
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

HIGH LEVEL ARCHITECTURE REMOTE DATA FILTERING

William S. Murphy Jr.

TRADOC Analysis Center-Monterey
Post Office Box 8692

Monterey, CA 93943, U.S.A.

Galen D. Aswegan

Tapestry Solutions, Incorporated
5675 Ruffin Road, Suite 305

San Diego, CA 92123, U.S.A.

e
nd
ts
t

lem
ee
th
re
c
to
h
u
he

y
 to
w
TI
se
 in
d
a

e
ts
 a
te
n

ve
ct
.S

g
si
g
es

n
tes

lve
g

d
I)
y
or

her
de

 the

TI
per
h to

to
e

sis
ates
)
I
ribe
d

was
e
ple
ed
ry

for

 a
TI.
een
ABSTRACT

The current structure of the High Level Architectur
(HLA) puts a tremendous burden on network load a
CPU utilization for large distributed simulations due to i
limited controls for publishing and subscribing objec
updates and interactions. Several solutions to this prob
have been proposed, but all require cooperation betw
federate developers and FOM extensions for both
publishing and subscribing Federates. This paper explo
an alternative that has the potential to dramatically redu
communications load by allowing subscribing federates
extend and control the publish/subscribe mechanisms t
are local to the publishing federate’s process witho
requiring changes to the publishing federate or t
Federation Object Model (FOM).

1 INTRODUCTION

United States Department of Defense (DoD) polic
mandates the HLA as the common technical framework
facilitate interoperability between DoD simulations. Ne
simulations being developed must implement the HLA/R
communications architecture (U.S. Department of Defen
1997). Legacy simulations must be modified to operate
the HLA framework or be retired. Data volume an
network traffic problems have been identified by sever
HLA user communities.

The problems revolve around the methods und
which subscriber federates determine which objec
attributes, and interactions they want to receive from
publisher federate, and on the frequency of object upda
while the object is changing. Several Data Distributio
Management (DDM) Service extensions to the HLA ha
been proposed that attempt to limit the number of obje
published and the frequency of object updates (U
Department of Defense, 1997).

The proposed methods involve defining Routin
Spaces and Subscription Regions that attempt to clas
objects within certain regions, and allow subscribin
federates to limit the regions in which they receive updat
835
n
e
s
e

at
t

,

l

r
,

s

s
.

fy

.

While this helps alleviate some of the communicatio
problems, it imposes a burden on the publishing federa
to implement classification by region, and does not so
the more general problem of arbitrary filters or filterin
logic that is discussed in this paper.

This paper introduces filtering techniques an
extensions to the HLA Run Time Infrastructure (RT
specification that will reduce network data traffic b
allowing subscriber federates to define arbitrary filters
filtering logic, distribute the logic through the RTI to a
publisher federate, and execute the logic in the publis
federate’s local RTI component. Once the decision is ma
to publish an object or update an attribute, extensions to
RTI’s protocol will allow directed RTI communication to
take place between the publishing federate’s local R
logic component and the subscriber Federate. This pa
proposes a methodology that takes the systems approac
network communications and logic distribution in order
eliminate network traffic without adversely impacting th
performance of the local federates.

2 BACKGROUND

 The ideas in this paper are an extension of the Analy
Federate research that was conducted by the United St
Army Training and Doctrine Command (TRADOC
Analysis Center (TRAC) in Monterey, California. RT
inefficiencies forced researchers and analysts to subsc
to and receive significant amounts of attribute an
interaction updates on a continuous basis for data that
only required on a conditional basis during limited tim
periods. The combination of requirements were not sim
value or proximity based filters that are currently address
by DDM, but custom decision making based on a histo
of prior observations combined with user requests
analysis information.

