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ABSTRACT Earlier researches reported on maintenance planning

usually studied push-type production systems. They are
Selecting an optimum maintenance policy independent of also more directed towards monitoring and control of the
other parameters of the production system does not alwayssystem under a given maintenance policy than specification
yield the overall optimum operating conditions. For and optimization of the policy to select. Examples of these
instance, high levels of in-process inventories affect the systems appear in the work by Kobbacy (1992), and
performance of a given maintenance policy by reducing the Ulusoy et al. (1992). There has also been work done on
effects of machine breakdowns. In this study, parameters dynamic scheduling of maintenance jobs for optimal
of the production system, in particular the allowable in- results, in particular policies by researchers such as
process buffers, and the design parameters of theEnscore and Burns (1983) and Wu et al. (1992).
maintenance plan are considered simultaneously as integraBruggeman and Dierdonck485) suggested applying the
parts of the whole decision process for selection and Manufacturing Resource Planning (MRP Il) concept to
implementation of a maintenance policy. The results from maintenance resource planning.
the simulation experiments show that the response surfaces  For JIT type systems, Abdulnour et al. (1995), using
for these systems are of the forms that yield themselves tocomputer simulation and experimental design, developed
an optimization search. However, the optimization problem some regression models to describe the effects of three
itself is not trivial, as the performance of the system preventive maintenance policies on performance of a
depends on a combination of qualitative and policy production system. In an earlier work, Azadivar and Shu
variables (the choice of the maintenance policy) as well as (1996) ranked maintenance policies in terms of their
a set of quantitative variables (allowable buffer spaces). In performance on JIT systems defined by certain
this paper, a methodology is presented for solving this characteristic factors.
class of problems that is based on a combined computer In designing an overall optimum maintenance policy it
simulation and optimization integrated with a genetic is necessary to set optimum values for all decision

algorithm search. parameters of the system. Unfortunately, most of the
factors affecting the performance of maintenance policies
1 INTRODUCTION are inherent to the system and cannot be used as decision

variables. One of the few factors that plays a role in the
Allowing for build up of work-in-process (WIP) can often performance and at the same time can be considered as a
reduce the effects of machine breakdowns on a system’'sdesign parameter for all systems is the size of buffer
productivity. In most production systems, however, spaces allowed. There are, however, other decision
attempts are made to keep WIP at an absolute minimum.variables which are applicable only when a particular
These conflicting effects give rise to a new way of thinking maintenance policy is selected. These are the frequency of
about selection and optimization of maintenance policies. maintenance when a preventive or predictive policy is
The idea here is that in order to obtain an overall optimum selected.
operating condition the selection and optimization of In this work, a systematic method is proposed for the
maintenance policies should be considered simultaneouslyoverall optimization of the system. The optimum
with deciding on the levels of allowable in-process determined consists of specifying the maintenance policy
inventories. A systematic optimization of such systems, to employ along with its design parameters, if applicable,
however, is not simple. Decision variables for this and the level of in-process inventories that will result in an
optimization procedure consist of some qualitative factors overall optimum performance. A general algorithm has
(the type of maintenance policy) and some quantitative been developed based on the genetic algorithm approaches
parameters (the size of allowable in-process inventories).
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that yields a near-optimum solution for a combination of
guantitative and qualitative variables.

2 OBJECTIVES

Five maintenance policies were investigated. These are:
predictive  maintenance policy, reactive policy,

opportunistic policy, time-based preventive policy, and

MTBF-based preventive policy.

There are many system performance measures that

could be used as the objective of the optimization. In most
production systems, where in-process inventory is kept at a
minimum level, late delivery has a significant disruptive

effect on the downstream processes. This makes on-time

delivery one of the most important aspects of systems
operations. In this study, a function of on-time delivery, the
service level has been selected as the measure of
performance. The service level is defined as the
percentage of jobs delivered on time.

3 RESPONSE SURFACE TOPOLOGY

Derivation of analytical forms for the response surface of
performance as a function of the maintenance policy and
other controllable variables is not possible; systems could
get very complicated and some decision factors are

gualitative in nature. Here, response surfaces were derived

by evaluating the system at several points using computer
simulation. The results were then used to depict them
graphically.

Four examples, P1 through P4 were used in this study.
These examples represent different problems with various
levels of complexity and sizes containing between 12 to 60
controllable variables. The simplest and most complicated
of these examples are represented in Figure 1 and 2. In
these figures nodes represent the status of the product an

Figure 1: Graphic Representation of P1
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Figure 2: Graphic Representation of P4

arrows are the processes used to change the part from one
status to the next. The letters on the arrows denote the

resource used for each process represented by the

corresponding arrow.

For each problem a set of points in the feasible region
were chosen at which the performance measures of the
system were evaluated. Each point represents a set of
values for allowable buffer spaces in front of each station
and a maintenance policy. The set of values for buffer
spaces used in evaluating example P1 is given in Table 1.
The results of performing the evaluations for all
combinations of the sets of buffer spaces specified above
and maintenance policies for this example is summarized
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in Table 2.A plot o thesevalues h a 3-dimensimal space

is dgven in Figure 3. $milar resuts were obtainedfor the
othe three examples. The form of this graph, which
indicates a locd maximum at the predictive potiy and
buffer allocationNo. 3, suggests that there is a potéritia
a systematic searchto yield a desirable an®r to this ype
of maintenance polig/ optimization problems.

