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ABSTRACT

Over the past several years importance sampling in

conjunction with regenerative simulation has been presented

as a promising method for estimating reliability parameters
in highly reliable systems. Existing methods fail to
provide benefits over crude Monte Carlo for the analysis

of systems that contain significant component redundancies.
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(X1,...,Tq,71,...,7q) € S IS an exponential random
variable with rateqx ry = > ;¢ 4 (ziXi 4 7ipti).
The structure functiorp is defined by

1o

For a review of reliability definitions, see Barlow and
Proschan (1981). The definition of operating and failed

if the system operates in stafe, r)

o(x,r) = if the system is failed in statéx, r).

This paper presents refined importance sampling techniquesgiates depends on the performance measure(s) under
along with a generalized regenerative model. The proposed ¢gnsideration.

methods have solid theoretical properties and work well
in practice.

1 INTRODUCTION

Consider a system with,. components that are subject to
failure and repair and, repairmen. Suppose that each
component has a single operating state denoted bynd

a single failed state denoted By The system is modeled
by a networkG = (V, A), where A = {1,...,a} is the

set of links andV is the set of vertices. Link contains

u; components ana; + - - - +u, = n.. Let X;(t) be the
number of operating components on lihkt timet¢ and let
R;(t) be the number of repairmen working on linkat time

t. Assume that only one repairman is needed to repair a
failed component. ClearlyR;(t)+X;(t) < wu;foralli e A

and Ry (t) + -+ -+ R, (t) < n,. The state of the system is
described by the stochastic procésg) = (X (t), R(t))
(X1(t),...,Xa(t), Ri(t),..., R(t)). The state space
for X(t) is ®,N,,, where N; = {0,...,j} and ®
denotes a Cartesian product. The state spacer{oy is
{re (N, )" : > ,cam <n,}sothe state space fof(t) is

S =% N, x{re (N, )": Y icaTi <ne}. The time

to failure for each component on linkis an exponential
random variable with rate;. Similarly the repair time for

a component on link is an exponential random variable
with rate ;. All events are assumed to be independent.
Consequently, the sojourn time in a generic stater) =
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Assume thatX;(0) = u; and R;(0) = 0, for i =
1,...,a. Letu=(u1,...,u,) and0 = (0,...,0). Now
define the setF = {(x,r) € S : ¢(x,r) = 0} of failed
states and the time to failure dy= inf{t: ¢t > 0,Y(¢) €
F}. The limit U = lim;_,, P[Y (t) € F] (when it exists)
is called the long-run system unavailability wherdad")
is the expected time to system failure. Although the system
is Markovian, the exact evaluation of these measures and
the computation of tight bounds are difficult problems even
for moderate-scale systems due to the size of the state space
(see Ball et al. 1995). Consequently, computer simulation
frequently becomes the most suitable method for their
estimation. The demand for modern communications and
computer systems to be highly reliable makes the entrance
of Y(t) to the setF a rare event. This property causes
crude (standard) Monte Carlo simulation to be inefficient
in that it requires prohibitively long runs to produce precise
estimates.

Based on the above assumptions, the prodéss
(X,R) is regenerative with return statéu,0), and
regeneration epoch = 7Ty < 177 < 1 < ---, where
T; is the time of theith entry into state(u,0) and
lim, .o T, = oo w.p.1 (for a review of results for
regenerative processes see Serfozo 1990, pp. 41-56). Let
W, =1T; —T;_1, i > 1, be the length of cycle.

Let 1(-) denote the identity function, and l&f; =
fTT  1(Y(t) € 7) dt denote the tim&” spends in the set

F auring the cycle[T;_1,T;). Then the limiting system
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unavailability is given by Equation (3) forms the basis of IS. Suppose that one
E(Z) draws n independent sampleg)(w), i = 1,...,n, with
U= E(Wl)‘ 1) probability measure”’. Then the estimator
1

In addition, the mean time to failure (MTTF) starting from L1,

state (u,0) can be expressed as a ratio of expectations Z= gzzi(w)Li(w)'

(see Shahabuddin et al. 1988): =1
Emin(W1,T)]  E[min(Wy,T)]

B = PC<W,)  ELT<wWy)] @)

