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ABSTRACT

We consider a new simulation-based optimization meth
called the Nested Partitions (NP) method. This meth
generates a Markov chain and solving the optimizat
problem is equivalent to maximizing the stationary distrib
tion of this Markov chain over certain states. The meth
may therefore be considered a Monte Carlo sampler
samples from the stationary distribution. We show th
the Markov chain converges geometrically fast to the tr
stationary distribution, and use these results to deriv
stopping criterion for the method.

1 INTRODUCTION

In system optimization it is often desirable to optimize t
performance of a system where the design parame
are discrete and the outcomes are uncertain. T
means that there is no analytical expression relat
the discrete decision parameters to the correspond
expected performance of the system. Such stocha
discrete optimization problems have received relativ
little attention in the research literature, although so
important advances have been made in the last few ye

Recent methods proposed for this problem include
stochastic rulermethod (Yan and Mukai, 1992; Alrefae
and Andrad́ottir, 1997), the method of Andradóttir (1995),
the stochastic comparisonmethod (Gong, Ho, and Zhai
1992), ordinal optimization (Ho, Sreenivas, and Vakili,
1992), the stochastic branch-and-bound(Norkin, Pflug,
and Ruszczýnski, 1996), and thenested partitions(NP)
method (Shi andÓlafsson, 1997;1998). Under certa
conditions, all of these methods have been shown
converge almost surely to an optimal solution, but
common difficulty is obtaining good stopping rules. Th
is of paramount importance in practice, because altho
asymptotic convergence is of much interest, such res
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do not indicate how long a method must be applied fo
satisfactory results, or how and when the method shou
be terminated. In this paper we propose a stopping ru
for the NP method.

The basic idea of the NP method is very simple. The
method systematically partitions the feasible region into
smaller and smaller subregions, and moves iteratively from
one region to another in order to concentrate the searc
effort in viable regions. This procedure has been show
to generate a Markov chain, which we refer to as th
NP Markov chain. It can be shown that the NP Markov
chain has a unique stationary distribution and given certa
regularity assumptions the maximum stationary probabilit
corresponds to a global optimum. Hence, the NP metho
converges with probability one to a global optimum (Sh
andÓlafsson, 1998). In this paper we consider a stoppin
rule for this method. Since the stationary distribution of the
NP Markov chain is used for inference, the convergenc
of the NP method can be translated into convergenc
of the NP Markov chain. The NP method may hence
be considered a Monte Carlo sampler that samples fro
the stationary distribution of the NP Markov chain, and
its convergence properties may therefore be inferred b
considering its efficiency as an Markov Chain Monte Carlo
(MCMC) sampler.

The use of MCMC methods has become increasingl
popular in recent years, and many theoretical advancemen
have also been made (Rosenthal, 1995). However, the
is still a considerable gap between theory and practice
the field (Brooks and Roberts, 1998). Although many nice
theoretical bounds have been derived for the convergen
rate of Markov chains, such bounds normally contain
constants that are not available a priori except for speci
cases. Therefore, such bounds are not directly applicable
practice. In fact, practitioners most often use convergenc
diagnostics to assess the convergence of a Markov cha
simulation (Cowles and Carlin, 1996; Brooks and Roberts
3
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1998). Such convergence diagnostics usually cons
some summary statistic of the Markov chain, and decl
convergence when it appears to have settled down in ste
state. The problems with such diagnostics are well kno
Most seriously, it is inevitable that such methods w
sometime declare convergence too soon, since the Ma
chain ‘settling down’ is only a necessary condition f
convergence, but not sufficient.

Another method of bridging the gap between theo
and practice is to use auxiliary simulation to estimate
required constants (Cowles and Rosenthal, 1996). T
is the approach taken here. We use theoretical bou
as a basis for a stopping criteria, and then use auxil
simulation to estimate a theoretical constant that is requ
for this bound. By combining these two ingredients w
obtain an approximate stopping criterion that can be app
during simulation optimization.

