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ABSTRACT

This paper presents the concept of inventory optimiza
and the role of demand distributions. Slow-moving it
demand receives special emphasis. Simulations of se
popular discrete distributions illustrate the difficulties 
probability modeling with the quantity and quality 
demand history typically available. Results of experime
with a state-of-the-art probability modeling to
(ExpertFit™) highlight the practical difficulties of dat
fitting. Finally, inventory optimization over a simulate
data set with the “wrong” assumed demand distribu
suggests a business case for accurately identifying de
distributions.

1 INTRODUCTION

Inventory optimization is an emerging practical appro
to balancing investment and service-level goals over a 
large assortment of stock-keeping units (SKUs) typified
automobile dealers, industrial equipment distributors,
telecommunications network service centers. In contra
traditional “one-at-a-time,” marginal stock level settin
inventory optimization simultaneously determines all SKU
stock levels to fulfill total service and investme
constraints or objectives. In many published applicatio
inventory optimization has offered attractiv
comprehensible management controls that a bus
owner (for example, an automobile dealer princip
financial manager, or inventory manager can manipulat

However, in contrast to standard marginal stock le
setting, inventory optimization requires a probabi
distribution of SKU demand. Familiar classical metho
emphasize SKU forecasts. As a result, in work on beha
a major American automobile manufacturer, the author
encountered some concerns among interested inve
management practitioners about how to model the dem
distribution of slow-moving items, and about what ris
might result from inaccurate or inappropriate probabi
modeling.
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2 INVENTORY OPTIMIZATION

In the pursuit of improved but affordable customer serv
levels, many organizations have adopted service p
inventory optimization. Traditional optimal inventory
analysis establishes order quantity, stock level guida
(maximum stock), and reorder point on a part-by-p
basis, for example, with Economic Order Quantity or (s,
models (Azoury and Miller, 1984; Ehrhardt and Mosie
1984). In traditional analysis, service level or “part f
rate” is the probability that a stock level will cove
demand. In contrast, “inventory optimization” defines tot
fill rate as a weighted average of the individual part f
rates, for example,

[ ] { } [ ]∑ ∑ 





≤=

j k
kjjj DEQDobPrDE  Rate Fill Total (1)

where Dj = demand rate (say, weekly) for stock-keepin
unit (SKU) j; Qj = stock guidance (“order-up-to” quantity
for SKU j; and Prob{Dj ≤ Qj} = individual service level for
SKU j.

Here the definition of total fill rate weights individua
part fill rates by their expected demands (Hopp a
Spearman, 1995). Other weighting schemes are certa
conceivable; for example, expected total cost of each SK
The number of SKUs in a spare parts inventory may v
from a few hundred to several hundred thousand. Follow
(1), a simple inventory optimization formulation is

∑=
j

jjQC Cost Inventory  Total :Minimize

where T = the target fill rate for the entire inventor
Practical situations may expand this formulation to inclu
additional constraints on fill rate targets for specific subs
of items, space constraints on certain item groups (
example, automobile body parts or windshield glass), a
budgets on subsets of items.
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The advantages of optimizing service parts invento
over total fill rate include:

• Controlling inventory to a single total fill rate goa
and thereby avoiding the need to specify a co
effective service level for every SKU

• Relating a simple performance goal (total fill rate) 
total inventory investment

• Considering trade-offs between service levels 
individual part stocking levels
The principal disadvantage of the total fill rat

approach is incurring low service levels on some SKU
For typically large parts assortments, this disadvantag
acceptable in exchange for a manageable inventory con
process. Published applications of the total fill ra
approach to inventory optimization include Cohen, et 
(1990); Harris (1997); and Hopp, et al. (1997).

In real-world situations, slow-moving items can figur
prominently in evaluating inventory effectiveness. F
example, automotive dealers often stock from 5,000
20,000 spare parts. Stock order replenishment from
facing warehouse normally occurs weekly. Of all th
dealer’s parts, 90 percent or even more may be slo
moving parts, that is, those with 20 or more weeks of v
low or zero demand in a year. To achieve a high total 
rate (for example, ≥90%), a dealer must stock a significa
inventory of slow-moving parts, that is, fast-moving pa
inventories alone cannot achieve a dealer’s high total 
rate target. Thus, obtaining a high service level on slo
moving parts prompts real curiosity, if not outrigh
concern, about the right tail of the probability distributio
of a slow-moving part’s demand.