Suppose that one simulatésovern cycles and collects ) ,

the data(Zi, Wi), i = 1 n. Let Z and W be the In general, one would like to choos®’ so that
9 1)1 AR ] . . 2
respective sample means &f and W;. Then the classical Varp/(ZiLy) < Varp(Z:) or, equivalently, Ep:{(Z1L1)"]

_ 2 2 i
regenerative estimator of the limiting unavailability is = Ep(ZiLy) < Ep(Z7). More spec[flcally, for the
problems studied here, one would like to make the

U= Z|W probability of system failure (within a cycle) as large
as possible while maintaining these properties. This
implies that importance sampling probabilities should be
as large as possible whef (w) is positive forcing the
associated likelihood ratios to be small.

is clearly unbiased. If in additiorp/[(Z]11)?] < oo,
then a confidence interval fabp(Z;) can be derived by
using the central limit theorem.

and confidence intervals fot/ can be computed by a
variety of methods (see Iglehart 1975).

The remainder of this paper is organized as follows:
Section 2 reviews the main issues related to the impor-
tance sampling method and existing methods. Section 3
proposes an alternative process with correlated cycles. Sec-5 11 The Balanced Failure Biasing (BFB) Method
tion 4 describes the proposed methods, Section 5 contains
experimental results, and Section 6 contains conclusions. Thijs method was proposed by Shahabuddin (1994). It

models the probability that the next event is a component
2 ANALYZING HIGHLY RELIABLE SYSTEMS failure by a singlebiasing parameter. Given that a
component failure event occurred, the event is allocated
When the system under study is highly reliable (e.g., the to links uniformly. Unfortunately, the resulting likelihood
component failure rates are significantly smaller that the ratios can become unstable (see Shultes 1997, Chapter 6).
respective repair rates) or the system structure does not have
small minimum cuts (see Barlow and Proschan 1981), the
crude Monte Carlo estimation @ and the MTTF based 2.1.2 Measure Specific Dynamic Importance
on regenerative cycles with return stafa,0) presents Sampling
problems since cycles containing failures are infrequent.
The computation of confidence intervals for (1) and (2)
requires the estimation of covariance terms. Using separate
simulation runs for estimating the numerator and the
One way to overcome this problem is to use ith@ortance denominator eliminates this problem and allows the use
sampling (IS) method. Let(2,3, P) be the space of  of separate importance sampling distributions in each
sample paths of the proce¥s The IS method attempts to  simulation run.
produce an alternative estimator blp(Z,) (the subscript When simulating highly reliable systems, the primary
“P" indicates the probability measure) that has smaller gifficulty with crude Monte Carlo methods is infrequent
mean squared error (MSE). L&t be another probability  opservations of system failure. Once a system fails, highly
measure oriy such thatP is absolutely continuous with  rejiable systems tend to rapidly return to full functionality.

2.1 Importance Sampling

respect toP’. Then one can write Hence, it is reasonable to apply importance sampling
P(dw) _, (within a cycle) up to the time of system failure and then
Ep(Z1) = / 1(w) 5,5 P (dw) 3) utilize crude Monte Carlo sampling for the remainder of
Q P'(dw)
the cycle.
= / Zy(w) Ly (w)P'(dw) = Ep(Z1 L), These two ideas were introduced by Goyal et al.
Q

(1987) and are jointly referred to aseasure specific
where the likelihood ratial; (w) is the Radon-Nikodym dynamic importance samplin@d1SDIS). These same ideas
derivative of P with respect taP’ (for a detailed discussion  are used within the new importance sampling strategies
see Royden 1968, pp. 276-278). presented here.
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3 A SEMI-STATIONARY PROCESS

To overcome problems associated with crude Monte Carlo
regenerative simulation, one can consider the stationary
portion of Y and “cycles” that start (and end) in a set of
statesD such that transitions withi do not occur. An
example is the set of states withfailed componentsk(is
smaller than the size of the smallest minimal cut for the state
(u,0)). We redefinel; to be the time of theth visit of Y’

to D (W; = T; —T;_, remains the length of thi&h cycle).
The process;(t) = Y (Ti_1 + t)1(t € [0,W;)) contains
the information forY in the interval [T;_,,T;). Let S;

be the sequence of states visited Yyduring [T;_1,T;),

let H(S;) be the respective sequence of holding times,
and let7; = (S;, H(S;)) be an alternative representation
of ¢;. One can show that the proce§&V;,7;) : i > 1}

is stationary (see Shultes 1997, Lemma 2.2.1), and then
{(W;,¢;)} is stationary. If we assume thdt(W;,7;)}

is ergodic, part (i) of Theorem 2.2 from Serfozo (1972)
implies thatY is semi-stationarywith respect to{7;}

and part (iv) of the same theorem with Theorem 3.1
from Serfozo (1972) implies that the limiting system
unavailability can be written as