 2.1 HLA/RTI Services

 The HLA communications framework is implemented on
subscription basis during federation execution by the R
Simulations (federates) publish only the data that has b

Murphy, Jr. and Aswegan

ing
iv
e

n
TI
 is
e
the
tiv
d,
ee
he

er
it

the
he
es
 to
t
he

g
th
s

he
a

s,
in

e
g

d
l
es
in
s
c

in
ve
es
n
the

e
nd
te.

ic
g

 it
ot
.
eir
,

n
s.
 all
 no
it’s

rea
f
e
d
ate
nd

rs
 so
the

g
”,
be
M
 by

n
re
s a
ins
he
rs
g
d
are
subscribed to by one or more other federates. Publish
federates transmit the subscribed data to the RTI execut
process which filters the data and routes it to th
appropriate subscribing federates.

 In its simplest form, a subscriber federate ca
subscribe to a specific object “class”, and have the R
notify the federate whenever a new object of the class
“discovered”. At this level, all objects of the class ar
discovered, and all updates to registered attributes of
class are delivered to the federate for processing. Selec
discovery of individual objects is not possible. Instea
unneeded objects can only be ignored after they have b
delivered to the federate (i.e. after all the overhead of t
RTI and network has been incurred).

 After an object has been discovered, the subscrib
federate can receive updates to the object whenever
attributes are changed. The publishing federate notifies
RTI whenever an object’s attributes change value. T
RTI then notifies the subscriber federates of the chang
If the subscriber does not require all the updates (due
difference in resolution, timing, precision, etc.) it still mus
receive the data, and throw it away (i.e. again after t
overhead of the RTI and network has taken place).

 2.2 HLA Object and Attribute Filtering

 To reduce communications requirements in HLA
federations, at least three different data-filterin
approaches are currently being pursued. These include
RTI’s DDM services, Professor Bernard P. Zeigler’
predictive filtering research, and Mr. Keith Briggs’
requestable object research. The three approac
implement specific data filtering techniques based on
specific perceived user need.

2.2.1 Data Distribution Management (DDM)

 To provide some controls for communication reduction
subscribing and publishing federates were given certa
controls in the form of DDM extensions to the RTI. Th
controls can be divided into two basic types: value filterin
for update value resolution and proximity filtering for
limiting object discovery. The techniques propose
involve defining routing spaces as multidimensiona
coordinate systems in which federates express an inter
for either receiving data or sending data by regions with
the routing space. A publishing federate first define
regions within a routing space, and then assigns obje
classes to the various regions. Subscribers also def
regions as areas of interest in which they wish to recei
objects, attributes, and interactions. The RTI determin
which update regions overlap with the subscriptio
regions, and send only those objects that overlap to
subscribing federates.
836
e

e

n

s

.

e

s

t

t
e

 The first major problem with routing spaces is that th
federates must first agree on which routing spaces a
dimensions are to be supported by the publishing federa
It is impossible to specify a new region with a specif
dimension without involving changes to the publishin
federate’s source code.

 A second major problem with routing spaces is that
only determines overlap of publish/subscribe regions, n
of individual objects relative to a subscription region
Subscribing federates may still receive objects outside th
specified region if the object is within a publisher’s region
but outside the subscription region.

 A third major problem is that there are no controls o
the resolution of the attribute values within the region
Once the overlap test passes for an attribute update,
values are sent to the subscriber. The subscriber has
controls on the amount of change of an attribute before
process is notified.

2.2.2 Predictive Filtering

 Professor Bernard P. Zeigler has done research in the a
of predictive filtering, which is basically an extension o
the DDM value filtering technique described abov
(Zeigler and Lee, 1998). It attempts to define an
parameterize more sophisticated filters that can evalu
attribute value updates from a publisher federate a
predict when a subscriber needs the value updates.

 Once an object has been discovered, predictive filte
can be attached using interactions sent through the RTI
that updates to the subscriber are only received once
filters are satisfied.