The remainder of this paper is organized as follow
In Section 2 we briefly review the Nested Partitions (N
method for simulation-based optimization. This algorith
generates a Markov chain and in Section 3 we de
bounds that establish that it converges geometrically
to its stationary distribution. In Section 4 we show ho
these bounds may be estimated using auxiliary simulat
and in Section 5 we use these results to derive a stop
criterion for the method. In Section 6 we present
numerical example to illustrate the auxiliary simulatio
approach and the stopping criterion, and finally, Sectio
contains some concluding remarks.

2 THE NP METHOD

We are interested in solving the general stochastic disc
optimization problem, which can be stated as follows.

min
θ∈Θ

E[L(θ, ω)], (1)

whereΘ is finite, L(θ, ω) is the sample performance, an
ω ∈ Ω is a point in the sample space of an underlyi
probability triple (Ω,F ,P). To keep the notation simple
we do not refer explicitly to the sample space in th
paper. We assume that the expected performance fun
cannot be evaluated analytically and is estimated us
discrete-event simulation. We now review briefly how t
nested partitions (NP) method can be used to solve
problem.

The NP method proceeds as follows. In thek-th
iteration there is a regionσ(k) ⊆ Θ that is considered
the most promising. In the first iterationσ(1) = Θ,
the entire feasible region. In each iteration, this m
promising region is partitioned into a fixed number
subregions and the entire surrounding region is aggreg
into one region. Therefore, at each iteration, a fix
744
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number of disjoint subsets that cover the feasible regi
is considered. Each of these regions is sampled usin
random sampling scheme, with the only restriction bein
that each point must be sampled with a positive probabili
The estimated performance function values of the random
selected samples are used to estimate the promising in
for each region. This index determines which regio
becomes the most promising region in the next iteratio
If one of the subregions is found to be best this regio
becomes the most promising region. If the surroundi
region is found to be best the method backtracks to a lar
region. To choose this larger region a fixed backtracki
rule is used. The new most promising region is the
partitioned and sampled in a similar fashion. We note th
this partitioning creates a tree structure similar to that
the branch-and-bound method.

We assume thatΘ is partitioned such that eventually
every point corresponds to a singleton region. We call su
singletons regions of maximum depth, and more genera
talk about the depth of any region. This is define
iteratively with Θ having depth zero and so forth. We le
Σ denote the space of all regions that are formed by a fix
partitioning scheme as described above, and we letd(σ)
denote the depth of a regionσ ∈ Σ. Ultimately, we are
interested in finding the best singleton region. Therefo
we let Σ0 denote all singleton regions, and in thek-th
iteration we let the estimated best region,σ

(1)
k , be the

singleton region that has been most frequently conside
the most promising region. To be able to updateσ

(1)
k , we

let Nk(σ) be the number of times a regionσ ∈ Σ0 has
been visited. We only define these counters for maximu
depth regions that have been visited at least once. To k
track of the sequence of set partitions leading to the curr
most promising region, we define the functions : Σ → Σ
as follows. Letσ ∈ Σ \ Θ. Define s(σ) = η ∈ Σ, if and
only if σ ⊂ η and if σ ⊆ ξ ⊆ η then ξ = η or ξ = σ. For
completeness we defines(Θ) = Θ. Therefore,s(σ) ∈ Σ
is the region that was partitioned to obtain the regio
σ ∈ Σ.

Using the notation defined above, the NP method c
be implemented as follows.

0. Initialization. Set k = 0 and σ(k) = Θ.

1. Partitioning. If the depth is not the maximum
depth, partition the most promising region,σ(k), into
Mσ(k) subregionsσ1(k), ..., σMσ(k)(k). If the depth is
maximum depth then letMσ(k) = 1 andσ1(k) = σ(k).
If the depth is not zero, i.e.,σ(k) 6= Θ, aggregate
the surrounding regionΘ \ σ(k) into one region
σMσ(k)+1(k).