! _ BE(Z)
1(Y(2) e F)dz = ")

1
U= lim -
0 E(

t—oo

w.p.1

Furthermore, since{(W;,¢;)} is ¢-mixing (see Shultes
1997, Lemma 2.2.2), a confidence interval 1ércan be
computed by the method of batch means (see Fishman
1996, Chapter 6).

Hordijk et al. (1976) showed that it is sufficient

4 BALANCED LIKELIHOOD RATIO METHODS

The basic idea behind the proposed methods is that if
likelihood ratios associated with individual events within
cycles (hereafter calledvent likelihood ratiosare forced

to be bounded from above, then the likelihood ratios
associated with regenerative and semi-stationary cycles
(the product of event likelihood ratios for events that form
a cycle) are also bounded from above.

Other authors have considered the problem of bounding
likelihood ratios. In particular, Juneja (1993) explored
methods of bounding likelihood ratios associated with
regenerative cycles. His method built on BFB by providing
an algorithm for choosing a biasing parameter that forced
the resulting likelihood ratios to be bounded. However,
the method does not eliminate the problems component
redundancies cause for failure biasing methods.

4.1 Basic Technique

The proposed methods represent a significant departure
from the failure biasing methods. The basic technique is
based on some simple observations: Since every component
repair must be preceded by a component failure, one can
force the product of the respective pairs of event likelihood
ratios to be one. This assignment causes the likelihood
ratio associated with a cycle to be bounded from above
by one.

Let p(x,r) denote the transition probability from state
(x,r) to (x —¢;, 1), for somei € A, and letp/(x,r) be
the respective importance sampling probability.

4.1.1 Implementation

to simulate the embedded Markov chain and replace Assume thatF does not contain states with a single

exponential holding times with the corresponding expected failed component. As a result, the first two events in any

value when utilizing regenerative methods to estimate (regenerative or semi-stationary) cycle that includes a visit

steady-state quantities. These results remain applicableto 7 must be components failing. This guarantees that at

when one utilizes semi-stationary processes instead of least one of the corresponding event likelihood ratios is

regenerative processes (see Shultes 1997, Theorems 3.3.1ess than one.

and 3.3.3). A system is said to béalancedif all component
Analyzing the stationary portion of in terms of failure rates are of the same order of magnitude (i.e.,

a semi-stationary process and cycles that begin and endWithin a factor of ten). Suppose that the set of links

in D is more complicated than regenerative simulation, IS Partitioned into setsd;, A,,... such that the set;

The limiting hitting distribution forD, known as aPalm contains all links with failure rates of thgh largest order

distribution, must be maintained. Within an importance ©f magnitude. Throughout the simulation of a cycle, we

sampling procedure, the simplest approach is to use a Store the event likelihood ratios associated with component

crude Monte Carlo simulation to generate sequential cycle failure events fromd; in a stack’;. Let ; be the event

starting points in the seD and use these choices of likelihood ratio on the top of stack’;. Thenp'(x,r) is

starting points for the cycles generated via importance S€t 10 ) B .

sampling (i.e., at the end of an importance sampling cycle p(x,r)=1- 9(x,r) Zﬁj Z Tibi-

the system jumps to the next crude Monte Carlo starting J i€A;

state). This procedure is loosely related to the procedure If the event is a component failure in sét,, we push

for simulating.A-cycles presented by Nicola et al. (1993). the event likelihood ratio containing(x,r)/p’(x,r) onto
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stack £;. Otherwise, we pop the top element of the stack 4.2.1 Implementation Issues
corresponding to the component completing repair and
discard it. There are several ways to allocate component . - )
failure events to operating components in the network. contains event likelihood ratios for componentsAn that

Some procedures lead to estimates with bounded relative \'o o 9" @ minimum eut W*je” they failed ("e." §elected
error (BRE). from C_(x,r)), and stackL$ contains event likelihood

ratios for components inl; that were not on a minimum
cut. Thestatusof the links in the network depends on the
current state of the system. The following heuristic takes