3 PURCHASER BEHAVIOR AND
DISTRIBUTIONS OF DEMAND

Purchaser behaviors affect the appropriate choice 
probability distribution. Miller (1995) discusses “macr
models” of a real-world customer population that justify
theoretical distribution:

“Micro models deduce theoretical distributions
directly from assumptions made about the ‘behavior
of the underlying things that are being counted in the
distributions…A macro model makes hopefully
plausible assumptions about the overall population of
the things being counted and deduces the theoretical
distribution that would result if the assumptions are
true. A macro model is not based on the ‘behavior’ of
the individual things being counted.” (emphasis added
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Factors of slow-moving item purchase behaviors
include the following:
• On each purchase occasion, do buyers demand th

item in quantities of just one? Or more than one?
• If the quantity per purchase occasion can be more tha

one, are there one or more modes (for example, shoc
absorbers)?

• Do some buyers in the population have a significantly
different demand rate (for example, a national repair
shop chain buying wholesale original equipment parts
from a dealer versus a “shade-tree mechanic”)?

• Can price promotions affect consumers’ demand rates
For most slow-moving items, manufacturers or
suppliers are not prepared to accommodate a deman
burst, and are thus unlikely to offer promotions. Some
style goods, such as manufacturer-branded appearan
items, may present exceptions.

• Does seasonality create a nonstationary deman
distribution? Demand for certain slow-moving repair
parts will certainly exhibit seasonality (for example,
for lawnmowers or snowmobiles), but many slow-
moving items will present relatively stationary demand
distributions.

• Does manufacturer or supplier phase-in/phase-out o
SKUs create a nonstationary demand distribution?

• Do manufacturer or supplier engineering change
orders create a nonstationary demand distribution?

• Does manufacturer vehicle or product launch or build-
out create nonstationary demand distribution?
Numerous authors have concluded that the negativ

binomial distribution is generally most suitable for
modeling the probability of demand for slow-moving
items. The Santa Clara University Retail Workbench
yielded many data sets fit well with the negative binomial
(Agrawal and Smith, 1996). Jacobs and Wagner (1989
found the negative binomial distribution effective for
modeling the demand distribution of 21 U. S. Air Force
data sets. While Murthi, et al. (1993), discovered
conditions under which alternative mixture models were
superior, those authors found the negative binomia
distribution surprisingly robust with respect to alternative
forms of heterogeneity among consumers’ per-purchas
demand rates.

A more or less plausible macro model that results in
the negative binomial is as follows:
• Consumers in the population may have different and

unknown positive demand rates λ.
• The distribution of λ should be plausible in that, for

different values of its distribution parameters, the
distribution of λ has reasonable shapes, namely J- and
bell-shaped forms. The gamma distribution is suitable.

• The number of items demanded on a purchase
occasion is Poisson distributed with a mean λ that is
thus gamma-distributed. Since the negative binomia
distribution is a mixture of the Poisson and gamma
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distributions, this macro model of slow-moving item
demand yields a negative binomial distribution.
Miller (1995) poses similarly elegant, straightforwar

plausible assumptions about demand for a slow-mov
item to yield any of beta-binomial or three unnamed (or,
least, unrecognizable) distributions apparently in t
hypergeometric family.  He comments:

“The major point of these various examples is this.
Given any particular area of interest it is quite easy to
generate a profusion of models, each of which will
lead to a possible theoretical distribution that may fit
observed distributions from the area. Each of thes
theoretical distributions will have any number of
possible underlying models, not just the particular
model that we used in deducing the distribution. We
have, then, an embarrassment of riches if we take th
approach to understanding frequency distribution.”

In the context of inventory optimization, a retailer o
distributor would face a daunting market analysis burden
create appropriate macro models for each of an enorm
number of SKUs. As the following section illustrates, th
available SKU demand data probably will not enco
complete answers to the purchase behavior iss
enumerated above.

