
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

COMPUTING BUDGET ALLOCATION FOR SIMULATION EXPERIMENTS
WITH DIFFERENT SYSTEM STRUCTURES

Chun-Hung Chen
Yu Yuan

Hsiao-Chang Chen

Dept. of Systems Engineering
University of Pennsylvania

Philadelphia, PA 19104-6315, U.S.A.

Enver YKcesan

INSEAD
Technology Management Area

Fontainebleau, FRANCE

 Liyi Dai

Dept. of  Systems Science and
Mathematics

Washington University
St. Louis, MO 63130 U.S.A.

nt
m
e
er
g
e
n
se
n
s
e
e
in
d
e

ly
ti
s
c
v
 
e

s 

n

y
g

le
cz
for
 to
ted

st
or
r to
nts
of

ny
eral
w
san
al.
the
w.
nd
7),
for

ve
e
he
the
that
 In
be
ce
d
al
gn
ss

al
on
n

ll
ABSTRACT

Simulation plays a vital role in analyzing discrete-eve
systems, particularly, in comparing alternative syste
designs with a view to optimize system performanc
Using simulation to analyze complex systems, howev
can be both prohibitively expensive and time consumin
We present effective algorithms to intelligently allocat
computing budget for discrete-event simulatio
experiments with different system structures. The
algorithms dynamically determine the best simulatio
lengths for all simulation experiments and thu
significantly reduce the total computation cost for a desir
confidence level. Numerical illustrations are included. W
also compare our algorithms with our earlier approach 
which different system structures are not considere
Numerical testing shows that we can further improv
simulation efficiency.

1 INTRODUCTION

Simulation plays a central role in designing and efficient
managing large man-made systems such as communica
networks, traffic systems, and manufacturing facilitie
since closed-form analytical solutions are scarce for su
problems. Unfortunately, simulation can be both expensi
and time consuming. Suppose we want to comparek
different systems (competing designs or alternativ
operating policies). We conduct N simulation replications
for each of the k designs. Therefore, we need kN simulation
replications. Simulation results become more accurate aN
increases. If the accuracy requirement is high (N is not
small), and if the total number of designs in a decisio
problem is large (k is large), then kN can be very large,
which may easily make total simulation cost prohibitivel
high and preclude the feasibility of simulation for rankin
and selection problems.
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The effective reduction of computation costs whi
obtaining a good decision is therefore crucial.  Dudewi
and Dalal (1975) develop a two-stage procedure 
selecting the best design or a design that is very close
the best system.  In the first stage, all systems are simula
through n0 replications. Based on the results of the fir
stage, the number of additional simulation replications f
each design in the second stage is estimated in orde
reach the desired confidence level. Rinott (1978) prese
an alternative way to estimate the required number 
simulation replications in the second stage. Ma
researchers have extended this idea to more gen
ranking and selection settings in conjunction with ne
developments. Chiu (1974), Gupta and Panchapake
(1979), Matejcik and Nelson (1993, 1995), Bechhofer et 
(1995), and Hsu (1996) present methods based on 
classical statistical model adopting a frequentist vie
Berger (1980), Berger and Deely (1994), Bernardo a
Smith (1994), Gupta and Berger (1988), and Chick (199
on the other hand, use a Bayesian framework 
constructing ranking and selection procedures.

Chen et al. (1996) present a new approach to impro
simulation efficiency in ranking and selection. Th
underlying ideas are as follows. Intuitively, to ensure t
correct selection of the best design, a larger portion of 
computing budget should be allocated to those designs 
are critical in the process of identifying the best design.
other words, a larger number of replications must 
conducted with those critical designs in order to redu
estimator variance. On the other hand, limite
computational effort should be expanded on non-critic
designs that have little effect on identifying the best desi
even if they have large variances. In doing so, le
computational effort is spent on simulating non-critic
designs and more computational effort is spent 
simulating critical designs; hence, the overall simulatio
efficiency is improved. Ideally, we want to optimally
choose the number of simulation replications for a
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designs to maximize simulation efficiency with a give
computing budget. In fact, this question is equivalent
optimally decide which designs will receive addition
computing budget for continuing the simulation further 
to find an optimal way to reach an optimal design. Chen
al. (1997) present an approach incorporating a sim
steepest-descent method (Luenberger 1984). Chen e
(1998) compare the approach given in Chen et al. (19
with Rinott's and Dudewicz's two-stage procedures a
show that the new budget allocation is significantly fas
than two-stage procedures.