Estimates with BRE deserve attention because the amountthis into account: For each componentn completing

of computational effort (sample size) required to yield repair, if the component is i€ (x,r) or stack ; is

a desired level of accuracy (relative confidence interval €MPY, then we multiply the repair probability by the event
half-width) remains bounded as the quantity of interest lkelinood at the head of stackf; otherwise, we multiply
approaches zero: see Fishman (1996), Nakayama (1996)’the IS repair probability by the event likelihood ratio at
and Shahabuddin (1994). This is important in the study of the head of staciC;. o . _
highly reliable systems as quantities of interest (e.g., the For each setA; that contains links with failed

mean downtime within a cycle) go to zero as component components, lef; be the event likelihood ratio on the top
failure rates approach zero. of stack £;, and let/s be the event likelihood ratio on

top of stackLs. If £j‘is empty, we set; = /5.

We store the event likelihood ratios in stacks: Statk

4.1.2 Bounded Relative Error

Theorem 1 When utilizing BLR estimation procedures
for the estimation of£'(Z,) and P(I" < Wy): 4.2.2 Greedy Algorithm

(a) For balanced systems, the allocation of component A natural way to define the IS probabilities for allocating
failure events to links proportionally to the rate of ~component failure events to links is to let
failure on each link yields BRE.

p(x,r)
) P'(ce = P(ce

(b) For non-balanced systems, the allocation of component (C= (1)) p(x,r) (CZ(x, 1)),

failure events to links proportionally to the number of , o

operating components on each link yields BRE. wherep/(x,r) is given by
(c) Any allocation method that is independent of the »'(x,r)=

component failure rates will yield BRE. _ .

1— q(xl,r) : gj Z Til; + Ej Z Tili |

The proof of Theorem 1 appears in Alexopoulos and J i€C4 (x,r) i€CE (xor)

Shultes (1998). Numerical results for a BLR algorithm

utilizing case (a) in Theorem 1 are shown in Section 5. Suppose that component failure events are allocated

to links in C_(x,r) and C° (x,r) based on probabilities
that are proportional to component failure rates. This con-

4.2 Utilizing Structural Information struction makes the event likelihood ratio for a component
One can use minimum cuts to identify events on shortest filure eventinC_(x,r)

aths to failure. See Ahuja et al. (1996) for a review

P ) (1996) p(x,x) P(C_(x,1)

of network flow properties and Section 5.5.2 of Shultes ; PC =
(1997) for efficient ways to maintain information about P/ (x,x) P'(C-(x,1))

minimum cuts. LetC_(x,r) be the set of linksi on and the event likelihood ratio for a component failure
a minimum cut for the network statéx,r), and let  eyent ince (x,r) much smaller than one. In fact, it also
P(C-(x,r)) be the probability that the next event is & forces components i< (x,r) to have significantly larger
failure in C_(x,r). Let C¢(x,r) = A—C_(x,r), and repair probabilities than the components frém(x, r).

let P(CS(x,r)) be the probability that the next event is
a failure in C¢ (x,r). Similarly, defineC(x,r) as the
set of links7 with components undergoing repair that are
on a minimum cut for network statéx + e;,r), and let The derivation of a near-optimal IS distribution for
P(C+(x,r)) be the probability of a state transition from estimating the expected downtime within a regenerative
(x,r) that lengthens the shortest path to failure by one. cycle in ak-out-ofn system suggests another alternative
Let C{(x,r) be the set of links not inC(x,r) with (see Shultes 1997, Chapter 4). For each component failure
components completing repair. event that occurs i6° (x, r) the potential number of events

4.2.3 Expected Downtime Heuristic
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needed to restore the system (i.e., leave thé3@ncreases
by one. Therefore, by keeping track of the number of
component failure events that occur @fi (x,r), one can
attempt to counter the potential for inflated downtimes.

Suppose that components, chosen from s€f5(x, r),
are in failed states. If all these components are repaired
before the system leave%, then an estimate for the
contribution of thesg components to the system downtime
within a cycle isj+1 times the holding time in a state (the
one is for the single component frof (x, r) that must be
repaired in order for the system to operate). Therefore, one
can setP’(Cc (x,r)) so that if a component failure event
occurs withinCe (x, r), then the resulting event likelihood
ratio is (j + 1)/(j + 2) causing the product of the event
likelihood ratios associated with component failure events
from C° (x,r) to be1/(j + 2).

