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ABSTRACT

We develop a variant of the Nelder-Mead (NM) simple
search procedure for stochastic simulation optimization th
is designed to avoid many of the weaknesses encumbe
such direct-search methods—in particular, excessive s
sitivity to starting values, premature termination at a loc
optimum, lack of robustness against noisy responses,
lack of computational efficiency. The Revised Simple
Search (RSS) procedure consists of a three-phase app
tion of the NM method in which: (a) the ending value
for one phase become the starting values for the n
phase; (b) the size of the initial simplex (respectively, th
shrink coefficient) decreases geometrically (respective
increases linearly) over successive phases; and (c) the
estimated optimum is the best of the ending values for
three phases. To compare RSS versus the NM proced
and RS9 (a simplex search procedure recently proposed
Barton and Ivey), we summarize a simulation study bas
on separate factorial experiments and follow-up multip
comparisons tests for four selected performance meas
computed on each of six test problems, with three lev
of problem dimensionality and noise variability used
each problem. The experimental results provide subst
tial evidence of RSS’s improved performance with on
marginally higher computational effort.

1 INTRODUCTION

Stochastic simulation optimization can be thought of
finding a combination of input parameters that gives t
optimal expected response (either minimum or maximu
of some objective function defined in terms of the (ra
dom) performance measures generated as the output
the simulation. Given a stochastic simulation model
a target system, the experimenter has the responsib
751
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for selecting the values of the input parameters to th
model. Let xi ≡ [xi,1, . . . , xi,d] be the vector of input
parameters for the simulation operating under theith
scenario, wherei = 1, . . . , n; and n denotes the total
number of scenarios (or alternative system configuration
in the overall simulation experiment.

The (deterministic) vector of design variablesxi and
a (possibly infinite) input stream of random numbers a
used by the simulation model to produce a set of (rando
performance measuresthat provide an estimate of how the
target system performed at the specified design point. W
let Y(j)

i ≡ [Y (j)
i,1 , . . . , Y

(j)
i,p ] denote the set of performance

measures (the outputs from the simulation) observed
the jth independent replication of design pointi, where
p is the number of relevant simulation outputs. Eac
component ofYi may represent any quantity of interes
which is an output from the simulation.

One of the components ofY(j)
i is usually the primary

performance measure of interest in terms of optimizatio
and is typically a function of several other outputs. W
will arbitrarily let overall cost be the first element in the
row vector Y(j)

i ; and we letθ(xi) denote the expected
value of this primary response at theith design point
xi so that θ(xi) = µ1(xi) = E[Y (j)

i,1 ]. (Throughout the
rest of this work, if it is unnecessary or inappropriate t
identify the design point indexi or the replication index
j, then we will suppress these indexes and simply wri
θ(x) = E[Y1].)

We define theregion of interestfor the optimization
procedure,

Ξ ≡ {
x ∈ Rd : x defines feasible system

operating conditions} ,

where Rd denotesd-dimensional Euclidean space. The
expected primary response from the simulation,θ(x),
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is what the experimenter wants to either maximize
minimize over the region of interest. If the inpu
parameters are continuous variables, then the goa
to find a setting of the input-parameter vector such that
expected primary response is deemed to be “close eno
to the global optimum. Thus, our goal for the optimizati
procedure (assuming that the primary performance mea
is expected total cost, which should be minimized) is
find

θ∗ ≡ min
x∈Ξ

θ(x) and x∗ ≡ arg min
x∈Ξ

θ(x).

In this article we formulate, implement, and eva
uate a stochastic simulation optimization procedure t
incorporates many desirable properties of the well-kno
Nelder-Mead (NM) simplex search procedure (Nelder a
Mead 1965) while avoiding some of the critical wea
nesses of this procedure. In Section 2 we formulate
Revised Simplex Search (RSS) procedure. Section
a comprehensive experimental performance evaluation
procedure RSS versus the classical procedure NM as
as procedure RS9, a variant of NM that was recen
proposed by Barton and Ivey (1996). Finally in Section
we summarize the main conclusions of this research,
we present recommendations for future research in
area.