2. Random Sampling. Use a random sampling proce
dure to selectNj points θj1, θj2, ..., θjNj and cal-
culate the corresponding sample performance valu



Stopping Criterion for a Simulation-Based Optimization Method

g

e

ie
ds

n.

h

te

ba

P
de
t
o

on

all
g
l

l

r
a
s
re
ry
.

c
e

e

h
ry
n
P
en

.
y
e

an

n

y

n

L(θj1), L(θj2), ..., L(θjNj ) from each of the regions
σj(k), j = 1, 2, ..., Mσ(k) + 1.

3. Estimating the Promising Index. Given apromising
index function, I: Σ → R, for each regionσj , j =
1, 2, ..., Mσ(k) + 1, calculate the estimated promisin

index Î(σj) of the region. In this paper we select th
promising index asI(η) = minθ∈η J(θ), which can
be estimated using

Î(σj) = min
θ=θj1,...,θjNj

L(θ), (2)

for j = 1, 2, ..., Mσ(k) + 1.

4. Backtracking. Calculate the index of the region with
the best promising index.

ĵk ∈ arg min
j=1,...,Mσ(k)+1

Î(σj). (3)

If more than one region is equally promising, the t
can be broken arbitrarily. If this index correspon
to a region that is a subregion ofσ(k), then let this
be the most promising region in the next iteratio
That is σ(k + 1) = σj(k), j ≤ Mσ(k). If the index
corresponds to the surrounding region,backtrack to
the superregion ofσ(k)

σ(k + 1) = s(σ(k)). (4)

5. Updating Counters. Update the number of times eac
maximum depth region has been visited. Ifσ(k+1) ∈
Σ0 let Nk+1(σ(k + 1)) = Nk+1(σ(k + 1)) + 1. Let
Nk+1(σ) = Nk+1(σ) for all other σ ∈ Σ0 that have
been visited at least once. Update the estima
best region as follows. Ifσ(k + 1) ∈ Σ0 and
Nk+1(σ(k + 1)) > Nk+1(σ

(1)
k ), then let σ

(1)
k+1 =

σ(k + 1). Otherwise, letσ(1)
k+1 = σ

(1)
k . Let k = k + 1

and go back to Step 1.

In this paper we assume that there is a unique glo
optimum that corresponds to a singleton regionσopt ∈ Σ0.
In Shi and Ólafsson (1998) it is shown that the N
algorithm above generates a Markov chain and un
certain regularity conditionsσopt is the singleton state tha
has the largest stationary probability. In each iteration
the NP algorithm an estimate of the stationary distributi
is generated,

µk(σ) =
Nk(σ)

k
, σ ∈ Σ, (5)

and as is well known, this estimate converges asymptotic
to the true stationary distribution. Therefore, by takin
σ

(1)
k = argmaxσ∈Σ0 Nk(σ) as the estimate of the globa
745
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optimum, the NP algorithm converges to the unique globa
optimum (Shi andÓlafsson, 1998). Because of this
the NP algorithm may be considered an MCMC sample
that samples from the stationary distribution. When
sufficiently good estimate of the stationary distribution ha
been obtained, the algorithm has converged. Here we a
therefore concerned with how fast this estimated stationa
distribution converges to the true stationary distribution
Perhaps the most important feature of an efficient MCMC
sampler is that the Markov chain is geometrically ergodi
(Roberts and Rosenthal, 1998), and in the next section w
show this holds here.

3 GEOMETRIC CONVERGENCE RATE

As before we let µk denote the empirical stationary
distribution. We are interested in determining when th
distance betweenµk and the true stationary distributionπ
is within a certain predetermined tolerance. When suc
sufficient accuracy is obtained the estimated stationa
distribution can be used for inference about which singleto
region has the largest stationary probability and the N
method has converged. To measure the distance betwe
these two probability distributions we use thetotal variation
distancenorm.