4 AUTOMATED FITTING OF PROBABILITY
DISTRIBUTIONS OF DEMAND

In an application such as inventory optimization, the lar
number of SKUs typically involved would require a
automated facility to identify and fit appropriat
probability distributions. To illustrate the challenges 
fitting these kinds of data, I used ExpertFit (Averill La
and Associates) to fit slow-moving demand data simula
from known distributions. Table 1 illustrates samples fro
four distributions (Poisson, binomial, negative binomia
and beta-binomial) that various academics a
practitioners have recommended for slow-moving item
These samples are representative of 52 weeks of dem
records. Note that each item displays one or more week
zero demand, and each simulated demand has a s
sample mean (approximately 2) and low maximum. Ta
2 presents the true parameters and sample statistics
each simulated item demand. The simulation assumes 
each item demand is completely stationary and thus la
both seasonality or trend.
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Table 1: Simulated Weekly Slow-Moving Demand Data

Week 1 2 3 4 5 6 7 8 9 10
Item A 2 0 3 2 2 2 1 0 0 1
Item B 0 1 1 3 2 1 3 2 1 2
Item C 1 6 1 3 4 1 0 0 2 1
Item D 0 1 14 0 1 0 2 1 0 5

Week 11 12 13 14 15 16 17 18 19 20
Item A 0 3 3 1 1 3 1 3 0 1
Item B 1 1 2 0 2 1 2 1 2 0
Item C 5 5 3 3 3 6 1 1 1 2
Item D 3 3 3 0 3 2 7 1 7 1

Week 21 22 23 24 25 26 27 28 29 30
Item A 2 1 1 5 4 1 1 1 2 1
Item B 3 2 2 1 2 3 3 2 1 2
Item C 1 2 3 2 5 0 0 2 3 8
Item D 4 3 0 0 0 7 1 0 0 0

Week 31 32 33 34 35 36 37 38 39 40
Item A 3 6 0 2 0 1 1 4 1 2
Item B 3 1 3 2 1 2 0 3 2 3
Item C 1 1 0 6 1 1 2 3 4 3
Item D 3 4 0 2 0 11 1 1 1 1

Week 41 42 43 44 45 46 47 48 49 50
Item A 3 6 1 2 1 2 3 4 3 7
Item B 1 1 2 1 1 2 3 3 2 1
Item C 1 0 0 1 5 1 1 3 0 5
Item D 1 2 5 0 2 14 0 4 5 10

Week 51 52
Item A 3 1
Item B 1 2
Item C 0 0
Item D 1 0

The characteristics of these simulated demand d
would certainly argue strongly for modeling with a discre
probability distribution that is truncated at the left. Resu
of the ExpertFit analysis appear in Table 3, and a
encouraging for the following reasons:
• Correct detection of both binomial and negativ

binomial distributions
• χ2 goodness-of-fit rejections of distributions whos

Lexis ratios (variance-to-mean) are contrary to t
binomial and negative binomial

• Correct resolution of geometric versus negati
binomial distribution for Item C (the geometric
distribution is a special case of the negative binom
distribution, and the true negative binomia
distribution was relatively “close” to a geometri
distribution)

• Rejection of the Poisson distribution for modeling th
Item D beta-binomial data
3
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Since ExpertFit does not include the beta-binomial 
any other three-paramter discrete distributions), its failu
on Item D is hardly surprising or unreasonable.

Often retail business systems contain little or 
capacity to store and analyze SKU demand history, so 
having 52 weeks of data could be unlikely. To supp
financial reporting and planning, some systems w
produce and archive monthly demand data by SKU. Ta
4 provides 13 monthly (4-week) aggregations of the d
from Table 1. Fitting these data with ExpertFit yields t
results shown in Table 5. In three of the four simulat
1214
t

demands, ExpertFit recommends the discrete unifor
distribution; in the case of the Item D beta-binomial data
the tool favors the negative binomial distribution (whose
Lexis ratio exceeds one, in contrast to the underlying bet
binomial distribution). As expected, demand history
aggregation that would be typical of retail business system
confounds state-of-the-art analytical efforts to identify
underlying probability distributions from the demand
pattern.
Table 2: Distributions Used to Generate the Simulated Weekly Slow-Moving Demand Data