In this paper, we will extend the results in Chen et 
(1998) to simulation experiments with different syste
structures. Namely, the simulation cost per replicat
varies from one system to another. This is true for ma
applications, in which some design alternatives are m
more complex than others. As a result, the simulation c
for those complex systems are higher than others. We 
present a budget allocation approach for the simula
experiments with different system structures. Numeri
experiments show that the presented approach is m
efficient than the one in Chen et al. (1997) which doe
consider the impact of different system structures.

In the next section, we formulate the optim
computing budget allocation problem and discuss 
major issues in solving this optimization problem. 
Bayesian model for our budget allocation approaches
described in Section 3. In Section 4, we present 
effective method of estimating sensitivity information a
a sequential framework for dealing with budget allocati
problems. Section 5 contains three numerical experime
The results show that our approach obtains the des
confidence level while significantly reducing computatio
cost. Section 6 concludes this paper.

2 PROBLEM FORMULATION

Suppose that our goal is to select a design associated
the smallest mean performance measure amongk
alternative designs with unknown and possibly uneq
variances. Without loss of generality, we define the “be
system as the one with the smallest mean performa
measure in this paper.  Further assume that the simula
output is independent from replication to replication. No
that we consider terminating (finite-horizon) simulations
this paper. Our approach is equally applicable to stea
state simulations where we need N independent sample
rather than N independent simulation replications. In th
case, the batch means method (Schmeiser 1982) ca
applied to ensure the independence of the samples. 
computing budget is limited. Denote by

Xij: the j-th i.i.d. sample of the performance measure fro
design i,

Ni: the number of simulation replications for design i,
73
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ci: the computation cost per replication for design i,
X i: the vector representing the simulation output fo

design i; X i = {Xij : j=1,2,..,Ni},
µ i :the sample average of the simulation output for desig

i; µ i (Ni) = 
1

Ni j =1

Ni

∑ Xij,

µi: the unknown mean performance measure; µi = E[Xij],
b: the design with the smallest sample mea

performance; b = arg min
i

{ µ i }.

In ranking and selection problems, while the desig
with the smallest sample mean (design b) is usually picked,
design b is not necessarily the one with the smalles
unknown mean performance. Correct selection is therefore
defined as the event that design b is actually the best design
(i.e., with the smallest population performance). In th
remainder of this paper, let "CS" denote Correct Selection.
Thus,

P{CS} = P{ a = b }
= P{ µ a (Na) < µ i (Ni), for all i ≠ a }.

If the simulations are performed on a sequentia
computer, the computation cost is c1N1 + c2N2 + ⋅⋅ + ckNk.
To reduce the simulation efforts, we might want to
minimize the total simulation cost for a desired P{CS}:

min
N1,⋅⋅, Nk

 {  c1N1 + c2N2 + ⋅⋅ + ckNk }

                      s.t. P{CS} ≥ P*. (1.a)

where P* is a user-defined confidence level requiremen
Or, alternatively, we wish to maximize P{CS} by utilizing
a limited computing budget B:

max
N1,⋅⋅, Nk

 P{CS}

s.t. c1N1 + c2N2 + ⋅⋅ + ckNk = B. (1.b)

Some difficulties in solving (1) include the following:

� There is no closed-form expression for the confidenc
level P{CS}.

� P{CS} can not be computed before conducting th
simulations if the mean and variance of each desig
are unknown.

� Most optimization techniques require sensitivity
information.