Definition 1 Given two probability measuresυ1 and υ2
the norm

||υ1 − υ2||var = sup
A⊆Σ

|υ1(A) − υ2(A)|

is called the total variation distance.2

We let 1 = λ1 > λ2 ≥ λ3... ≥ λ|Σ| > −1 denote the
eigenvalues of the transition matrix of the NP Markov chain
It is well known that the rate of convergence to the stationar
distribution is determined by the eigenvalue that is th
second largest in absolute valueλmax = max{λ2, |λ|Σ||}.
If all the eigenvalues are positive thenλmax = λ2. Negative
eigenvalues correspond to near cyclic behavior and we c
always modify the NP algorithm in a trivial manner to
ensure that all the eigenvalues are positive. This ca
for example be achieved by introducing a self-loop with
probability 1

2 for every state, that is, with probability12
we move to a subregion or backtrack, and with probabilit
1
2 we stay in the current most promising region for one
more iteration. We can therefore assume from now o
that λmax = λ2.

We also need the following definitions.

Definition 2 A set A ⊆ Σ is connectedif for every
η1, η2 ∈ A, there exists a path fromη1 to η2 such that
every state in the path is inA.
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Definition 3 The ergodic flowout of A is defined as

F (A) =
∑
η∈A
ξ∈ A

P (η, ξ) · π(η). (6)

Theconductanceof the Markov chain defined by(P,Σ) is

Φ = min
0<π(A)≤ 1

2

Φ(A), (7)

where

Φ(A) =
F (A)
π(A)

. (8)

Our objective is to calculate the conductance of the N
Markov chain. The next two lemmas show how the
minimum in equation (7) can be taken over a limited
number of sets.

Intuitively, the conductance is a measure of th
bottlenecks in the probability ‘flow’ in the partitioning
tree. Intuitively this ‘flow’ is likely to be small for
subsets where there is only one state through which t
NP Markov chain can exit the subset. This leads us
connected subsets that are such that the Markov chain c
only leave the set through the ‘root’ node, that is, entir
branches. The first lemma shows that the set on whi
the minimum (7) is realized must be a connected set.

Lemma 1 Let A ⊂ Σ be an unconnected subset. The
there exist proper subsetsA1 ⊂ A and A2 ⊂ A such that
Φ(A) ≥ min{Φ(A1),Φ(A2)}.

Proof: Since A is disjoint we can selectA1 and A2
such thatA = A1 ∪ A2, A1 ∩ A2 = ∅, andP (A1,A2) =
0. Then it is clear thatπ(A1) + π(A2) = π(A) and
F (A1) + F (A2) = F (A). Therefore,

Φ(A1) =
F (A1)
π(A1)

=
F (A) − F (A2)

π(A1)

=
π(A)Φ(A) − π(A2)Φ(A2)

π(A1)

=
(π(A1) + π(A2))Φ(A) − π(A2)Φ(A2)

π(A1)

= Φ(A) +
π(A2)
π(A1)

(Φ(A) − Φ(A2)) .

Now if Φ(A) < Φ(A2) then Φ(A) > Φ(A1), so Φ(A) ≥
min{Φ(A1),Φ(A2)}. 2

This establishes that equation (7) is realized on a connec
subset. The next lemma shows that this subset has e
more structure.
746
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Lemma 2 Let A ⊂ Σ be a connected set. LetB be the
set of all regions that are a subset of a region inA,

B = ∪
ξ:∃η∈A,ξ⊂η

ξ (9)

Let A∗ = A ∪ B. Then

Φ(A∗) ≤ Φ(A). (10)

Proof: Clearly

π(A∗) = π(A) + π(B) ≥ π(A),

and since the Markov chain can only existB by entering
A, it is also clear that

F (A∗) ≤ F (A).

Therefore,

Φ(A∗) =
F (A∗)
π(A∗)

≤ F (A)
π(A)

= Φ(A)

and the lemma is proved.2

We now obtain the first major result, which is a lower
bound on the conductance.

Theorem 1 The conductanceΦ of the NP Markov chain
is bounded from below by

Φ ≥ (1 − C)P (σopt, s(σopt))
1 − Cd∗ , (11)

where

C =
1 − P (σopt, s(σopt))

P (σopt, s(σopt))
.