2.2.3 Requestable Object

 The paper published by Keith Briggs entitled “Extendin
the HLA to support a Requestable Object Service
describes a technique whereby specific objects can
published and discovered through extensions to the FO
and interaction services based on parameters specified
the subscriber federate (Briggs, et al, 1997)

 The technique dramatically reduces object traffic whe
large number of objects exist (such as mines), but a
sparsely used by other federates. The technique allow
subscribing federate to issue an interaction which conta
the filtering parameters required by the subscriber. T
publishing federate is responsible for evaluating the filte
and publishing only those objects which pass the filterin
criteria. The types of filters supported are negotiate
between the subscribing and publishing federates, and
encapsulated as extensions to the FOM.

High Level Architecture Remote Data Filtering

h
,

I,
ra
e

s

I
g
re
h
h
r

o
o

e
m

o
e

ll
d
ra

n
s

y
l
i

to
n
o
o

r
is
te
la
s

d
s
t

t

.

3 AN ABSTRACTION OF THE PROBLEM

The filtering techniques proposed to date are all solving t
same basic problem. By looking at the roles
responsibilities, and needs of each federate and the RT
is possible to abstract the problem into a more gene
issue of flow of logic and process control. First, th
responsibilities of data filtering must be under the control
of the subscribing federate because it is the only proce
that knows how and why the filtering must take place
Secondly, to reduce network bandwidth and RT
overhead, the filtering must be done in the publishin
federate’s process (or its local processor) befo
stimulating the network communications. Third, eac
subscriber federate may have unique requirements t
are completely unrelated, but may overlap with othe
federates. Fourth, the publishing federate needs to kn
that someone is subscribed, but should be sheltered fr
the filtering mechanics.

The last issue is probably the most important to th
overall architecture. If the federate is not isolated fro
the filtering, its functionality must be modified for each
new subscriber federate. Since two federates are n
involved, extensions to the FOM and potentially th
HLA/RTI are required to instantiate and control a new
filtering technique. If not addressed, the overa
management of the simulation environment an
development process will be a paperwork and procedu
nightmare.

A summary of the current roles of each Federate a
the RTI in the overall process follows. This paper doe
not propose to eliminate the routing space functionalit
or any other RTI functionality. Instead, this proposa
seeks to extend the current RTI functionality to make
more responsive to user needs.

3.1 Publishing Federate

The role of the publishing federate is to respond
general requests from the RTI to publish its objects a
interactions, and to respond to requests for republicati
if necessary. Ideally, the publisher needs to keep track
an object-by-object basis whether anyone is subscribed
not. The publisher should not need to keep track if mo
than one subscriber is attached, or if additional filtering
being performed after it publishes its objects or attribu
updates. If no federates are subscribed to particu
objects, the publisher federate has the ability to turn the
objects or their algorithms off for performance reasons.

3.2 Subscribing Federate

The subscriber’s role is to subscribe to its require
objects, attributes, and interactions. In addition, it mu
specify any additional filtering requirements that mus
837
e

 it
l

s
.

at

w
m

w

l

d

,

t

d
n
n

or
e

r
e

t

take place remotely in the publishing federate’s process.
In a completely general case, the subscriber should be
able to provide an arbitrary block of logic that is invoked
whenever the publishing federate publishes a new object,
or updates an existing object’s attributes. The block of logic
must be able to run in the publishing federate’s process, mus
be able to communicate to the local RTI, and must be able to
communicate through the RTI back to the subscriber’s
process.

3.3 RTI Executive

The RTI has the responsibility of notifying each federate
when subscribers have subscribed to individual objects,
attributes, and interactions. It also must be responsible for
registering a subscriber’s filtering logic, for distributing the
logic to the federate’s process, and for invoking the logic
when the publishing federate notifies the RTI of new objects
and updates. In addition, the RTI is responsible for
coordinating requests from multiple subscribers for the
purposes of minimizing network communications. Lastly, the
RTI must reliably deliver the discoveries, interactions and
object updates to the appropriate subscribing federates.

