
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

EVALUATION OF A PROTOTYPE VISUALIZATION FOR
DISTRIBUTED SIMULATIONS

James H. Graham
Irfan S. Karachiwala
Adel S. Elmaghraby

Computer Science and Engineering,
University of Louisville

Louisville, KY 40292, U.S.A.

x
e
 b

ne
ed
r

s
c

lso
yp

n
l
fi-
tu
 t
c
on
or
th
a
g
.
ly

tio
y

fo
an
s
o

 th
th
ha

f

e

a

f
f

d
-
e
t
i.e.

e
a
 it

e

es
d

ABSTRACT

Monitoring and improving the performance of comple
distributed simulations can be challenging. Without prop
software tools, the process of performance tuning could
complicated and tedious. This paper presents a
approach for visualizing the performance of distribut
simulations. In particular, a formal methodology fo
constructing a visualization is presented, which include
formal model for visualization and a systematic approa
for identifying performance issues. This paper a
presents results of a controlled evaluation of a protot
visualization created using the new methodology.

1 INTRODUCTION

Although the primary reason for using parallel simulatio
is their increased performance potential, this potentia
difficult to achieve in practice. In order to achieve signi
cant performance gains, users must analyze and
different parameters of their simulation. However, due
the volume and complexity of the resulting performan
data, understanding the performance of parallel simulati
could be rather difficult. There is, thus, a need for perf
mance visualization tools which can make sense of
large volume of data, and present the information in
intelligent way in order to help guide the user in findin
performance bottlenecks, and thus improve performance

Many visualizations that have been built so far simp
extract a subset of the data generated by the simula
aggregate it to reduce the amount of data, and displa
using some sort of visual representations. It is difficult
the user to understand how this data relates to perform
issues, and even more difficult to determine what factor
the simulation have limited performance. In essence, m
visualizations, which have been created, simply display
progress of a simulation, and do not explain why
simulation behaves the way it does. We believe, t
146
r
e
w

a
h

e

s
is

ne
o
e
s
-
e
n

n,
 it
r
ce

in
st
e

e
t

creating effective visualizations which are capable o
extracting key performance information, requires a more
systematic, formal approach that begins with identifying
the performance issues at hand, determining effectiv
visual representations for them, extracting and
transforming raw data, and displaying them through
multiple simulation perspectives in a structured manner.

In section two, we discuss a model for creating
effective visualizations. In section three, we discuss
prototype performance visualization system for a
distributed discrete-event simulation using the Time Warp
(Jefferson and Sowizral 1985) protocol on a network o
UNIX workstations. Section four presents an evaluation o
this visualization prototype, and section five presents
conclusions, and future directions.

2 MODEL FOR PERFORMANCE
VISUALIZATION

The underlying theme of the model is that visualizations
should not be built from raw simulation data alone. To
create an effective visualization, one must first understan
the issues which could limit the performance of the simula
tion, and it is these issues that must be visualized. In th
context of creating effective visualizations three importan
question need to be asked: what needs to be displayed? (
what information is relevant to gain insights into perfor-
mance analysis of a simulation?); how does it need to b
displayed? (i.e. how can this information be displayed in
manner which makes sense to the user?); and how can
help in isolating performance problems?

Figure 1 displays an overview of the model for perfor-
mance visualization. It suggests starting with analyzing th
simulation under study, and identifying the issues which
can affect its performance. Once these performance issu
have been identified, effective visual models must be foun
that can represent each performance issue clearly.
9

Graham, Karachiwala and Elmaghraby

e
ot
s
s
e
e
a
t
i
h
w
s

en
.

n
ity

-

u
a
es
ar
in

1),
.

 a

f

r

t

 a

 a
e
ed

e.

nd
e

ere
en
/IP
sor
s
es
Only after that, should the appropriate data be extract
from the simulation. In many cases, this data is n
readily available from the simulation, and require
additional instrumentation, or intelligent transformation
of the raw performance data. The performance issu
could then be displayed using views, which ar
representation of the performance issues using visu
models such as space time diagrams, x-y scatter plo
graphs etc. Once multiple views are generated, th
information is presented through some context whic
users can relate to. This is done by separating these vie
into performance perspectives. A set of perspective
alongwith some means for letting a user switch betwe
perspectives, go together in making a good visualization

2.1 Basic Definitions

Distributed simulation involves modeling a real world
system on a network of computers. The system bei
modeled consists of entities and relationships. An ent
has attributes, constraints, and transition functions.