Due to these problems, solving (1) can be ver
difficult, especially when k is not small. Since the purpose
of solving (1) is to improve P{CS} with a limited
computing budget, we need a relatively fast an
inexpensive way of solving (1) during the simulation
experiment. Otherwise, the additional cost of solving (1
6
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will eliminate the benefits of the optimal computing budg
allocation.  These problems are addressed in Sections 3
4. We first introduce a Bayesian model to estimate P{CS}.

3 A BAYESIAN MODEL

To solve the budget allocation problem in (1), P{CS} must
be estimated. There exists a large literature on asses
P{CS} based on classical statistical model. Goldsman a
Nelson (1994) provide an excellent survey on availab
approaches to ranking, selection, and multiple compariso
(e.g., Goldsman, Nelson, and Schmeiser 1991, Gupta 
Panchapakesan 1979).  In addition, Bechhofer et al. (19
provide a systematic and more detailed discussion on 
issue.

In this paper, a Bayesian model (Bernardo and Smi
1984) is used to develop an effective approach for solv
the budget allocation problem in (1). Under a Bayesi
model, we assume that the simulation output Xij  has a
normal distribution with unknown mean µi. The unequal

variance σ i
2  can be known or unknown. After the

simulation is performed, a posterior distribution of µi,
p(µiX i), can be constructed based on the prior knowled
on the system’s performance and the simulation outp
The probability of correctly selecting the best design c
then be estimated by

P{CS}  = p(µb < µi, i ≠ b  X i, i=1,2,..,k ).

First, consider the case where the variance σ i
2
 is

known. Further assume that the unknown mean µi has the

conjugate normal prior distribution N(ηi, v
2
). Under this

assumption, the posterior distribution for any simulatio
output still belongs to the normal family. In particular, th
posterior distribution of µi  is

p(µiX i) ~ N(
σ i

2ηi + Ni vi
2µ i

σ i
2 + Ni vi

2 ,
σ i

2vi
2

σ i
2 + Ni vi

2 ).

Suppose that the performance of any design is unkno
before conducting the simulation and that v is an extremely
large number. Then the posterior distribution of µi  is given by

p(µiX i) ~ N(µ i ,
σ i

2

Ni

).

If the variance σ i
2  unknown, a t-distribution model can be

used (Inoue and Chick 1998, Chen et al. 1998). Then 
posterior distribution of µi has a t distribution with

mean = µ i /Ni,

precision = Ni /Si
2  ,

degrees of freedom = Ni -1.
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After the simulation is performed, µ i  and Si
2  can be

calculated, and P{CS} can be estimated using a Monte Carlo
simulation regardless of whether a normal distribution or a t
distribution model is adopted. However, estimating P{CS} via
Monte Carlo simulation is time-consuming. Our budget
allocation approach, as will be presented later, needs 
estimate P{CS} several times.  Since the purpose of budge
allocation is to improve simulation efficiency, we need a
relatively fast and inexpensive way of estimating P{CS}
within the budget allocation procedure. Efficiency is more
crucial than estimation accuracy in this setting. From Che
(1996) we have

P{CS}  ≥ 
i =1,i ≠ b

k

∏  p(µb < µi  Xb, Xi) ≡ APCS. (2)

We refer to the lower bound of the correct selection
probability in (2) as the Approximate Probability of Correct
Selection (APCS).  APCS can be computed very easily and
quickly; no extra Monte Carlo simulation is needed.
Numerical testing in Chen (1996) shows that APCS provides a
reasonably good approximation to P{CS} . Furthermore,
sensitivity information on the confidence level with respect to
the number of simulation replications, Ni, which is central to
the allocation of the computing budget, can be easily obtaine
APCS is therefore used to approximate P{CS} within the
budget allocation procedure.

Note that APCS in (2) can be computed easily regardless
of whether the posterior is normally or t distributed. For
notational simplicity and the ease of discussion, we will only
discuss the case of normal distribution in the rest of the pape
which is the case when the variances are known. If th
variances are unknown, the discussions are still valid exce
that t distribution model is used.