Proof: By Lemma 1 and Lemma 2 it suffices to consider
connected setsA which contain all the regions that are
a subregion of a region inA. Then there exists a state
σA ∈ A that contains all the other statesσ ⊆ σA, for all
σ ∈ A. Furthermore, since the minimum in equation (7)
is taken of all sets that have less that or equal to1

2 in
probability mass, it is clear thatσA 6= Θ. Therefore, the
flow out of setA is

F (A) = π(σA)P (σA, s(σA)).

Now we can write down the balance equations for state
in A that are of different but adjacent depth levels as
follows,∑

η∈A
d(η)=k+1

P (η, s(η))π(η) =
∑
η∈A

d(η)=k

(1 − P (η, s(η)))π(η),
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and furthermore, we can assume that for the unique glo
optimumσopt we haveP (σopt, s(σopt)) ≤ P (η, s(η)) forall
η ∈ Σ. Therefore,

P (σopt, s(σopt))
∑

η∈A
d(η)=k+1

π(η)

≤ ∑
η∈A

d(η)=k+1
P (η, s(η))π(η)

=
∑

η∈A
d(η)=k

(1 − P (η, s(η)))π(η)

≤ (1 − P (σopt, s(σopt)))
∑

η∈A
d(η)=k

π(η)

Therefore,

∑
η∈A

d(η)=k+1

π(η) ≤ 1 − P (σopt, s(σopt))
P (σopt, s(σopt))

∑
η∈A

d(η)=k

π(η).

If we denoteC = 1−P (σopt,s(σopt))
P (σopt,s(σopt))

then by induction

∑
η∈A

d(η)=k

π(η) ≤ Ck−d(σA)π(σA),

and

∑
η∈A

π(η) =
d∗∑

k=d(σA)

∑
η∈A

d(η)=k

π(η)

≤
d∗∑

k=d(σA)

Ck−d(σA)π(σA)

=
d∗−d(σA)∑

k=0

Ckπ(σA)

=
1 − Cd∗−d(σA)+1

1 − C
π(σA).

Now we can use these results together with the definiti
of Φ(A) to obtain the following,

Φ(A) =
F (A)
π(A)

≥ π(σA)P (σA, s(σA))
1−Cd∗−d(σA)+1

1−C π(σA)

=
(1 − C)P (σA, s(σA))

1 − Cd∗−d(σA)+1

≥ (1 − C)P (σopt, s(σopt))
1 − Cd∗ .

In the last inequality we usedC > 0 and d(σA) > 1
so Cd∗−d(σA)+1 ≤ Cd∗−1+1 = Cd∗

. This completes the
proof. 2

We will need the following two results.
747
l Proposition 1 The total variation distance can be
bounded as follows,

4 · ||Pn(Θ, ·) − π||2var ≤ 1 − π(Θ)
π(Θ)

λ2n
2 , (12)

whereλ2 is as before the second largest eigenvalue.

Proof: See Proposition 3 in Diaconis and Stroock (1991
2

Proposition 2 The second largest eigenvalue can b
bounded in terms of the conductance of the underlyin
graph.

λ2 ≤ 1 − Φ2

2
. (13)

Proof: See Lemma 2.4 in Sinclair (1993).2

Now we obtain an explicit bound on the total variation
distance in terms of the stationary distribution and transitio
probabilities of the NP Markov chain.

Theorem 2 The total variation distance between the law
of the Markov chain and the true stationary distribution
is bounded as follows,

||P k(Θ, ·) − π||var ≤
√

1 − π(Θ)
4 · π(Θ)

(14)

·
(

1 − ((1−C)P (σopt,s(σopt)))2

2·(1−Cd∗)

)k

,

where as before

C =
1 − P (σopt, s(σopt))

P (σopt, s(σopt))
.

Proof: Follows directly from combining Theorem 1,
Proposition 1, and Proposition 2.2

We note that these bounds converge rapidly to zero
the transition probabilityP (σopt, s(σopt)) is large, and the
constant in the bound is small if the stationary probabilit
π(Θ) is large.