Definition 1: A distributed simulation, DS, is defined as:
DS = {P, H, M, S0 , δ, τ, D} where

P = the parameters of the simulation
H = the underlying hardware and interconnections
M = the mapping function that determines how pro

cesses are assigned to the hardware
S0 = the initial state
δ = SâS : the state transition function
τ = the time advance function
D = the output data available from the simulation

A view is a representation of a subset of the outp
data using visual abstraction models. The set A of typic
visual models include space-time diagrams, time-seri
display, histograms, Gnatt charts, Kivat diagrams, b
graphs, scatter-plots, matrix displays, and are found
147
d

s

l
s,
s

s
,

g

t
l

tools such as ParaGraph (Heath and Etheridge 199
Paradyn (Miller et al. 1995) and Pablo (Reed et al. 1992)
Definition 2: A View, V, is defined as:

V = {D, I, S, TD, O, A} where
D = the data available from the simulation
I = the performance issue to be monitored
S = the selection criteria for the data
TD = p(D)+ I�O : the transformation function that

gathers and transforms a subset of the data info
representable form

O = the range set of resulting performance metrics
A = the display choice or the visual model used

Definition 3: A Perspective, P, is defined as a set o
related views. That is, P� p (V) where p denotes the
power set operator.

A visualization is an interface which displays one o
more perspectives at a time with the ability to switch
between perspectives.

Definition 4: A Visualization, W, is defined as:
W = {Q, C} where

Q : {Pi |Pi � p(V)}, where Pi is the perspectives
chosen to be displayed

C : Q � {0, 1}, a mechanism which lets the user selec
between different perspectives

3 PROTOTYPE VISUALIZATION

3.1 The Time Warp Simulation

The system simulated is a discrete event simulation of
hypothetical closed network of !n airports (nodes). Each
node is initially populated with a fixed number of planes
(!k) waiting to be serviced and take off. Planes arrive at
node, are serviced (service time), take off, and ar
scheduled to arrive at another airport based on a shift
exponential distribution (inter-arrival time). Thus, the
number of planes in the system always remains the sam
Each node has a fixed number of inputs (fin) and outputs
(fout). Logical processes were used to represent nodes a
distributed among the processors responsible for th
simulation. Planes were modeled as messages that w
passed between processes. All communication betwe
processors (message passing) is done using TCP
sockets. Processes that belong to the same proces
communicate using local memory. Synchronization i
performed by an independent processor which comput
GVT values using Samadi s (1985) message acknowledg-
ment algorithm using a fixed synchronization interval.
0

Evaluation of a Prototype Visualization for Distributed Simulations

llow
sful
 to

 the
step

st
g,

 or
tion
usy
tic
 of
 the

ive,
rrect
An
is

oor
 or
ect
t is

is
al-
me
gres-
rall
m

 get
er
ore

nce
rk
d to
hich
ely,
is is
ces-
poor
are

 yet
of
ith
nal

ck
ork
s of
ing
 are
3.2 Creating the Visualization

The model presented in Section 2 dictates that we fo
specific guidelines in order to create a succes
visualization. The first step is determining what needs
be visualized (i.e., what characterizes performance of
simulation). Once these issues are identified, the next
is to determine how they are to be visualized.

An important issue which limits performance of mo
parallel programs is poor utilization. In parallel computin
utilization is measured by the amount of busy time
concurrency on the processors of the system. Utiliza
for these systems is simply the ratio of processor b
verses idle times. Clearly, this is not true of optimis
simulations as most of the otherwise unused cycles
processors are spent optimistically processing events in
hope that they might be true. A novel, and more effect
approach is to use the amount of time spent doing co
work as a measure of effective processor utilization.
imbalance in the effective utilization of processors
caused by either improper load balancing, or a p
communication topology. Furthermore, false utilization,
the amount of time spent doing and undoing incorr
work, is a good measure of the amount of potential tha
under-utilized.