4 SENSITIVITY ESTIMATION AND
ASEQUENTIAL APPROACH

We now present a cost-effective method to estimate th
sensitivity information and a sequential approach to resolv
the difficulties in solving (1). Before conducting the
simulation, neither APCS nor a good way to allocate the
simulation budget is known. Therefore, all designs are initially
simulated with n0 replications, yielding the following
posterior distribution for the performance of design i:

N(
1

n0 j =1

n0

∑ Xij, 
σ i

2

n0

).

We use this distribution to obtain the necessary
sensitivity information. Let ∆i be the additional computing
budget allocated to design i; more specifically, ∆i is a non-
negative integer denoting the number of additiona
simulation replications allocated to design i.  We are
7
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interested in assessing how the APCS would be affected if
an additional simulation budget of ∆i is allocated to design
i.  Note that this assessment must be done before act
conducting ∆i simulation replications on design i. A
preposterior distribution (Berger 1980 and DeGroot 19
can provide a means for such a purpose. However, a M
Carlo simulation is needed even to estimate APCS, which
is too expensive in our OCBA framework. In this pap
we adopt a simple and fast approximation scheme. 
know that if we conduct additional ∆i replications on
design i, the posterior distribution for design i  is

N(
1

n0 + ∆ i j =1

n0 + ∆ i

∑ Xij, 
σ i

2

n0 + ∆ i

).

Assume that ∆i is relatively small that 
1

n0 j =1

n0

∑ Xij is a good

approximation to 
1

n0 + ∆ i j =1

n0 + ∆ i

∑ Xij. A good approximation

to the preposterior distribution is

         N(
1

n0 j =1

n0

∑ Xij, 
σ i

2

n0 + ∆ i

),    for design i. (3)

The estimated APCS can then be calculated by plugging (
into the APCS formula in (2). We refer to this
approximation as EAPCS (Estimated Approximate
Probability of Correct Selection). EPACS can be computed
very easily.

Similarly, when the simulation is executed for (N1, N2,
..., Ni-1, Ni, Ni+1, ..., Nk) replications, we can also use th
available information to estimate how APCS will change if
design i is given an additional budget ∆i, i.e., EAPCS(N1,
N2, ..,Ni-1, Ni+∆i, Ni+1, .., Nk), by using an approximated

posterior distribution N(
1

Ni j =1

Ni

∑ Xij, 
σ i

2

Ni + ∆ i

) for design i.

More specifically, when the simulation is executed f
(N1,N2,..,Ni-1,Ni,Ni+1,..,Nk) replications,

EAPCS(N1, N2, ..,Ni-1, Ni+∆i, Ni+1, .., Nk)

= p(µb< ˜ µ i  Xb, X i) • 
j =1, j ≠b, j ≠ i

k

∏  p(µb<µj Xb, X j),

        where ̃  µ i  ~ N(
1

Ni
l

j =1

Ni
l

∑ Xij, 
σ i

2

Ni + ∆ i

), (4)

On the one hand, ∆1, ∆2, .., ∆k should not be too large
to obtain a good estimate of the EAPCS. On the other hand
a sufficient number of additional replications should 
allocated to the competing designs to maximize P{CS}. To
resolve this trade-off, we develop the following sequen
algorithm for determining the number of simulatio
73
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replications. Instead of finding the best N1, N2, ..., Nk at the
beginning of a simulation experiment, we sequentially add
computing budget and determine the number of simulation
replications such that the improvement of EAPCS is
maximized. In doing so, ∆1, ∆2, .., ∆k won't be too large.

Let ∆ ≡ 
i =1

k

∑ ci∆i. More specifically, ∆ is a one-time

incremental computing budget in our sequential algorithm.
We sequentially increase the computing budget by ∆ until
the total budget B is exhausted.  At step l, l = 1, 2, ...., we
therefore solve

max
∆1

l ,�, ∆ k
l

EAPCS( N1
l + ∆1

l
,N2

l + ∆2
l

,� ,Nk
l + ∆k

l
),

          s.t. 
i =1

k

∑ci ∆ i
l  = ∆ and ∆ i

l  ≥ 0 for all i. (5)

In summary, we have the following algorithm for the
budget allocation problem in (1.a):

A Sequential Algorithm for Optimal Computing
Budget Allocation (OCBA)

Step 0. Perform n0 simulation replications for each of 
the k designs,
l ←  0,
N1

l = N2
l = ⋅⋅ ⋅ = Nk

l  = n0,

Step 1. If APCS( N1
l , N2

l , ⋅ ⋅⋅ , Nk
l ) ≥ P*, stop, 

otherwise, go to Step 2.
Step 2. Solve (5).
Step 3. Perform additional ∆ i

l  simulation replications 
for design i, i = 1, ..., k.