2 REVISED SIMPLEX SEARCH (RSS)
PROCEDURE

Procedure RSS operates in three phases and starts wit
phase counterϕ being initialized to 1. The procedure i
provided with initial values of thed variables over which
it is to minimize in d-dimensional space. These initia
values define the initial vertexx1 ≡ [x1,j , . . . , x1,d].

The prespecified step sizeν1 is determined for the firs
phase (ϕ = 1) using step size parameterτ and the initial
vertex x1 as follows: ν1 = max{τ ·x1,j : j = 1, . . . , d}.

From this initial vertex and prespecified step sizeν1,
the algorithm determines the remaining verticesx2, x3, . . .
, xd+1 (that define ad-dimensional general simplex) b
moving from the initial vertex in each of thed directions
one at a time as follows:xi+1 = x1+eiν1 for i = 1, . . . , d,
whereei is the unit vector with one in theith component
and zeros elsewhere.

Therefore, the initial simplex (at stageq = 0) and each
successive simplex (at stageq = 1, 2, . . .) have vertices
denotedxi ≡ [xi,1, . . . , xi,k, . . . , xi,d] for i = 1, . . . , d+1,
so thatxi is the ith vertex (or point) during the curren

(that is, theqth) stage of the search. (Althoughx(q)
i is a

more complete notation for theith vertex in the stage-q
simplex, we suppress the exponent(q) for simplicity since
no confusion can result from this usage.) Additional
752
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the simulation-based estimate of the objective function a
vertex xi is denoted bŷθ(xi); and we take

θ̂(xmax) ≡ max
{

θ̂(xi) : 1 ≤ i ≤ d + 1
}

, (1)

with θ̂(xmin) defined similarly. The second highest of
the estimates of the response surface (which correspon
to the next-to-worst vertex of the current simplex) is also
noted, and we represent this quantity witĥθ(xntw) and
the corresponding vertex withxntw.

Some explanation is required for the notation used in
the rest of this paper. When we use the notationθ̂(xmax),
we are referring to the simulation response at the verte
yielding the maximum response on the current stage o
the search; and this is precisely the notation we will use
when emphasis on the vertexxmax is important. When it
is not important to emphasize the vertexxmax, we will use
the simpler notation̂θmax. And in a like manner,̂θ(xmin)
will be represented bŷθmin when no ambiguity can arise
from this usage. In the following description of procedure
RSS, several points (or vertices) are named and referen
is made to their corresponding estimates of the respons
surface. Within the verbal description and the flow chart
of the algorithm, we will use the shorter versions of the
notation below rather than the more cumbersome versio
on the right-hand of each of the following definitions:

θ̂max = θ̂(xmax), θ̂min = θ̂(xmin),
θ̂cen = θ̂(xcen), θ̂refl = θ̂(xrefl),
θ̂ntw = θ̂(xntw), θ̂exp = θ̂(xexp),
θ̂cont = θ̂(xcont).

 (2)

Finally, we preserve the best answer from each phaseϕ
by letting x̂∗(ϕ) denote the final estimate of the optimal
solution delivered in phaseϕ, whereϕ = 1, 2, 3.

For q = 0, 1, . . ., the qth stage of the algorithm
begins by computing the centroid of all the vertices used
in the current simplex excludingxmax; thus we obtain
the centroid of ad-dimensional polyhedron inRd. The
centroid is labeledxcen, and its coordinates are given by

xcen =
1
d

{[
d+1∑
i=1

xi

]
− xmax

}
. (3)

The procedure then proceeds through four operations (re
flection, expansion, contraction, and shrinkage) describe
below until the stopping criterion is satisfied. A flow chart
of the algorithm is depicted below in Figure 1, and a
formal statement of the algorithm is given below.
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termination
criterion
satisfied?