Item A Item B Item C Item D
Distribution Poisson Binomial Negative Binomial Beta-Binomial

(Hypergeometric)
True Mean 2 2 2 2
True Variance 2 0.66667 3.3333 0.71429
Lexis Ratio (Var/Mean) 1 0.33333 1.6667 0.35714
Sample Mean 2 1.7115 2.1923 2.5192
Sample Variance 2.6275 0.7975 3.9231 11.588
Sample Max 7 3 8 14
Sample Lexis Ratio 1.3137 0.466 1.7895 4.6000

Table 3: Results of ExpertFit Analyses of Simulated Weekly Slow-Moving Demand Data

Item A Item B Item C Item D
1st Choice Negative Binomial Binomial Negative Binomial Geometric
2nd Choice Poisson Poisson Geometric Negative Binomial
3rd Choice Geometric Discrete Uniform Poisson Poisson
4th Choice Discrete Uniform Geometric Discrete Uniform Discrete Uniform
True Distribution Poisson Binomial Negative Binomial Beta-Binomial
Note: Italics indicate distributions rejected in equal-width χ2 test

Table 4: Simulated Aggregated Monthly Slow-Moving Demand Data

Month Item A Item B Item C Item D
1 7 5 11 15
2 5 8 5 4
3 4 5 13 11
4 8 5 15 8
5 5 5 5 10
6 9 8 8 7
7 7 10 7 8
8 12 7 13 7
9 3 8 8 13

10 8 8 12 4
11 12 5 2 8
12 10 9 10 20
13 14 6 5 16
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Table 5: Results of ExpertFit Analyses of Simulated Monthly Slow-Moving Demand Data

Item A Item B Item C Item D
1st Choice Discrete Uniform Discrete Uniform Discrete Uniform Negative Binomial
2nd Choice Negative Binomial Binomial Negative Binomial Poisson
3rd Choice Poisson Poisson Poisson Discrete Uniform
4th Choice Geometric Geometric Geometric Geometric
5th Choice Logarithmic series Logarithmic series Logarithmic series Logarithmic series
True Distribution Poisson Binomial Negative Binomial Beta-Binomial
Note: Italics indicate distributions rejected in equal-width χ2 test
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The failure to capture information about lost sales o
slow-moving items creates an additional estimatio
challenge. In the case of a service-parts operation, ma
business systems provide a lost sales recording capabil
but poorly trained or overly busy staff may fail to record
the lost sales information. In a self-service environmen
such as a department store, many lost sales go unobserv
Failure to record lost sales creates a right-censor
population; Agrawal and Smith (1996) offer an estimatio
method for negative binomially distributed demand
Nahmias (1994) provides a method for normally
distributed demand with unobserved lost sales.

5 COST OF MISIDENTIFICATION OF SKU
DEMAND DISTRIBUTION

The cost of misidentifying SKU demand distributions take
one of the following forms:
• If the distribution’s right tail overestimates the

cumulative probability, the inventory optimization
could predict an unrealistically high total fill rate, and
thus underinvest in stock. Some comments in variou
articles by Harris (for example, 1997) may indicate
such results.

• If the distribution’s right tail underestimates the
cumulative probability, the inventory optimization
could predict a lower total fill rate than should be
expected, and thus cause overinvestment in inventory
The exact consequence to inventory optimization o

misidentifying SKU demand distributions is unpredictable
the results above are correct for setting the service level 
an individual SKU as, for example, in Jacobs and Wagn
(1989) or Silver (1991). However, a multi-SKU inventory
optimization will “compensate” somewhat for
misidentification by reallocating investment relative to the
costs and expected demands of all the SKUs.
1215
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Table 6 illustrates the effect of assuming all SKU
demands are Poisson-distributed when they are, in fa
negative-binomially distributed. Abundant empirica
studies notwithstanding, many authors (for exampl
Murthi, et al. (1993)), as well as some commercial dema
forecasting software, suggest the Poisson as a suita
demand distribution for slow-moving items. The costs an
negative binomial parameters for the 20 SKUs in Table
are arbitrary, and the inventory optimization used th
Poisson probabilities to compute expected fill rate. Th
Solver™ add-in for Microsoft Excel™ computed the
solution in the column labeled “Stock Level.”