4 REMOTE LOGIC FILTERING PROPOSAL

The key to providing a general implementation of the roles
previously described is the distribution of arbitrary logic from
the subscriber process to the publishing federate’s process
With traditional programming languages, such as C, C++,
Fortran, ADA, etc. this is impossible without doing a
recompilation of the publishing federate’s application. With
newer technologies, such as JAVA and Tapestry’s VISION
XXI/Kernel Technology, it is possible to distribute arbitrary
logic blocks in an “uncompiled” or neutral binary form, able
to run in any process (including remote). As long as the
appropriate interpreter is built into the local component of the
RTI that is linked with the publishing federate’s application,
the logic can be invoked under the control of the publishing
federate’s local RTI component.

The architecture proposed accomplishes the following:

• It allows any arbitrary filtering technique the
subscriber desires to be distributed.

• It completely isolates the publishing federate from the
subscriber requirements.

• It forces all communications to still take place using
the RTI and the current FOM specifications.

• It allows for standardized filters, such as the DDM and
predictive filters, to be implemented once and used by
multiple subscribers as standard utilities.

Murphy, Jr. and Aswegan

 as
 the

the
an
:

o
or
 or
us
ing
 a
lue
t o
the
 or
er

en
res
e

 no
rk

fied
 be

re
 is
is o
he
 an
ou
nt
ific
of
ce

ate
al
be

l
for
uld
the

d
t

’s
e

e
t

1

h
sed

I
f
r
’s
o
ic
t
e
f
n
r
ble
t

• It allows Requestable Objects to be implemented
proposed, but with an open ended ability to change
filtering criteria.

 4.1 Logic Definition and Subscription

 The first step in registering arbitrary logic is associating
logic with a specific object, attribute, or interaction. This c
be accomplished by extending the following RTI services

• subscribeObjectClassAttribute
• subscribeInteractionClass

The above routines can either be extended,
complimented with similarly named routines, allowing f
an additional parameter which identifies the logic script
task to be performed in the remote process. The RTI m
then distribute the logic to each of the federates publish
the specified object, attribute, or interaction. When
publishing federate publishes a new object or attribute va
the specified logic must be called in the local componen
the RTI residing in the publishing federate’s process. If
filtering logic component determines that the update
published object should be forwarded to the subscrib
process it should notify the RTI. The RTI should th
deliver the message as usual (Note that this also requi
protocol extension to the RTI). If the filtering logic filters th
update or object and decides it is not useful, the RTI is
notified, thus eliminating the RTI overhead, the netwo
communications, and the local subscriber processing.

Similar extensions are required to detach the speci
logic from objects, attributes, and interactions. This can
accomplished by reattaching a null filter.

The potential benefits of this remote filtering a
significant. One example illustrating these benefits
when a federate is being used to collect data for analys
After Action Review (AAR) purposes. Suppose, t
personnel using the data need their federate to collect
process detailed attribute or interaction data ab
helicopters only if a combination of four independe
battlefield parameters exist simultaneously. If the spec
combination of attributes do appear, subscription
additional objects, classes, and attributes will take pla
By placing a local component in the publishing feder
that keeps a history of the observed attributes,
communication to the subscribing federate can
eliminated until the combination of values appears.

4.2 Flow of Control Examples

The following illustrations show the flow of contro
diagrams in the publishing federate’s process
publication, update, and requests for republish. It sho
be noted that any of the arrows entering or leaving
838
r

t

,
f

s

 a

t

r

d
t

.

l

subscriber federate remote logic circles must be
accompanied by extensions to the RTI.

A new object being published by a federate is shown
in Figure 1. The new object’s existence is first identified
to three subscribed federates filtering logic which have
been previously transmitted to the publishing federate, an
resides in the publishing federate’s local RTI componen
process. Each subscriber’s filtering logic has the ability to
notify the RTI to actually forward the object to its
subscriber process. In the example, Subscriber S2
filtering logic rejected the object, and does not need futur
updates to the object.