In some cases, the choice of(x,r) might cause
P'(C¢(x,r)) to be greater thanP(C¢(x,r)). This
can be avoided by using the minimum of the proposed
P'(Ce(x,r)) and

[p(x,7)/p' (%, r)] P(CE (x,1))
P(C_(x,r)) + [p(x,1)/p' (x,1)] P(CE (x,1))’

a normalizedform of the importance sampling probability
in the Greedy Algorithm.

4.3 Ensuring Bounded Relative Error

Generating shortest paths to failure is an intuitive approach
to reducing simulation runtimes. However, the most-
likely paths to failure are the most-important paths when
estimating a quantity that is nonzero only when the system
visits the setF within a cycle. If all component failure
rates in a system are of the same order of magnitude,
then it suffices to consider the shortest paths to failure.
Otherwise, solely focusing on shortest paths to failure
may ignore some of the most-likely paths to failure and
does not lead to BRE. Similar results have been proven
by Nakayama (1996), who developed a set of path-wise
criteria that must be met to ensure BRE.

Theorem 2 For balanced systems, the Greedy Algorithm
or the Expected Downtime Heuristic with allocation of
component failure events to links proportionally to the
component failure rates yield estimates faiZ;) and
P(T' < W) with BRE.

The proof of Theorem 2 is in Alexopoulos and Shultes
(1998). Numerical results for an algorithm (BLRC)
utilizing Theorem 2 are shown in Section 5.
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5 NUMERICAL RESULTS

Consider the communications network depicted in Fig-
ure 1. This network contain2l links, each containing
two identical components (e.g., dedicated communication
lines). For simplicity, let each component represent one
unit of capacity between respective nodes. There are
numerous factors that could cause a component to fail
(e.g., hardware failure, software failure, or other external
factors). Components fail at a rate of one evmg hours.
There are4 repairmen that repair components, as good as
new, at rate of one every% hours. Upon completing a
repair, a repairman selects the next component to repair
uniformly over the links in the network that contain failed
components.

A variety of reliability parameters can be defined.
Assume that the network is functional if nodésand 10
communicate (via a path with an operating component on
each link). Table 1 compareé®% confidence intervals for
the limiting network unavailability from the crude Monte
Carlo and BFB methods in regenerative simulations. The
crude Monte Carlo simulation utilized 10,000,000 cycles to
establish a benchmark. The BFB algorithm used MSDIS
with 10,000,000 cycles to estimate the mean downtime
E(Zy) within a cycle and 100,000 cycles to estimate the
mean cycle timeE(W;). The runtime required for the
BFB estimate is significantly less than the runtime for
the crude Monte Carlo estimate, but the half-width for
the crude Monte Carlo confidence interval is significantly
smaller than the corresponding BFB half-width. Based on
the variance reduction time ratio (VRTR), i.e., the product
of the ratio of variances and the ratio of runtimes, BFB is
dramatically less efficient than crude Monte Carlo in this
instance.

w,=2foralliec A
A; =0.030 forall : € A
w; =0.40 forallie A

Figure 1: Communications Network
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Table 1: Estimation oV Using Crude Monte Carlo and
Balanced Failure Biasing

IS Algorithm
Quantity Crudé BFB** | Reduction
Estimate 1.377E-05| 1.502E-05 —
Half-width | 7.060E-07| 2.785E-06 0.25
Runtime 63081.00 | 49133.67 1.28
[VRTIR | — [ o008 | — |

*

Estimates based on 10,000,000 cycles
Estimates based on 10,000,000 cycles for
E(Z;) and 100,000 forE (W)

*%

Results from applying BLR (Theorem 1, case (a))
and BLRC (Theorem 2) within regenerative simulations
are shown in Table 2. Each method was implemented
using MSDIS. The BLRC method yielded the tightegt;
confidence interval half-width, but an examination of the
VRTRSs shows that the runtime associated with maintaining
information about minimum cuts in the network outweighed
the improvement in half-width over the BLR method. Both
methods illustrate modest improvement over the crude
Monte Carlo method.