Another major problem with optimistic simulations
that if the simulation load on processors is not well-b
anced or the scheduling policy is not well-chosen, so
processes may tend to get overly aggressive. This ag
sive behavior tends to significantly decrease the ove
performance of Time Warp. The amount of optimis
could be controlled by either blocking processes which
overly optimistic, redistributing some load from slow
processors to overly optimistic ones, or choosing a m
efficient scheduling strategy.

Communication delays cause yet other performa
bottleneck in parallel simulations running on netwo
computing environments. Processes must be assigne
processors such that they are clustered in groups w
avoid excessive external communication. Unfortunat
because of the nature of most parallel simulations, th
either not feasible, or introduces uneven loads on pro
sors. Communication bottlenecks are caused due to
topologies, uneven loads, or simply due to hardw
(network) limitations.

State saving and synchronization overheads are
other problems which limit the performance potential
optimistic simulations. Both these issues deal w
memory utilization on processors, and cause additio
overheads.

Another performance issue is that of rollba
overhead. Rollback costs include all the overhead w
that is not associated with the normal forward progres
the simulation. This includes the time taken for process
false events and of undoing them. Excessive rollbacks
1471
caused due to uneven loads, poor topologies, or badly
chosen scheduling policies.

Other performance issues include the amount of con-
currency in the system, and the geometry of computation.
Concurrency is mostly affected by the scheduling policies,
and could be visualized using concurrency profiles of
processors states. Insights into the geometry of computa-
tions could be obtained by visualizing the fan-in and fan-
out of communication messages on processors.

3.3 The Resulting Performance Visualization

The resulting visualization is comprised of three distinct
components: the visualization server, the performance
displays and a static tool to modify simulation parameters.

3.3.1 The Visualization Server

The visualization server was build to collect, analyze, and
transform the required performance data from all the
processes involved in the simulation as well as the GVT
server. Each processor communicates with the server using
TCP/IP sockets. Performance data is collected from the
processors, transformed such that intelligent information
can be extracted, and displayed using the performance
views. The server is also responsible for both
starting/stopping the simulation as well as controlling the
multiple performance displays. Additionally, the server
also provides a complete online help facility.

3.3.2 The Performance Displays

The resulting views obtained from section 3.2 were
grouped together into related categories such as utilization,
communication, memory, etc. to create performance
displays. These displays are solely responsible for the
intelligent presentation of the transformed data. Though
illustrations cannot convey the dynamic nature of these
display, these are nevertheless shown as snapshots.

3.3.2.1 The Processor Utilization Display

The processor utilization display (Figure 2), presents both
physical and application level information. It shows how
effectively processors are being utilized and how evenly the

Figure 2: The Processor Utilization Display

Graham, Karachiwala and Elmaghraby

i
e

s
e

e

e

e
n
il

to
e
is

s

is
e
e
u

t
h
a
n
t

e
r

computational work is distributed among them. It is
comprised of the following three views:

Utilization Summary - This view (left view in figure
2) shows the percent of time each processor spends
each state (Busy, False {overhead}, and Idle). Busy tim
is the time taken for work that is eventually committed
divided by the sampling interval, while overhead is the
amount of time taken for doing and undoing erroneou
work divided by the sampling interval. The color schem
is borrowed from traffic signals: green for busy, orange
for overhead, and red for idle. Typically, the idle times
and overheads of processors should be kept to
minimum. An imbalance in overheads/idle times implies
that the simulation load is not well balanced among th
processors.

Concurrency Profile (Utilization History) - This view
(middle view in figure 2) uses a Gantt chart to depict th
activity of individual processors. The color of each
vertical bar indicates the busy/overhead/idle status of th
corresponding processor as a function of time. A
advantage of this view is that it shows the fine deta
which can sometimes be missed in the utilization
summary.