Deliver
ϕ∗ ← arg minϕ θ̂[x̂∗(ϕ)]

x̂∗ ← x̂∗(ϕ∗)

q ← q + 1
no

yes

x̂∗(ϕ)← xmin

ϕ← ϕ + 1

ϕ ≤ 3
? noyes

x1 ← x̂∗(ϕ− 1)
q ← 0

form new
initial simplex

using νϕ

given x1
ϕ← 1
q ← 0

form initial
simplex usingνϕ

θ̂min ≤ θ̂refl ≤ θ̂nexm

accept reflection

xmax ← xrefl

θ̂refl < θ̂min

attempt expansion
(yields xexp)

θ̂exp < θ̂min

accept expansion
xmax ← xexp

θ̂exp ≥ θ̂min

reject expansion

xmax ← xrefl

θ̂refl > θ̂nexm

attempt contraction

(yields xcont)

θ̂max ← min(θ̂refl, θ̂max)

θ̂cont ≤ θ̂max

accept contraction

xmax ← xcont

θ̂cont > θ̂max

perform shrinkage

xi ← xmin+
δϕ(xi − xmin) ∀ i

Figure 1: Flow Chart of Procedure RSS
753



Humphrey and Wilson

r

on
e

d,

to

d
o

n

if
d,

ent
a

ize
nt

to

dure

in

be
se
ot”
lex

se
6.

the
STEPS OF PROCEDURE RSS

0. Set Up Initial Simplex.Initialize the phase counter
ϕ ← 1, the iteration counterq ← 0, and the vertices
{xi : 1 ≤ i ≤ d+1} of the initial simplex using the initial
prespecified step sizeν1. Go to step 1.

1. Attempt Reflection.A new simplex is formed by
reflectingxmax through the centroidxcen of the remaining
vertices to find a new vertex. Specifically,xmax is reflected
through the centroid to yield the reflected point

xrefl = xcen + α · (xcen − xmax) ,

where: α = 1.0 is the reflection coefficient,xcen is the
centroid from (3), andxmax is the vertex corresponding
to θ̂max from (1). If

θ̂min ≤ θ̂refl ≤ θ̂ntw, (4)

that is, if the reflected pointxrefl is better than the next-to-
worst vertexxntw in the current simplex but is not bette
than the best vertexxmin, then the worst vertexxmax is
replaced by the reflected pointxrefl:

xmax ← xrefl. (5)

In this case the procedure continues with the terminati
criterion (i.e., the procedure goes to step 6). If th
condition (4) for accepting the reflection is not satisfie
then the algorithm proceeds to step 2.

2. Attempt Expansion.If the reflected pointxrefl is
better than the best vertexxmin in the current simplex,
then the reflection operation is expanded in an attempt
obtain even greater improvement. Specifically, if

θ̂refl < θ̂min (6)

then the vectorxrefl − xcen is extended to yield the
expansion point

xexp = xcen + γ · (xrefl − xcen) ,

where γ = 2.0 is the expansion coefficient (discusse
below). If θ̂exp < θ̂min, then the expansion is accepted s
that xmax is replaced byxexp in the simplex

xmax ← xexp;

and the algorithm continues by going to the terminatio

criterion (step 6). If θ̂exp ≥ θ̂min, then the attempted
expansion is rejected andxmax is replaced byxrefl

xmax ← xrefl;

and the procedure continues by going to step 6. Finally
the condition (6) for attempting expansion is not satisfie
then the algorithm proceeds to step 3.
754
3. Set Up Attempted Contraction.If

θ̂refl > θ̂ntw

so that the reflected pointxrefl yields a worse (larger)
response than the next-to-worst vertexxntw of the current
simplex, then some reduction in the size of the curr
simplex must be performed — either a contraction or
more drastic shrinkage. To set up this reduction in the s
of the simplex, the worst (largest) vertex in the curre
simplex is updated as follows:

if θ̂refl ≤ θ̂max, then

{
xmax ← xrefl

θ̂max ← θ̂refl

}
.

The attempted contraction in the next step will seek
replace the current worst vertexxmax with the new point

xcont = xcen + β · (xmax − xcen) ,

whereβ = 0.5 is the contraction coefficient.
4. Accept Contraction.If

θ̂cont ≤ θ̂max,

so that the contracted pointxcont yields a better (smaller)
response than the worst vertexxmax of the current simplex,
then xmax is replaced byxcont

xmax ← xcont;

and the procedure goes to step 6; otherwise the proce
goes to step 5.