The bounds in equation (14) show that the law of th
NP Markov chain converges geometrically fast to the tru
stationary distribution, but this is only a qualitative boun
since the transition probabilities and stationary probabilitie
are unknown. To obtain a quantitative bound we need
estimate these probabilities and we will do that in the ne
section usingauxiliary simulation.
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4 AUXILIARY SIMULATION

Since both π(Θ) and P (σopt, s(σopt)) are unknown a
priori, the bounds on the conductance (11) and t
bounds on the total variation distance (14) are n
directly computable. Therefore, we propose using auxilia
simulation to estimate these quantities during simulatio
based optimization. To derive these estimates, we need
define one more quantity, namely we letDk(η) denote the
number of departures fromη ∈ Σ0 by the k-th iteration.
The stationary quantities of interest can then be estima
as follows.

1 − π(Θ)
π(Θ)

≈ 1 − Nk(Θ)
k

Nk(Θ)
k

=
k − Nk(Θ)

Nk(Θ)
,

P (σopt, s(σopt)) ≈ Dk(σ(1)
k )

Nk(σ(1)
k )

,

C ≈
1 − Dk(σ(1)

k
)

Nk(σ(1)
k

)

Dk(σ(1)
k

)

Nk(σ(1)
k

)

=
Nk(σ(1)

k ) − Dk(σ(1)
k )

Dk(σ(1)
k )

.

Finally, we get an estimate of the conductance

Φ̂(k) =
2Dk(σ(1)

k ) − Nk(σ(1)
k )

Nk(σ(1)
k )

(
1 −

(
Nk(σ(1)

k
)−Dk(σ(1)

k
)

Dk(σ(1)
k

)

)d∗) (15)

By substituting this into equation (14) we get the followin
approximate quantitative bound that holds asymptotical

||P k(Θ, ·) − π||var ≤
√

k − Nk(Θ)
4 · Nk(Θ)

(
1 − Φ̂(k)2

2

)k

.

(16)
In the next section we use this bound to derive approxima
stopping criteria.

5 STOPPING CRITERIA

Although it is reassuring that the NP method converg
asymptotically at a geometric rate, it would be of mor
practical importance to have a sufficient condition suc
that if this condition is satisfied afterk iterations, the
NP method can be terminated. In this section we u
bounds on the total variation distance between the true a
estimated stationary distribution to derive such stoppi
criterion.

To implement the stopping criterion we need t
maintain two singleton regions that have the largest a
second largest estimated stationary probability.
748
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Definition 4 In the k-th iteration, as before letσ(1)
k

denote the region that is considered to be the best singleto
region, and letσ(2)

k denote the singleton region that is

considered the second best. That is,µk(σ(2)
k ) ≥ µk(η) for

all η ∈ Σ0 \ {σ
(1)
k , σ

(2)
k }, and µk(σ(1)

k ) > µk(σ(2)
k ). 2

We note that assuming the strict inequalityµk(σ(1)
k ) >

µk(σ(2)
k ) imposes no lack of generality.
Using this notation the algorithm may be terminated

once the following equation is satisfied.

Theorem 3 If the following inequality is satisfied for
somek > 0, thenσ

(1)
k = σopt,

||µk − π||var ≤
µk

(
σ

(1)
k

)
− µk

(
σ

(2)
k

)
2

. (17)

Proof: See Theorem 13 ińOlafsson (1998).

We note that this theorem does not guarantee the existen
of a finite k such that the inequality (17) is satisfied. In
fact, for anyk < ∞ there is a positive probability that it is
not satisfied. However, aslimk→∞ µk(η) = π(η), ∀η ∈ Σ,
this probability of (17) not being satisfied converges to
zero.