CPU Utilization- This view (right view in figure 2)
displays the percentage of CPU time that is allocated
the simulation. Clearly, the larger this value, the mor
CPU time consumed by the simulation process. Th
view has the ability to account for both the simulation
load as well as external loads on processors.

3.3.2.2 The Communication Utilization Display

These views provide information pertaining to
interprocess and interprocessor communication. The
displays are helpful in determining communication
frequency, volume, overall pattern, and whether there
congestion in the message queues. Typically, process
that communicate frequently should be clustered togeth
and assigned to the same processor to reduce the amo
of communication traffic between processors.

Communication Between Processors - This view (left
view in figure 3) uses a space-time diagram to depic
communication interactions among processors throug
space and time. Messages between processors
depicted using slanted lines between the sending a
receiving processor activity lines, indicating the times a

Figure 3: The Communication Utilization Display
147
n

a

e

s
r
nt

re
d

which each message was sent and received. These
sending and receiving times are from logical process to
logical process (not just the physical transmission time),
and hence the slopes of the resulting lines gives a good
indication of the delay between a message being produced
on one processor and received on the other. Individual
processors or any combination of them could be selected
at a time to display communication characteristics for that
set.

Total Communication Traffic - This view (middle
view in figure 3) displays the total amount of
interprocessor communication traffic in the network over
time, and is used along with the Communication Matrix
view to reduce overall external communication.

Communication Matrix - This is a dual view which
gives insight into both the communication patterns
between the active hosts as well as processes involved in
the simulation (right view in figure 3). Views can be
switched by simply clicking anywhere within the window.
These views can be used to help redistribute processes in
order to keep the external communication to a minimum.
Each square represents communication volume between
two processes/ processors. Processes are grouped by th
processors they reside on. Darker shades indicate large
volumes.

3.3.2.3 Synchronization and Memory Utilization

This display is mainly used to adjust the checkpoint and
synchronization intervals. Memory and overhead
information for both these issues is presented here. It is
comprised of the following views:

Figure 4: Synchronization and Memory Utilization

Synchronization Interval - This view (top left view
in figure 4) uses simple textual widgets to indicate the
current known value for GVT and the synchronization
interval.

Synchronization Overhead - This view (middle left
view in figure 4) indicates the total amount of overhead
for both computing GVT as well as fossil collection.

State Saving Overhead - This view (bottom left
view in figure 4) indicates the total amount of overhead
for allocating memory, checkpointing, and coasting
forward.

Physical Memory per Processor - This view (middle
view in figure 4) is used to determine the amount of
memory that is available on processors. The vertical
2

Evaluation of a Prototype Visualization for Distributed Simulations

the
M

by
4).
ing
ell a

on
just
nd

ny
ted

he

he
on
ssor

of
rag
le
ach
The
ork
ile
t o

oth
the
eir

or

(left
ly
e
ter
he
s.

ing

ack

ol
n
rs
re
nd
for
e
be
e

to
e

he
a
d
th
l
ed

ce
ts

ked
o

green bars represent the amount of free RAM, while
vertical red bars indicate the amount of virtual RA
currently utilized.

Memory Usage per Processor - This is the total
amount of memory that is currently being utilized
every processor in the simulation (right view in figure
This includes memory used for state saving, maintain
input queues and negative copies of messages, as w
additional memories used by objects, variables etc.

3.3.2.4 Simulation Perspective

This display is used to evaluate overall simulati
performance. Performance information relates not
to the speed to computation, but to the efficiency a
effectiveness of the simulation in utilizing the ma
shared resources and services within the distribu
environment. The display is comprised of t
following two views:

Simulation Effectiveness - This view (left window
in figure 5) displays the overall effectiveness of t
simulation using simple textual values. Simulati
progress rate, event rates and effective proce

utilization rates are displayed here.
Simulation Potential - This view (right window in

figure 5) is used to determine the work potential
processors. Each vertical bar represents the ave
capacity for work for every process on a sing
processor (i.e. the average number of events e
process is capable of processing per second).
green portion represents the average amount of w
that was actually committed (realized potential), wh
the orange portion represents the average amoun
work that was erroneous (unrealized potential).