An update of an attribute to the object just published is
shown in Figure 2. Since S2 did not subscribe to th
object, it is not notified of the update. S1 was notified, bu
based on its filtering logic, rejected the update. S3’s
filtering logic passes, and notifies the RTI to continue to
forward the update to S3’s process.

Figure 3 shows an incoming request from federate S
to republish the attributes for the new object. The
publishing federate is notified and responds to the
republish request. Since S2 and S3 are not involved wit
the request, they are ignored. The updates are then pas
to S1’s filtering logic in the publishing federate’s local RTI
component, which then forwards all or some of the
requested attribute values.

The Subscriber S1 sending logic instructions to its
local filter in the publishing federate is shown in Figure 4.
These instructions tell the publishing federate’s local RT
component to request from the RTI a republish request o
the object’s attributes for S1. As in Figure 3, the publishe
federate responds, and updates are only sent to S1
process. The two arrows coming out of S1’s process int
the Federate/RTI Ambassador Code indicate that the log
can be executed numerous times for several differen
objects, even though the invocation is only sent once. Th
difference between Figures 3 and 4 is that the initiation o
the request is done local to the publisher’s federate i
Figure 4, not from S1’s process as in Figure 3. Fo
extensions such as those proposed by the Requesta
Object Service, arbitrary logic and instructions can be sen
from the subscriber’s process, both limiting network

Publishing Federate’s Local RTI Component

Publisher
Federate

RTI
Interface

Federate/RTI
Ambassador

Code

Publishing
Federate’s
Simulation

Code

New
Object

To S3
via RTI

S3

S2

S1

Subscriber
Federate
Remote
Logic

To S1
via RTI

Figure 1: Publishing of New Objects

High Level Architecture Remote Data Filtering

e
ria
ll

an
o
the

.
ly
ss
d

the

e

 to

r
.
y
r
if
r

ol
 if
e
ed
l

I
c

te

d

d

t
n

.
o

a

d
d

bandwidth, while accomplishing the ability to perform
arbitrary logic filtering.

Figure 3: Request for Republication

There are many variations possible from the abov
examples. The most important aspects of the above crite
is that all communications occur through the RTI and a
queries follow the HLA rules

5 DIRECTED COMMUNICATIONS

In the prior examples, each subscriber’s logic is making
individual determination whether the communications t
the subscriber’s process is to take place. Note that
current HLA/RTI specification contains no prevision for
identifying specific federates for communication
Extensions to the protocol can be made which unique
identify each federate as a handle, independent of proce
When forwarding object discoveries, interactions, an

Publishing Federate’s Local RTI Component

Publisher
Federate

RTI
Interface

Federate/RTI
Ambassador

Code

Publishing
Federate’s
Simulation

Code

Object
Update

To S3
via
RTI

S3

S2

S1

Subscriber
Federate
Remote
Logic

Figure 2: Update an Attribute Value

Publishing Federate’s Local RTI Component

Publisher
Federate

RTI
Interface

Federate/RTI
Ambassador

Code

Publishing
Federate’s
Simulation

Code

Republish
with S1

To S1
via RTI

Request From
S1 via RTI to

Republish
Attributes

S3

S2

S1

Subscriber
Federate
Remote
Logic

Figure 4: Subscriber Logic Communication

Publishing Federate’s Local RTI Component

Publisher
Federate

RTI
Interface

Federate/RTI
Ambassador

Code

Publishing
Federate’s
Simulation

Code

Republish
with S1

To S1
via RTI

Logic
“Instructions”
From S1 via
RTI to S1’s

Component in
Publisher

S3

S2

S1

Subscriber
Federate
Remote
Logic
839
.

attribute updates, this federate handle must be added to
protocol to assist the RTI in limiting the communications.

In a similar manner, extensions to the HLA/RTI
protocols should allow buffer communication through the
RTI between the subscribing federate and its remot
filtering logic residing n the publishing federate’s local
RTI component.