5. Perform Shrinkage.If the contracted pointxcont
yields a worse (larger) response than every vertex
the current simplex includingxmax so that the shrinkage
condition

θ̂cont > θ̂max

is satisfied, then the size of the current simplex must
reduced to an extent that depends on the current phaϕ
of procedure RSS since the algorithm has likely “oversh
an area of improvement. In this case, all of the simp
edges with end pointxmin,

xi − xmin, i = 1, . . . , d + 1,

are reduced by the shrinkage factorδϕ, yielding new
vertices

xi ← xmin + δϕ · (xi − xmin) , i = 1, . . . , d + 1,

whereδϕ is the shrinkage coefficient for the current pha
ϕ of procedure RSS. The procedure then goes to step

6. Test Termination Criterion for Current Phase.After
each reflection, expansion, contraction, or shrinkage,
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stopping rule is applied to determine if sufficient progres
has been made. The termination criterion is

maxi ‖ xi − xmin ‖
‖ xmin ‖

≤ η, (7)

whereη is again a user-specified tolerance. This stoppin
rule examines the largest distance from any vertex
the simplex to the best vertex in the simplex (xmin) in
making a decision about termination of the search. If th
termination condition (7) is not satisfied, then the iteratio
counter q is incrementedq ← q + 1 and the procedure
returns to step 1. If the termination condition (7) is
satisfied, then the procedure goes to step 7.

7. End Current Phase.To complete the current phase
of procedure RSS, we record the termination point of th
current phase

x̂∗(ϕ)← xmin

and then we increment the phase counter,

ϕ← ϕ + 1.

8. Test Final Termination Criterion.If ϕ > 3, then
procedure RSS delivers the final estimatex̂∗ of the global
optimum according to

ϕ∗ ← arg min
{

θ̂[x̂∗(ϕ)] : ϕ = 1, 2, 3
}

and

x̂∗ ← x̂∗(ϕ∗);

then procedure RSS terminates. Ifϕ ≤ 3, then the
procedure goes to step 9.

9. Initialize Next Phase.Initialize the iteration counter

q ← 0,

the prespecified step size

νϕ ← 1
2
νϕ−1,

and the first vertex of the initial simplex,

x1 ← x̂∗(ϕ− 1).

Form the other vertices of the initial simplex

xi+1 ← x1 + eiνϕ for i = 1, . . . , d.

Go to step 1.
755
3 EXPERIMENTAL PERFORMANCE
EVALUATION

3.1 Formulation of Performance Measures

In this work, four performance measures were used fo
evaluating stochastic simulation optimization procedures
(i) natural logL of the number of function evaluations; (ii)
absolute percentage deviation of the final function valu
θ̂∗ ≡ θ̂(x̂∗) from the optimal function valueθ∗ ≡ θ(x∗),

D =

∣∣∣∣∣ θ̂∗ − θ∗

θ∗

∣∣∣∣∣ ;

(iii) maximum absolute percentage deviation in each
coordinate of the final point̂x∗ from the corresponding
coordinate of the true optimal pointx∗,

B = max
1≤j≤d

∣∣∣∣∣ x̂∗
j − x∗

j

x∗
j

∣∣∣∣∣ ; (8)

and (iv) average absolute percentage deviation in a
coordinates of the final point̂x∗ from the corresponding
coordinates of the optimal pointx∗,

A =
1
d

d∑
j=1

∣∣∣∣∣ x̂∗
j − x∗

j

x∗
j

∣∣∣∣∣ . (9)

When there are multiple optima, we evaluate the right-han
sides of (8) (respectively, (9)) for each optimum and tak
the smallest of these quantities as the final value ofA
(respectively,B).

3.2 Description of Test Problems

We selected six problems to serve as a test-bed fo
comparing the performance of procedure RSS with tha
of procedures NM and RS9. All six problems are
minimization problems. In this section we describe one o
the selected test problems by explaining the function to b
minimized, the starting point used, the optimal function
value, and the points corresponding to the optimal functio
value. A complete description of all test problems is given
in Humphrey (1997).

The second problem considered is the trigonometri
function. The function is defined as

θ(x) =
d∑

i=1

[fi(x)]2 + 1,

where

fi(x) = d−
d∑

j=1

{
cos(xj − 1) + i[1− cos(xi − 1)]

− sin(xi − 1)
}

for i = 1, . . . , d.
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We used dimensionalitiesd = 2, 10, and 18 for our
purposes and a starting point ofx1 ≡ [1/d, . . . , 1/d]. The
optimal value ofθ∗ = 1 is achieved at every point in the
lattice of points given by

x∗
k1k2···kd

= [1 + 2πk1, . . . , 1 + 2πkd], where

kj = 0,±1,±2, . . . , for j = 1, . . . , d.