3.3.2.5 Rollback Perspective

The views presented in this perspective, display b
the amount of optimism in processors as well as
number of false events processes due to th
aggressiveness.

Figure 5: Simulation Perspective
ads

1473
s

e

f

Amount of Optimism (Variance between process
LVT's) - This view displays the amount of optimism in
processors, and the average rate of processing events
view in figure 6). Green areas indicate the current
known value of GVT, while the red areas indicate th
timestamp of the last processed event (LVT). The grea
this difference, the greater the amount of optimism on t
processor. Additionally, the slope indicates event rate
The greater the slope, the slower the rate of process
events.

Percentage of Events Rolled Back - This view indicates
the percentage of events processed which are rolled b
(right view in figure 6). The depth of individual rollbacks
could be obtained from the previous view.

3.3.3 The Simulation Parameter Modification Tool

The third component of the visualization is a static to
which allows users to setup and modify simulatio
parameters. The tool was initially built to provide use
with easy interface for static load balancing. Users a
able to set up the simulation by using the tools drag a
drop interface to assign host processors responsible
running the simulation protocol, the visualization, and th
GVT server. Loads and communication topologies can
re-balanced by simply moving processes from on
processor to another. In addition, it allows users
modify many simulation parameters such as th
checkpoint and synchronization intervals.

4 EVALUATION OF VISUALIZATION

In order to evaluate the effectiveness and ability of t
visualization prototype to improve performance,
carefully controlled experimental study was conducte
The visualization was evaluated by thirty-eight users wi
varied levels of familiarity with the concepts of paralle
processing and distributed simulation. Users were ask
to use the visualization tool to improve the performan
of a Time Warp based optimistic simulation. Resul
were collected and statistically analyzed.

4.1 User Testing and Evaluation

In order to keep the case study simple, users were as
to identify and tune parameters associated with just tw
bottlenecks. The issues chosen were rollback overhe

Figure 6: Rollback Perspective

Graham, Karachiwala and Elmaghraby

se
 an
es
ds
int
ot
d.
of

tion
s
fo
b

15
VT
hic

tion
th
of
l
re
er
n

nt
er
n,
l

n,
is
na

of
ed
the
ion
ble
ers

er
 to
he
ch

y
s
e
e

ed
e

to

n

s
he

s
ch

e
d

e

n

g

.8
or
s
y
s.
s
ix
and state saving overheads. For rollback overheads, u
were asked to study the aggressiveness of processors
reduce the excessive aggressiveness of individual proc
sors by re-distributing loads. For state saving overhea
users were simply asked to find a good checkpo
interval which decreased memory usage but did n
significantly increase the cost of coast-forward overhea
In all cases, the simulation was run for 1000 units
simulation time.

4.1.1 The Case Study

The system simulated was the one described in Sec
3.1. A network of 7 heterogenous HP-UX workstation
interconnected by a 10Mbit/sec ethernet were chosen
this simulation. One 9000/735 (at 99MHz w/ 256M
RAM), four 9000/715's (at 80MHz w/ 128Mb RAM), and
two 9000/712's (at 60MHz w/ 32Mb RAM). Six of the
machines were assigned to the simulation while one 7
was assigned to the visualization as well as to the G
server. The system was assumed to have 48 nodes w
were distributed evenly amongst the processors.

4.1.2 Protocol for User Evaluation

The users chosen to test and evaluate the visualiza
were mostly graduate students in the Engineering Ma
and Computer Science department at the University
Louisville. All were currently taking a graduate leve
course in discrete-event simulation, and we
representative of the skill levels of the comput
professionals who might actually need a visualizatio
system while working with a distributed discrete eve
simulation in their professional practice. The us
evaluations were conducted in five phases: introductio
familiarization, testing, evaluation, and statistica
analysis.