We let Ψ(k) = 1
2

(
µk

(
σ

(1)
k

)
− µk

(
σ

(2)
k

))
denote

the right hand side of the inequality (17), and note that
this is easily computable after each iteration

Ψ(k) =
1
2k

(
Nk

(
σ

(1)
k

)
− Nk

(
σ

(2)
k

))
. (18)

We have shown that if||µk−π||var is sufficiently small then
the algorithm may be terminated. This cannot be bounde
directly; however, sinceµk is a sample that is generated
according to the lawP k(Θ, ·) of the NP Markov chain,
we propose approximating it with||P k(Θ, ·)−π||var, that
is,

||µk − π||var ≈ ||P k(Θ, ·) − π||var. (19)

With this approximation we have an approximation of the
left hand side of the inequality (17) that we can bound with
inequality (14) and inequality (16) above. Furthermore,
the latter of these is easily computable.

We note that the approximation (19) is exact for both
k = 0 as then bothµk and the law of the chain place all
the probability mass at a single stateΘ, and ask → ∞
since bothµk and P k(Θ, ·) converge to the stationary
distribution. Additional arguments for this approximation
may be found inÓlafsson (1998).

With the approximation (19) of||µk − π||var, and
the bound (16) on||P k(Θ, ·) − π||var derived using the
auxiliary simulation approach in the last section, we have
a computable approximate bound on the left hand side
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of inequality (17) in the stopping criterion. Since from
equation (18) the right hand sideΨ(k) of the inequality is
directly computable, we obtain the following approximate
stopping rule that is directly applicable during simulation
optimization.

Stopping Criterion. Terminate the NP algorithm at
iteration k if√

k − Nk(Θ)
4 · Nk(Θ)

(
1 − Φ̂(k)2

2

)k

≤ Ψ(k). (20)

A potential problem with this stopping rule is that it relies
on the estimates of the conductance being sufficient
good. Hence, a warmup period is usually advisable befo
it is applied.

6 NUMERICAL EXAMPLE

In this section we consider the application of the NP
method and the stopping criterion to a scheduling proble
in cellular manufacturing systems where the cells ar
configured in parallel. The objective of this problem is to
simultaneously sequence jobs within each cell, and alloca
limited flexible resource to the cells, in such a way tha
the makespan is minimized. The details of the problem
formulation, as well as further numerical results, may b
found in Ólafsson (1998).

We refer the interested reader toÓlafsson (1998) for
the details of the implementation of the NP algorithm
and simply concentrate on the behavior of the stoppin
criteria. The approximate stopping criteria (20) depend
on a sufficiently good estimate of the conductance of th
NP Markov chain. A necessary condition for the auxiliary
simulation estimate of the conductance to have converg
is that it has stabilized or ‘settled down’. We therefore
start by considering the estimated conductanceΦ̂(k) to
verify that it does seem to converge to a limit. This is
shown in Figure 1 for a problem where five jobs are to
be scheduled in two cells, and there are three flexib
resources that can be allocated dynamically to the cel
It is apparent that this auxiliary simulation estimate of th
conductance stabilizes quite rapidly. These results indica
that the auxiliary simulation estimate of the conductanc
is a reasonable estimate.

Since the auxiliary simulation method has been som
what validated, we consider the performance of the stoppin
criterion. Figure 2 shows the left hand side (LHS) an
right hand side (RHS) of inequality (20) for the same
problem as before. For this problem, the NP algorithm
found the true optimum, and the LHS of the stopping
criterion converges rapidly below the RHS and terminate
correctly. This indicates the stopping criterion may b
useful.
749
0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Jobs = 5, Machines = 3, Resources = 3, Speedup = 0.2

Iterations

Conductance

Figure 1: Conductance of the NP Markov Chain
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Figure 2: Performance of the Stopping Criterion

7 SUMMARY

We have considered the convergence rate of a new metho
for simulation-based optimization, the Nested Partitions
(NP) method. This method generates a Markov chain and
its convergence rate is dependent on how fast this chain
converges to its stationary distribution. By bounding the
total variation distance between the law of the Markov
chain and its stationary distribution, we showed that this
occurs at a geometric rate. We also used these bounds t
derive an approximate stopping criterion for the method
and illustrated our results with a numerical example.
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