The complicated nature of this function is depicted
Figure 2 ford = 2. For this test problem, when a given
search procedure terminated, we determined which of
optimal points was closest in Euclidean distance to t
final estimatex̂∗; and we used that optimal point for
calculating performance measuresA and B.
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Figure 2: Trigonometric Function (Test Problem 2) fo
Dimensionalityd = 2

3.3 Summary of Experimental Results

We decided to examine a variety of problems at differe
dimensionalities and with different levels of stochast
noise included. The selected dimensionalities are listed
the previous section and were usually 2, 10, and 18 (lo
medium, and high) dimensions. We selected 2-dimensio
problems as we wanted to see how the procedures comp
over “small” problems. Our decision to look at 10
dimensional problems came primarily from the literatu
which indicates that simplex search type procedures te
to perform well up to about dimensionality 10 (Nelder an
Mead 1965). We also wanted to examine the performan
of such procedures above dimensions of 10, and that led
to look at 18-dimensional problems. The exception to the
general rules is problem 4 (the extended Powell singu
function), for which the dimensionality was required to b
a multiple of 4. Hence, we usedd = 4, 8, and 16 (low,
medium, and high) as previously mentioned.
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The test problems we used are all deterministic func
tions, unlike responses generated by a stochastic simulati
model. In order to work with stochastic responses, we
added a noise component to each deterministic functio
value. The noise component is a random sample from
normal distribution with a mean of zero and a standard
deviation of either 0.75, 1.0, or 1.25 times the magni-
tude of the optimal response|θ∗|. These three levels of
stochastic noise provide us with low, medium, and high
levels of variation around the true underlying response
surface relative to the optimal function valueθ∗ = 1 that
was common to all six test problems.

Our study of theith problem(1 ≤ i ≤ 6) constituted
a complete factorial experiment in which there were three
factors each at three levels as defined below:

Pj ≡ jth level of optimization procedure

=


NM for j = 0,
RSS forj = 1,
RS9 for j = 2;

Gk ≡ kth level of problem dimensionality

=


2 (4 in problem 4) fork = 1,
10 (8 in problem 4) fork = 2,
18 (16 in problem 4) fork = 3;

and

N` ≡ `th level of noise standard deviation

=


0.75·|θ∗| for ` = 1,
1.00·|θ∗| for ` = 2,
1.25·|θ∗| for ` = 3.

In the experiment on problemi (1 ≤ i ≤ 6), we let
Li,j,k,`,m (respectively,Di,j,k,`,m orBi,j,k,`,m orAi,j,k,`,m)
denote the performance measureL (respectively,D or B
or A) observed on themth replication (1 ≤ m ≤ 9) of
the treatment combination(Pj , Dk, N`). We compute the
average performance measuresLi,j , Di,j , Bi,j , and Ai,j

for each problemi (1 ≤ i ≤ 6) and optimization procedure
j (0 ≤ j ≤ 2).

Within the ith experiment and for each of the selected
performance measures that were observed on themth
replication of the treatment combination(Pj , Gk, N`), we
postulate a linear statistical model of the form

Zjk`m = β0 + βP WPj
+ βDWGk

+ βNWN`

+ βPDWPj
WGk

+ βPNWPj
WN`

+ βDNWGk
WN`

+ εjklm, (10)

where the “coded” independent variablesWPj , WGk
, and

WN`
are defined as follows:

WPj =


−1, for j = 0,

0, for j = 1,
+1, for j = 2;
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andWGk
andWN`

are defined similarly. Note that in the
linear model (10), the dependent variableZjk`m is taken
to beLjk`m, Djk`m, Bjk`m, or Ajk`m, depending on the
performance measure under consideration.

3.4 Analysis of Experimental Results

Most of the analysis of this section will be drawn directl
from the numerical information presented in Table 1
We will consider each of the performance measur
independently over the six problems studied.

3.4.1 Linear Statistical Model

The linear statistical model (10) presented previous
appears to provide an adequate fit for our purposes.
r2 values were above 0.93 and most were above 0.
As expected, two factors presented significant effec
problem dimensionality and search procedure. As t
dimensionality of the test problems increases, the sea
obviously becomes more difficult and this manifests itse
in large F -values for the dimensionality factor.