Table 1: Buffer Placements Corfigurationsfor P1

4 FORMULATION OF THE PROBLEM

This problen has me special characterissc that
distinguishesit from regular non-linear prgramming type
optimization rounes. It has both cantitative variables
sieh as buffer allocationand qualitaive variables sug as
the polcy choiaes. It also haboth explicit constraing such
as the totabvailable inentory stora@ spaces at alvork
stationsand implicit constrairts suchas the leadime for
delivering a product. Aimulation opimization that can

Buffer pla@ment solve qualitative controllabk variables must require only
configurations the respores from discrete points in thsearch space.
Buffer capacity| 1 > 314151 6 Existing methodsthat can solve that kind of problems
at nodes are all direct searcmethods and ofh require omplete
> 1 2 > 121110 enumeratin. The exisence of stucturd (qualitatve)
3 1 1 0l 21212 decision variables atiinates ewen thes dired search
2 > > 3 117110 methods. For thesmethods to be applicable ethariables
5 1 1 > 11112 must be quantitate so that the feasibk spae can be
6 5 1 0 11213 representg by a gemetrical n-dinensiond space.As a
result for these prol@ms the
Table 2: Servicd_evelas a Functin of Buffer Allocations and Maiehance Polcy
buffer policy
allocation reactve opportune predictive MTBF-PM time-PM
No. 1 0.653 0.693 0.818 0.784 0.764
No. 2 0.724 0.754 0.876 0.837 0.827
No. 3 0.785 0.809 0.951 0.917 0.885
No. 4 0.654 0.680 0.801 \H.768 0.759
No. 5 0.572 0.613 0.720 0.680 0.668
No. 6 0.422 0.425 0.479 0.462 0.462

service level

buffer allocation

Figure 3: 3-D Representation oktRespons Suface for Example P1
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random search has often been used as the only feasiblet.1 Definitions

approach. In this work, a method based on a genetic

algorithm has been developed and implemented and theX = Vector of quantitative variables consisting of vectors
results have been compared with those obtained from aX; andX,

random search. Y = Vector of qualitative variables or policy choices
The general form of the maintenance policy consisting of yand g
optimization formulation can be stated as follows, X1 = Vector of buffer sizes
X, = Vector of preventive maintenance frequencies
Maximize: y1 = Variable representing the maintenance policy
EIf(X,Y)] = E[f(X, X2, - %Y1, Y2, -+ Yim)] y» = Variable representing maintenance task priority
SL = The random variable representing the response for the
Subject to: service level
h(X1, X2, ..., %) <@, forj=1,2,..,p LTs = The random variable representing the response for
a(X,Y)=<hb fork=1,2, ..., q lead time for part s
L<x<U, for i=1,2,...,n LTDs = The desired value for LsT
IL = The random variable representing the total inventory
where X: %, X, .., % is the vector of quantitative levelinthe system
controllable variables, which are deterministic in nature LD = The desired level for IL
and are bounded by upper and lower ||m|t$hu L,Y: X1; = the buffer size at the i-th machine station,

Vi, Yo ..., Y iS the vector of the qualitative factors, f(X,Y) S = the storage limit at the i-th machine station,
is the objective function, which is an implicit function of ~SS = Upper bound on the total number of storage spaces.
the controllable variables and can be evaluated only by ~ Then, the optimization problem can be formulated as
simulation. i(Xy, X, ..., %) < g, forj=1,2, .., p, denotes
the explicit constraints, whose analytical forms are known Max  E[SLKy, Xz, Y1, Y2)]
and can be evaluated analyticallyisathe limit for the j-th
explicit constraint. gX,Y), for k = 1, 2, ..., g, denote S.T. PILTKy, X2, Y1, Y2)< LTD{ = 0.95
implicit constraints. p is the pre-set goal for the k-th P[ILK1, X2, Y1, Y3) <ILD] 2 0.95
implicit constraint. >Xi<SS, for k=1,2,...,p
Note that the explicit constraints, like the '
objective functions, are also responses of the simulation O<x< s
model. For instance, one such constraint may require the
average lead time not to exceed a certain value. These4.2 Applying Optimization Procedures
constraints are stochastic. Therefore, they may be obeyed
in one replication of the simulation, yet violated in another. The search methods were implemented and compared on
Thus they need to be treated stochastically. The way theyfour examples. These examples denoted by P1 through P4
are treated in this study is that it is assumed that they will represent different problem sizes containing between 12 to
always have a chance to be violated, but a probability limit 60 controllable variables. Response surfaces were

is assigned to this violation according to the comfort level generated as functions of maintenance policy,
of the decision maker. Assuming this comfort level to be maintenance task priority, preventive maintenance
oy, the k-th implicit constraint can be written as: frequency, and buffer placements.
During the search process, explicit constraints are
Pla(X,Y) < b =1 -y checked first because they are in analytic forms, thus easy