6 PERFORMANCE AND CONTROL ISSUES

The proposed methodology takes the systems approach
simulation design by providing extensions to the RTI for
the purposes of control and optimization. The distribution
of logic from one process to another will affect the numbe
of processing cycles required for each individual federate
While this may be perceived as a disadvantage for an
individual federate, it is a tremendous advantage fo
balancing overall network and processor load, especially
good statistical tools are implemented by the RTI fo
tracking processor utilization and network
communications.

The administrators of the RTI Executive, and in
particular, the simulation designers must have the contr
mechanisms to override each of the subscribing federates
necessary. The trade-offs between local machin
performance, federate process overhead due to distribut
logic, and network bottlenecks should be under externa
control from any individual federate. By extending
override controls in the MOM classes and the RT
Executive it should be possible to disable abusive logi
distribution.

Aside from the CPU utilization, care must be taken in
allowing distributed logic to create local objects in the
remote process for the purposes of tracking history. Sta
of the art object technologies allow for the tracking of
object storage and should be adequate for monitoring an
automated garbage cleanup of unused objects.

7 CONCLUSIONS

The potential benefits of this remote filtering are
significant, not only in pure reduction of messages require
to be communicated by the RTI, but in the unlimited
potential for customization and extensions. The mos
significant advantage to the entire approach is the isolatio
of the filtering concepts from the publishing federate
Negotiations for FOM requirements and extensions are n
longer required for the purposes of optimization. All
existing DDM proposals, requestable objects, and
predictive filtering techniques can be implemented using
common protocol.

The proposed approach is in keeping with HLA
systems engineers’ conclusion that future modeling an
simulation uses and requirements could not be anticipate
and that future technological innovations could not be

Murphy, Jr. and Aswegan

A
he

 a
in

.
l
.

ed

ce.
ry
d
in
er
s

ne

y
g
.

rs
er
ars

d,

 is
of
t

predicted. It adheres to the rules and spirit of the HL
architecture without causing major disturbances to t
existing RTI implementation.

REFERENCES

Briggs, Keith, et al. 1997. Extending the HLA to Support
Requestable Object Service. Paper 97F-SIW-040
Proceedings of the 1997 Fall Simulation
Interoperability Workshop (SIW). Simulation
Interoperability Standards Organization, Orlando, FL

US Department of Defense. 1997. High Leve
Architecture Interface Specification, Version 1.1
Defense Modeling and Simulation Office.

Zeigler, B.P. and J.S. Lee. 1998. Theory of Quantiz
Systems: Formal Basis for DEVS/HLA Distributed
Simulation Environment. In Enabling Technology for
Simulation Science(II), SPIE AeoroSense 98. Orlando,
Florida.

AUTHOR BIOGRAPHIES

WILLIAM S. MURPHY Jr. is a Major in the U.S. Army
Corps of Engineers with 16 years of commissioned servi
He graduated with a B.S. from the United States Milita
Academy in 1982 and with a M.S. in Mathematics an
Computer Sciences from the Colorado School of Mines
1992. Major Murphy is a licensed Professional Engine
(PE) in the state of Virginia. He is currently an operation
research analyst at the U.S. Army Training and Doctri
Command (TRADOC) Analysis Center (TRAC) in
Monterey, California. He is also the Chair of the Militar
Operations Research Society’s (MORS) Computin
Advances in Military Operations Research working group

GALEN D. ASWEGAN is currently President of Tapestry
Solutions in San Diego, CA. He graduated with Hono
from Iowa State University with B.S. degrees in Comput
Science, Mathematics, and Physics. He has over 20 ye
of experience in developing large scale, distribute
graphical applications in both commercial and DoD
sectors. He has developed the REVUE technology and
directly responsible for architecture and implementation
the Vision XXI and Tapestry Kernel distributed objec
architectures.
840

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