The results of the analysis of variance also indicate
us that the search procedure factor is significant and t
is precisely what we want – evidence that procedure R
is significantly different from one or both of NM and RS9
(as is discussed here) and evidence that procedure RS
significantly better than, in at least a large number of cas
one or both of NM and RS9. TheF -values corresponding
to the search procedure simply indicate that there
some significant difference in the search procedures be
studied. Other discussion and results, mostly associa
with Table 1, will be presented to show that not only ar
there significant differences among procedures RSS, N
and RS9, but that there is evidence to conclude that R
performs better, on the whole, than NM or RS9.

Of the interactions within the linear model (10), only
the problem dimensionality–search procedure interacti
at times yielded F -values that appeared to indicat
some significance. A closer examination of searc
procedures RSS, NM, and RS9 over a wider varie
of problem dimensionalities is a likely area of futur
investigation. We felt that our goal of presenting a
improved search procedure for a broad class of test proble
at a variety of different dimensions was adequately m
without a more thorough and detailed examination
search-procedure performance over a greater number
problem dimensionalities.

3.4.2 Number of Function Evaluations

The first performance measure considered here isL, the
natural log of the number of function evaluations performe
This is particularly important to us as it gives us an ide
757
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of the computer time required to complete the desired
simulation optimization. We were willing at the start of
this work to accept an improved procedure which would
require considerably more computational effort, provided
that effort produced better results. We were willing to
consider an increase of an order in magnitude in the number
of function evaluations as being tolerable since computer
time is relatively inexpensive and becoming more so with
each passing year. What we really hoped for, however,
was an increase of not more than 5 to 8 times the number
of function evaluations of standard Nelder-Mead. From
Table 1 it is apparent that our procedure is more costly
in terms of function evaluations required. However, the
increased effort is only about 3 or 4 times greater than
that of procedure NM for both RSS and RS9. If we
temporarily disregard the natural log transformation and
take the number of standard Nelder-Mead evaluations as a
sort of baseline, Table 2 shows a summary of the relative
amount of computational effort required by each of the
three procedures on each of the six problems.

Procedure RSS is doing more work than NM and
about as much as much work as RS9; and this is more
than acceptable for, as we shall see, our procedure is
providing better results at only a marginally higher cost.

3.4.3 Final Function Value at Estimated
Optimum

In looking at performance measureD we make the
following observations. In five of the six problems
considered, RSS produced an average value ofD that is
statistically significantly better than the averageD-values
produced by either NM or RS9. In problem number 2
(that is, the trigonometric function), RSS and RS9 had
results that were not distinguishable from each other but
were significantly better than those from NM. Additionally,
RSS ismuchbetter than either RS9 or NM on two of the
six problems (namely, problems 1 and 4).

Table 2: Relative Computational Effort of Procedures

Proce- Problem Aver-
dure 1 2 3 4 5 6 age
NM 1 1 1 1 1 1 1
RSS 3.2 3.6 3.1 4.5 3.1 3.9 3.6
RS9 3.6 4.7 3.3 3.5 3.8 4.3 3.8

3.4.4 Maximum Relative Component
Deviation from Global Optimum

The next performance measure considered,B, deals with
the maximum deviation of any single coordinate of the best
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ificance
Table 1: Results of Multiple Comparisons Tests on Optimization Procedures NM, RS9, and RSS for Level of Sign
α = 0.05

Performance Measure
Test Li,j Di,j Bi,j Ai,j

Problem Group- Calc. Opt. Group- Calc. Opt. Group- Calc. Opt. Group- Calc. Opt.
ing Val. Proc. ing Val. Proc. ing Val. Proc. ing Val. Proc.
1 6.86 RS9 1 5.10 NM 1 1.28 NM 1 0.41 NM