Phase 1: (Introductory phase) - This phase was used
to introduce users to the main ideas in parallel simulatio
Time Warp, and its potential performance problems. Th
was done using a series of three lectures, and additio
reading materials, which included a paper on $Parallel
Discrete Event Simulation# by Fujimoto (1990), as well as
a handout which briefly introduced the concepts
distributed simulation and Time Warp, and also explain
the case study and the physical hardware used for
visualization. The handout also contained an explanat
of some of the performance bottlenecks and tuna
parameters in Time Warp, as well as the initial paramet
used in the case study.

Phase 2: (Familiarization phase) - This phase was
conducted individually with each user just before his/h
evaluation. Users were given a hands-on introduction
the performance visualization with an emphasis on t
kinds of performance bottlenecks viewed through ea
1474
rs
d
-
,

r

h

l

view. The static simulation-tuning tool and the online
help facility were also introduced.

Phase 3: (Testing Phase) - In this phase, users were
asked to improve upon the simulation performance b
identifying performance faults and tweaking parameter
for the two performance issues mentioned above. Th
only help users were allowed to receive was through th
performance help system built into the visualization.

Phase 4: (Evaluation Phase) - In this phase, users
were asked to fill out a brief questionnaire of about 18
questions on a scale of 0-10. The questions were group
into categories such that they would allow analysis of th
visualization's ability to improve performance, its
effectiveness, and its ease of use. The goal here was
get information into how users perceived the
visualization.

Phase 5: (Statistical Analysis Phase) - During this
phase, the effectiveness of the performance visualizatio
tool was determined by analyzing the performance
improvement data from phase 3 and questionnaire
obtained from phase 4. These results are presented in t
next section.

4.2 An Analysis of the Results

A total of thirty eight users individually tested and evalu-
ated the visualization. The entire evaluation proces
lasted about two and a half weeks. On the average, ea
user took approximately 30 minutes to reduce
performance problems caused due to excessiv
aggressiveness and improper load balancing, an
approximately 15 minutes to determine a satisfactory
checkpoint interval.

4.2.1 Performance Improvement Using Visualization

The questionnaires were first analyzed to determine th
visualizations ability to provide a significant increase in
performance. Users were asked to record the executio
times for the simulation (for 1000 units of simulation
time) both before, and after, reducing the two
performance problems.

The average execution time for users before tunin
the simulation was 232.8 seconds. After using the
visualization to modify the load and checkpoint interval,
the average simulation run times were decreased to 171
and 155.1 seconds respectively. Standard deviations f
the resulting run times were 5.6 and 5.9 second
respectively. Figure 7 displays the speedup achieved b
users both before and after tuning simulation parameter
An average increase in speedup of about 1.62 wa
achieved (since users were allowed to use at most s
processors, the maximum possible speedup is six).

Evaluation of a Prototype Visualization for Distributed Simulations

f
dy
y
e-
e
g
t
e

y

t.
f
r

s,
e
e

s

s
ne
nd
e
ge
.
n
)
ls
he

e

 if
it
One additional issue studied was the rate o
performance increase shown by users. In order to stu
this issue, intermediate run times were automaticall
recorded every time a user modified parameters and r
ran the simulation. Figure 8 shows the averag
intermediate run rates for users while decreasin
performance problems. It is clear from the figure tha
though users modified parameters and re-ran th
simulation a few times before they were satisfied with
their performance increase, the visualization was ver
effective in helping users identify bottlenecks and quickly
achieved reasonable performance gains.

Figure 8: Average intermediate run times while
decreasing performance problems

4.2.2 Subjective Evaluation of Visualization Features

As explained previously, each user filled out an
evaluation questionnaire at the end of the experimen
This form, contained six questions regarding features o
the visualization and four questions regarding use
perceptions of the effectiveness of the visualization.

Figure 7: Simulation Speedup for Users Before
and After Modifying Simulation Parameters
1475
The features evaluated were performance display
layouts, views, controls, colors, and the setup tool. On
question required a yes/no answer, and asked if th
performance displays were helpful in contributing
towards a performance increase. All thirty-eight user
answered in the positive.