Table 6 shows that, in general, the Poisso
overestimates the true negative binomial cumulativ
probabilities of demand, and thus overstates the expec
fill rate by approximately 5 percent for this particular
contrived example. This expected fill rate misestimatio
from demand distribution misidentification is severe
enough to warrant concern about the rigor of probabili
modeling an inventory optimizer would enforce.

The numerical error revealed in this small sample is 
only qualitative value. Inventory optimization involves
solving a nonlinear program over a set of integer variabl
(the stock levels). While the Excel Solver is generall
effective and accurate for linear and nonlinear optimizatio
over continuous variables, its algorithm is somewha
questionable over discrete variables (for exampl
receiving a bad starting solution to the problem in Table 
Solver will fail to find an optimal solution; what constitutes
a “bad starting solution” is not obvious). Experiments wit
several starting solutions yielded the solution in Table 6, 
that it is probably an optimal solution, or one very close t
a true optimum.
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Table 6: Inventory Optimization Assuming Poisson-Distributed Demands When “True” Demand Distributions Are Nega
Binomial

“True” Negative Binomial Distribution (NBD) Cum Probability of
Demand

Item Unit
Cost

s p Mean Variance Lexis
Ratio

Stock
Level

Poisson NBD

1 $1.27 3 0.2083 11.402 54.741 4.801 19 0.986803 0.866377
2 $6.73 4 0.3280 8.195 24.985 3.049 17 0.997943 0.9488226
3 $2.10 7 0.6308 4.097 6.496 1.585 19 1 0.9999617
4 $15.44 2 0.5948 1.363 2.291 1.681 13 1 0.99997
5 $7.91 1 0.9759 0.025 0.025 1.025 16 1 1
6 $17.05 4 0.8950 0.469 0.524 1.117 12 1 1
7 $13.37 3 0.2434 9.324 38.304 4.108 14 0.94707 0.8208325
8 $4.56 1 0.8142 0.228 0.280 1.228 18 1 1
9 $7.73 5 0.8794 0.686 0.780 1.137 16 1 1
10 $12.30 2 0.3000 4.667 15.556 3.333 14 0.999891 0.9738884
11 $14.23 4 0.4320 5.259 12.173 2.315 13 0.998881 0.9738874
12 $1.49 6 0.3761 9.955 26.473 2.659 19 0.99671 0.9506677
13 $12.26 1 0.1114 7.976 71.589 8.976 14 0.983149 0.8299737
14 $16.45 3 0.6862 1.372 2.000 1.457 14 1 0.9999981
15 $14.62 2 0.2178 7.181 32.962 4.590 13 0.984419 0.8701254
16 $15.38 5 0.4828 5.355 11.091 2.071 13 0.998678 0.9780117
17 $3.96 3 0.9947 0.016 0.016 1.005 18 1 1
18 $13.36 4 0.6400 2.250 3.516 1.563 14 1 0.9999474
19 $18.88 8 0.3722 13.491 36.242 2.686 12 0.410273 0.4818636
20 $5.54 2 0.8501 0.353 0.415 1.176 17 1 1

Target Fill Rate 90%
Expected Fill Rate 90.5% 85.3%
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6 CONCLUSIONS

Inventory managers faced with high service-le
requirements and many SKUs appreciate the simplicit
inventory optimization, as well as the explicit contro
offers over total investment and total fill rate. In t
author’s experience, practitioners are generally unfam
with the choices and implications of various discr
probability distributions. The issues and examp
presented in this paper suggest that a) identificatio
distributions from typically available demand history c
be extremely difficult, and b) misapplication of a dema
distribution will yield unsatisfactory inventory optimizatio
results. The facets of slow-moving item purchase beha
suggest a number of fertile research directions with s
practical value to establish an inventory optimizat
capability with predictable performance.
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