1 1
1 2 6.68 RSS 2 4.94 RS9 1 1.28 RS9 1 0.40 RS9

3 5.57 NM 3 0.48 RSS 2 0.38 RSS 2 0.19 RSS
1 7.06 RS9 1 0.22 NM 1 0.47 NM 1 0.29 NM

2 2 6.83 RSS 2 0.12 RSS 2 0.39 RS9 2 0.24 RS9
2

3 5.56 NM 2 0.10 RS9 3 0.35 RSS 3 0.20 RSS
1 6.69 RS9 1 20.2 NM 1 2.01 NM 1 1.04 RS9
1 1 1 1

3 1 6.68 RSS 1 20.0 RS9 1 2.01 RS9 1 1.04 NM

2 5.50 NM 2 18.2 RSS 2 1.74 RSS 2 0.96 RSS
1 7.25 RSS 1 11.0 NM 1 1.66 NM 1 0.84 NM

4 2 7.02 RS9 2 10.1 RS9 2 1.59 RS9 2 0.79 RS9

3 5.78 NM 3 3.76 RSS 3 0.95 RSS 3 0.41 RSS
1 6.89 RS9 1 1.85 NM 1 0.78 RS9 1 0.32 RS9

1 1 1
5 2 6.68 RSS 1 1.56 RS9 1 0.78 NM 1 0.30 NM

1
3 5.57 NM 2 0.53 RSS 2 0.55 RSS 1 0.29 RSS
1 6.98 RS9 1 245.2 RS9 1 1.75 RSS 1 0.99 NM

1 1
6 2 6.91 RSS 2 238.3 NM 21 1.53 NM 1 0.92 RS9

2 1
3 5.60 NM 3 229.8 RSS 2 1.40 RS9 1 0.92 RSS
ding
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point found via the given procedure and the correspon
coordinate of the nearest optimal point. The informat
in Table 1 shows that RSS is statistically significan
better than NM or RS9 in this respect. While the res
here may not appear as dramatic as those concernin
average function values, they still clearly favor RSS.
problem 1, RSS has aB value of about 0.38 while th
corresponding values for RS9 and NM are each ab
1.28. The results are less dramatic for problems 2–5,
they still clearly favor RSS. Only for problem 6 do th
results not clearly indicate the superiority of RSS.

3.4.5 Average Relative Component
Deviation from Global Optimum

The final performance measure considered isA, which
looks at the average deviation in the coordinates of
best point located versus those of the known best p
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Once again, the performance of RSS is considerably bette
than that of either RS9 or NM. In four of the six problems,
RSS is shown to again be statistically significantly better
that RS9 and NM. In problems 5 and 6 the performance of
RSS is not significantly better than that of NM and RS9,
but RSS is also shown to be no worse than NM and RS9.
In problems 1–4, RSS is grouped by itself with a lower
(better) average value ofA. The single best performance
in this regard is that of problem 1 where RSS scores a
0.19, RS9 scores a 0.40, and NM scores a 0.41.

In summary, the information in Table 1 shows that
RSS is doing about as much work as RS9 and about
3 or 4 times as much work as NM. But in exchange
for the additional work, RSS is producing results which
are consistently at least as good as the results from RS9
and NM and in most cases are significantly better than
RS9 and NM (and in a few cases dramatically better). It
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seems that the additional work will consistently improv
the results without any danger of producing results wor
that would be achieved with RS9 or NM.

4 CONCLUSIONS AND
RECOMMENDATIONS

The experimental analysis summarize in Section 3 led
to conclude that procedure RSS successfully avoids so
of the weaknesses of traditional search procedures a
provides significant improvement over procedures NM an
RS9 in terms of three of our four performance measure
D, B, andA. In terms of our fourth performance measure
L, we see that some additional computational effort
required by procedure RSS in comparison to procedu
NM, but procedures RSS and RS9 displayed no significa
differences in terms of performance measureL. We do
not consider the differences in performance measureL for
the three procedures to be of a significant nature.

The analysis in Section 3 raises questions and issu
that merit consideration for future work. The suite of si
test problems could be enlarged to provide for analys
on a collection of test problems that encompasses an e
greater degree of difficulty, dimensionality, and geomet
of response surfaces. The experimental performance co
also be expanded to include other variants of procedu
NM as well as techniques such as simulated annealin
genetic algorithms, and so forth. Finally, an effort shoul
be made to formulate some rules of thumb for the u
of procedure RSS in practice, including how to establis
initial values for the search procedure and how to set som
reasonable stopping tolerance so that procedure RSS m
be effectively used by practitioners.
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