Histograms for the responses to the question
regarding features are given in Figures 9 through 13. O
question asked whether the performance displays a
their layouts were easy to understand. About 90% of th
users indicated that they were relatively easy. The avera
response was 1.7 with a standard deviation of 1.2
Another question asked if it was easy to switch betwee
performance views. The majority of users (about 95%
gave high ratings. The next question asked if the contro
used to set up the performance displays and start t
simulation were difficult to use. Only one user indicated
that the controls were hard.

Another question asked if the colors in the performanc
displays were effective. All thirty-eight users indicated
responses of near-excellent. The last question asked
the static simulation parameter modification tool made

Question 11: Were the performance displays
and their layouts easy to understand?

0
2
4

6
8

10

12
14

0
Easy

1 2 3 4 5 6 7 8 9 10
HardDifficulty Level

Figure 9: User Evaluations of
Performance Displays

Question 13: Were the controls difficult to
use?

0
2
4
6
8

10
12
14
16
18

0
Easy

1 2 3 4 5 6 7 8 9 10
HardDifficulty Level

Figure 11: User Evaluations of
Difficulty of Controls

Question 12: Was it easy to switch between
the different performance views?

0

4

8

12

16

20

0
Easy

1 2 3 4 5 6 7 8 9 10
HardDifficulty Level

Figure 10: User Evaluations of
Performance Views

Graham, Karachiwala and Elmaghraby

ce
e

on
ne
ce
he

to
gh

ns
f
nt.
 of
he
t
last
that
e
.8,
 a

ns
of
rs
e
e

ce
ers,

 as

e
 to
s
nt

y
er,
r-
the
re-
ce
the
an
is
ily

d
tal
easy to modify and tune simulation parameters. On
again, about 90% of the users gave very positiv
responses.

Four additional questions regarded user percepti
about the visualization and its overall effectiveness. O
question asked users if they felt that their performan
increase was significant enough to justify the use of t
performance visualization. All thirty-eight users
responded positively. Histograms for the responses
the other three questions are given in Figures 14 throu
16.

One question asked users to rate the visualizatio
ability to help increase performance. About two-thirds o
the users rated the visualizations ability as near excelle
The average response was 8.6 with a standard deviation
1.4. Another question asked users to rate the ability of t
visualization to identify performance bottlenecks. Abou
90 percent of the responses were near excellent. The
question asked users to rate the level of competence
they thought was required for the visualization. Th
average result was 2.1 with a standard deviation of 1
indicating that users felt that the visualization required
nominal level of familiarity with distributed simulation.

4.3 Summary of Evaluation Results

The testing and evaluations done in the previous sectio
provided valuable information about the effectiveness
the visualization prototype. Using the visualization, use
were able to significantly improve upon the performanc
of a distributed discrete event simulation. The prototyp
allowed users to quickly locate and isolate performan
bottlenecks, make effective changes in system paramet

Question 15: Was it easy to modify and tune
simulation parameters?

0
2
4
6
8

10
12
14
16
18

0
Easy

1 2 3 4 5 6 7 8 9 10
HardDifficulty Level

Figure 13: User Evaluations of Setup
Tool

Question 14: Were the colours in the
performance displays used effectively?

0

5

10

15

20

0
Poor

2 4 6 8 10
ExcellentDifficulty Level

Figure 12: User Evaluations of Use of
Colors
1476
and use available computing resources more effectively
evident by the speedup results.

Finally, it can be concluded that the performanc
visualization has significant potential as a teaching tool
illustrate how different parallel simulation method
execute as well as to study the effects of differe
performance parameters.

5 CONCLUSIONS AND DIRECTIONS

Visualizing the progress of a distributed simulation ma
be easy, but visualizing its performance is not. Howev
not only is visualizing performance hard, but the perfo
mance data needed may not be easily available from
simulation. In this paper, we have developed and p
sented a structured model for visualizing the performan
of a distributed simulation. Our approach stresses
importance of visualizing performance issues rather th
visualizing raw data or simulation results. Using th
approach, performance bottlenecks can be eas
identified, which may aid in tuning the simulation an
achieving increased performance. The experimen

Question 17: Does the visualization require an
extreme level of competence?