to check. Implicit constraints are checked after simulation
In simulation experiments the form of these runs are made. The result obtained from applying each

constraints can be transformed into optimization technique is accepted only if both explicit and
implicit constraints are satisfied.
UCLyakG(X,Y) < by In the constrained random search, a finite number of

randomly selected points in the feasible space are checked
where UCL o denotes the upper confidence limit for the @nd evaluated. A point is generated by a pre-determined
response gat 1 -y level. _schgme and che_cked a_galnst all explicit constraints. If none
is violated, the simulation runs are performed and then all
implicit constraints are checked. If no implicit constraint is
violated, the value of the response is compared with the
best existing solution and is retained as the best if it is
better, but is discarded otherwise. The process continues
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with the next point in the feasible region until all points are Table 3: Comparison for P1
evaluated and compared. The best result is considered the
optimal solution to the problem. number of | random searcH genetic
Genetic algorithms (GA) are a set of search methods| evaluations algorithm
that mimic the process of biological evolution. In genetic 111 0.713 0.713
algorithms, controllable variables are usually encoded in 130 0.713 0.720
fixed-length strings the same way as genetic information is 592 0.720 0.738
encoded in chromosomes in the biological world. A 1802 0.720 0.751
population of these strings, which each represents a - -

solution to the problem at hand, is created randomly and
then transformed according to some probabilistic transition

rules. Transition rules usually include selection, crossover Table 4: Comparison for P2

and mutation. The selection process generates parents from -
the current population to reproduce offspring in the next | numberof | random search genetic
generation. Crossover is used to combine a partial stringl_€valuations algorithm
from one parent string with a partial string at the same 593 0.484 0.574
location from another parent string to form a whole new 598 0.484 0.523
string. Mutation, which introduces diversity to the 608 0.511 0.579
population, is used to change the value of the variable at 1901 0.511 0.588
one position in the string according to a random decision 2183 0.531 0.657
suggested by a probability distribution. 2504 0.531 0.634
These transformation processes generate new string 2073 0.603 0.697
patterns that do not exist in their parents. These new 4846 0.603 0.682

patterns may represent better results for the system. A
better result in the genetic algorithm terminology is
referred to as a better fithess value. In an environment

where the right to reproduce is determined by individual Table 5: Comparison for constrained P3

fithess and luck, better fithess provides better chances t -
survive and reproduce and over time, the average fitness of numbe_r of | random searct] genetic
the population improves. For further information on evaluations algorithm
genetic algorithms used in optimization, refer to textbooks 218 0.321 0.492
such as those of Davis(1991), Goldberg(1989), and 332 0.321 0.512
The results of performance of different search methods 739 0.357 0.510
were compared in terms of the value of the objective 1049 0.363 0.528
function and the number of simulation runs to obtain the 1070 0.403 0.571
solution. In performing the comparison the attempt was 1432 0.403 0.535
made to compare the results obtained for the same numbe 1569 0.405 0.535
of simulation runs spent. This was possi_ble by using as 1756 0.405 0.519
many number of runs that took for GA to find the solution 1831 0418 0577
be spent on random search. 2508 0.418 0.533

Table 3 through 6 show these comparisons for service
levels obtained by random search and GA for a given
number of simulation runs for problems P1 through P4.
The general trends in these figures indicate that GA
performs relatively better than the random search and its
superiority increases as the problem size increases.

In these experiments a simple GA without many
available enhancements was employed. Additional
experimentation with various values for GA parameters
was conducted. The results indicated a significant
improvement over the simple GA. For instance, when a
binary representation, rank scaling, generational stability
stopping rule, elitist roulette wheel selection, 1-point
crossover, and bit swap mutation were used to achieve

the same value or even better values for the service level,
the number of simulation runs required decreased
drastically. These results for P2 are shown in Table 7. The
numbers in parenthesis show the number of simulation
runs used to obtain the indicated service level.
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Optimum maintenance policy for a manufacturing system
has to consider all of the factors that have influence on the
consequences of machine breakdowns. A major factor in
these systems that has such an effect is the level of WIP at
each workstation, as low WIP leaves little tolerance for
machine failures. In order to make an overall best decision
on the type of maintenance policy and the other
characteristics of the system, in this paper the problem was
formulated as an optimization problem consisting of
gquantitative decision variables as well as qualitative and
policy variables. A simulation-optimization procedure AUTHOR BIOGRAPHIES
based on genetic algorithms was developed and applied to
four problems ranging from a very simple to a very
complex system. A procedure was developed to
automatically build and execute simulation models for
configurations suggested by the optimization algorithm.
The results obtained were then compared with those
obtained from a random search.

The results obtained demonstrated that the propose
formulation could indeed provide acceptable solutions for
this complex problem. In particular, the genetic algorithm
based optimization routine demonstrated a great flexibility
in solving problems that are defined by a set of combined
guantitative and qualitative variables.
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