIS. For
each experiment utilizing semi-stationary methods, the s
D of states withk failed components was chosen so tha
the component failure rate and the component repair ra
out of the set were approximately equal. The first colum
1484
Table 3: Estimation ofU Using BLRC with Semi-stationary
Cycles Starting with 3 Failed Components

IS Algorithm
Quantity Crude(R)∗ BLRC∗∗ Reduction

Estimate 1.377E-05 1.408E-05 —
Half-width 7.060E-07 1.951E-07 3.62
Runtime 63081.00 25727.06 2.45

VRTR — 32.12 —

* Estimates based on 10,000,000 cycles
** Estimates based on 1,000,000 cycles for

E(Z1) and 100,000 forE(W1)

of Table 4 displays the sequence of multipliers for the
component failure rates used to create the sequence
simulation experiments. Subsequent columns display th
observed VRTRs. These results are plotted in Figure
The solid line at one represents crude Monte Carlo
Clearly, BLRC dominates BFB and crude Monte Carlo
The performance of BFB remains approximately constan
while the BLRC method exhibits better performance a
component failure rates approach zero (systems exhib
greater reliability).

Table 4: Variance Reduction Time Ratios for the Network
in Figure 2. All Estimates are Based on 1,000,000 Cycle
for E(Z1) and 100,000 Cycles forE(W1)

VRTR
Multiplier BFB BLRC BLRC-SS

1.331 8.540E-03 4.388E-01 2.327E+00
1.210 3.866E-02 9.010E-01 4.467E+00
1.100 7.505E-04 1.629E+00 2.003E+01
1.000 8.251E-02 2.733E+00 3.212E+01
0.909 1.509E+00 1.120E+01 7.772E+01
0.826 3.284E+00 3.459E+01 1.168E+02
0.751 4.912E+00 1.545E+02 3.354E+02
0.683 5.622E+00 3.660E+01 9.316E+02
0.621 5.345E+00 4.467E+02 7.333E+02
0.564 5.754E+00 6.627E+02 8.802E+02
0.513 4.897E+00 1.182E+03 2.791E+03

The choice ofk varies with the multiplier:
k = 1 for the multiplier 0.513,
k = 2 for the multipliers in the range[0.564, 0.751],
k = 3 for the multipliers in the range[0.826, 1.210],
k = 4 for the multiplier 1.331
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Table 2: Estimation ofU Using BLR Methods
IS Algorithm IS Algorithm

Quantity Crude∗ BLR∗∗ Reduction BLRC∗∗ Reduction

Estimate 1.377E-05 1.409E-05 — 1.410E-05 —
Half-width 7.060E-07 4.407E-07 1.60 3.338E-07 2.12
Runtime 63081.00 42553.34 1.48 103223.77 0.61

VRTR — 3.79 — 2.74 —

* Estimates based on 10,000,000 cycles
** Estimates based on 1,000,000 cycles forE(Z1) and 100,000 forE(W1)
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Figure 2: Impact of Varying Failure Rates on Algorithm Performance
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6 CONCLUSIONS

Importance sampling can be a powerful tool for t
estimation of reliability measures of highly dependab
systems with repairs. The proper selection of an importa
sampling distribution can “make or break” an analy
procedure. The proposed balanced likelihood ratio meth
in conjunction with semi-stationary models provide som
level of assurance for performance improvement o
the crude Monte Carlo method. The ideas motivat
BLR methods provide hope that packaged routines
importance sampling are within reach.
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