The use of semi-stationary cycles dramatically im-
proves the performance of the BLRC method. Table 3
displays numerical results from applying BLRC and MS-
DIS with D being the set of states with 3 failed components.
The confidence intervals were computed by the method of
batch means (Fishman 1996) with 30 batches. The crude
Monte Carlo results based on regenerative simulation are
redisplayed. Notice that semi-stationary cycles dramati-
cally reduce the runtime for BLRC over the corresponding
runtime with regenerative cycles in Table 2. The BLRC
algorithm utilized event likelihood ratios associated with
component failure events within the importance sampling
distribution, so the method’s ability to quickly force sys-
tems to fail depends on the magnitude of these event
likelihood ratios. For states i the repair probability is
much greater than the repair probability for the regenerative
state(u, 0), which leads to smaller event likelihood ratios.

To emphasize the power of the balanced likelihood
ratio methods, a sequence of simulation experiments was
performed by varying the failure rate of the components
in the computer network and checking the performance
of the regenerative method using BFB with MSDIS, the
regenerative method using BLRC with MSDIS, and the
semi-stationary method using BLRC with MSDIS. For
each experiment utilizing semi-stationary methods, the set
D of states withk failed components was chosen so that
the component failure rate and the component repair rate
out of the set were approximately equal. The first column
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Table 3: Estimation of/ Using BLRC with Semi-stationary
Cycles Starting with 3 Failed Components

IS Algorithm
Quantity | Crude(Ry | BLRC*" | Reduction
Estimate 1.377E-05| 1.408E-05 —
Half-width | 7.060E-07| 1.951E-07 3.62
Runtime 63081.00 | 25727.06 2.45
[ VRTR | — [ 3212 | — |

*

Estimates based on 10,000,000 cycles
Estimates based on 1,000,000 cycles for
E(Z,) and 100,000 forE (W)

**

of Table 4 displays the sequence of multipliers for the
component failure rates used to create the sequence of
simulation experiments. Subsequent columns display the
observed VRTRs. These results are plotted in Figure 2.
The solid line at one represents crude Monte Carlo.
Clearly, BLRC dominates BFB and crude Monte Carlo.
The performance of BFB remains approximately constant
while the BLRC method exhibits better performance as
component failure rates approach zero (systems exhibit
greater reliability).

Table 4: Variance Reduction Time Ratios for the Network
in Figure 2. All Estimates are Based on 1,000,000 Cycles
for F£(Z,) and 100,000 Cycles foE (W)

VRTR
Multiplier BFB ‘ BLRC ‘ BLRC-SS
1.331 8.540E-03| 4.388E-01| 2.327E+00
1.210 3.866E-02| 9.010E-01| 4.467E+00
1.100 7.505E-04 | 1.629E+00| 2.003E+01
1.000 8.251E-02| 2.733E+00| 3.212E+01
0.909 1.509E+00| 1.120E+01| 7.772E+01
0.826 3.284E+00| 3.459E+01| 1.168E+02
0.751 4.912E+00| 1.545E+02| 3.354E+02
0.683 5.622E+00| 3.660E+01| 9.316E+02
0.621 5.345E+00| 4.467E+02| 7.333E+02
0.564 5.754E+00| 6.627E+02| 8.802E+02
0.513 4.897E+00| 1.182E+03| 2.791E+03

The choice ofk varies with the multiplier:

k =1 for the multiplier 0.513,

k = 2 for the multipliers in the rang¢0.564, 0.751],
k = 3 for the multipliers in the rangé¢0.826, 1.210],
k = 4 for the multiplier 1.331
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Table 2: Estimation of/ Using BLR Methods

IS Algorithm IS Algorithm
Quantity Crudée BLR** | Reduction| BLRC™ | Reduction
Estimate 1.377E-05| 1.409E-05 — 1.410E-05 —

Half-width | 7.060E-07| 4.407E-07 1.60 3.338E-07 2.12
Runtime 63081.00 | 42553.34 1.48 103223.77 0.61

[VRTR 3.79 2.74

*  Estimates based on 10,000,000 cycles
**  Estimates based on 1,000,000 cycles f6(Z;) and 100,000 forE (W)

3000 ‘
BFB —
BLRC-SS —

2000

VRTR 1500

1000

500

Wy W e — \ \ I \

b51.56 .62 .68 .75 .83 91 1.00 1.10 1.21 1.33
Multiplier for Failure Rates

Figure 2: Impact of Varying Failure Rates on Algorithm Performance
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