0

2

4

6

8

10

12

0
Easy

1 2 3 4 5 6 7 8 9 10
HardDifficulty Level

Figure 16: User Perceptions of
Competence Level Required

Excel lent

Question 10: How would you rate the visuali-
zations ability to help increase performance?

0

2

4

6

8

10

12

14

0
Poor

2 4 6 8 10

Difficulty Level

Figure 14: User Perceptions of Ability
to Help Increase Performance

Question 16: Were the causes of performance
bottlenecks easy to identify?

0
2

4

6

8

10

12

0
Easy

1 2 3 4 5 6 7 8 9 10
HardDifficulty Level

Figure 15: User Perceptions of Ability
to Identify Performance Bottlenecks

Evaluation of a Prototype Visualization for Distributed Simulations

e

is

e
e
ed
this

nt

e

n

.
lo
f

-
y

.

t
t the
s a
d as
 He
e of
rdue
 on
and
997
e is
for
nd

e
 in
rsity
 a

and
uted
hine

er
ille
 He
in-
ntist
llon
, as
evaluation validated the general capabilities of th
visualization approach.

The next logical step in enhancing the visualization
to add $intelligent# support to assist the user in utilizing
the features of the visualization, understanding th
information in the views, and taking action to enhanc
performance. We envisage a combination of rule-bas
and model-based approaches being used to achieve
enhancement.

REFERENCES

Jefferson, D., and H. Sowizral. 1985. Fast Concurre
Simulation Using the Time Warp Mechanism.
Distributed Simulation 15 (2): 63-69.

Heath, M. T., and J. A. Etheridge. 1991. Visualizing th
Performance of Parallel Programs. IEEE Software.
8(5): 29-39.

Miller, B. P., M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam and T. Newhall. 1995. The Parady
Parallel Performance Measurement Tool. Computer.
28 (11): 37-45.

Reed, D. A., R. A. Aydt, T. M. Madhyastha, R. J. Noe, K
A. Shields and B. W. Schawartz. 1992. The Pab
Performance Analysis Environment. Department o
Computer Science, University of Illinois.

Samadi, B. Distributed Simulation Algorithms and Perfor
mance Analysis. 1985. Ph.D. Dissertation, Universit
of California, Los Angeles.

Fujimoto, R. M. 1990. Parallel Discrete Event Simulation
Communications of the ACM., 33 (10): 30-53.
iro
 of
EE
r of

ral
ittees
95

1477
AUTHOR BIOGRAPHIES

JAMES H. GRAHAM is currently the Henry Vog
Professor of Computer Science and Engineering a
University of Louisville. He has previously served a
faculty member at Rensselaer Polytechnic Institute, an
a product engineer with General Motors Corporation.
received his B.S. degree from Rose-Hulman Institut
Technology, and the M.S. and Ph.D. degrees from Pu
University. He has organized two IEEE workshops
special computer architectures for robotics
automation, being the program chair for the 1
International Conference on Intelligent Systems. H
the editor of the books Computer Architectures
Robotics and Automation and Safety, Reliability a
Human Factors in Robotic Systems.

IRFAN S. KARACHIWALA received his B.S. degre
from the University of North Carolina at Greensboro
1991, and the M.S. and Ph.D. degrees from the Unive
of Louisville in 1994 and 1998 respectively. He is
member of the Association for Computing Machinery
his research interests include parallel and distrib
processing, optimistic discrete-event simulation, mac
learning and decision support systems.

ADEL S. ELMAGHRABY is a Professor of Comput
Science and Engineering at the University of Louisv
and is the Director of the Multimedia Research Lab.
received his Ph.D. from the University of Wiscons
Madison and has held appointments as a visiting scie
at the Software Engineering Institute at Carnegie-Me
University, as a Fulbright Scholar at Qatar University
a visiting professor at the American University in Ca
and as a visiting researcher at the University
Wisconsin. He is the founding editor of the ACM/IE
Joint Simulation Newsletter and is an associate edito
SCS SIMULATION. He is a member of seve
conference steering committees and program comm
and was program co-chair for the ISCA 19
International PDCS Conference.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