Ni
l+1  = Ni

l  + ∆ i
l , for i  = 1, ..., k.

l ← l + 1.

update 
1
Ni

l
j =1

Ni
l

∑ Xij (and Si
2
 if the variance is 

unknown), for i  = 1, ..., k.
go to step 1.

At iteration l, our sequential algorithm determines the
additional number of simulation replications, ∆ i

l
, for each

design. Since our goal is to achieve the highest P{CS}, we
choose ∆ i

l  by solving (5) where EAPCS is maximized.

Once ∆ i
l  is determined for each design, we execute ∆ i

l

additional simulation replications on design i. This
procedure is repeated until the desired confidence level P**

is attained or the total simulation budget is exhausted. In
Section 6 we provide further guidelines for the selection of
n0 and ∆.

We present a simple greedy approach, where, m most
promising designs are chosen and the computing budget i
8
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distributed equally among them (each design has ∆ /m ).
Since we want to maximize the EAPCS, promising designs
can be defined as those designs that have the hig
potential to increase the APCS if they are simulated further.
For each design, we calculate the anticipated increase in
APCS, i.e., EAPCS, if a computing budget of ∆/m is
allocated to it. Then a design is chosen if its EAPCS
increase is among the top-m. Note that the simulation costs
are different for different designs. The numbers 
simulation replications in each iteration for differen
designs are different either.

Step 0.  Choose appropriate m and ∆. Let τi = 
∆

mci
.

Step 1. For i =1, .., n, calculate
    Di ≡ EAPCS( N1

l , N2
l , ⋅ ⋅⋅ , Ni −1

l , Ni
l + τ i , Ni+1

l , ⋅⋅ ⋅ , Nn
l )

- APCS ( N1
l , N2

l , ⋅ ⋅⋅ , Ni −1
l , Ni

l , Ni+1
l , ⋅⋅ ⋅ , Nn

l ).
Step 2. Find the set S(m) ≡

{ i  :  Di is among the highest m}

Step 3. ∆ i
l
 = τi, for all i ∈ S(m); otherwise, ∆ i

l
 = 0.

5 NUMERICAL TESTING

This test case is a G/G/1 queue in which the objective is
select a design with minimum expected waiting time ove
set of 10 competing designs (k = 10). All designs have the
same interarrival time uniformly distributed over [0.1, 1.9
Service time in design i is uniformly distributed over [0.1,
1.3 + 0.05i], i = 1, 2, ..., 10. We want to find a design wit
minimum average waiting time for customers served with
the first 10 time units (terminating simulation). Since 
higher service rate results in shorter waiting times, desig
is the best design. In the numerical experiment, we comp
the computation costs and the actual convergen
probabilities P{CS} for different approaches. Various
parameter settings are used for each algorithm.

We set ∆ = 12 and n0 = 10 in this example. To avoid
spending too much time in solving (5), we allow only 
small number of iterations when applying the steepe
descent method. 10,000 independent experiments 
performed so that the average computation cost and P{CS}
can be estimated. For all compared algorithms in this pap
we estimate the P{CS} by counting the number of times in
which we successfully find the true best design (design 1
this example) in those 10,000 independent experimen
P{CS} is then obtained by dividing this number by 10,000
representing the correct selection frequency. Differe
confidence level requirements are also tested. Th
examples for different simulation costs are tested.

Tables 1, 3, and 5 contain the test results using o
OCBA algorithms presented in this paper for the thr
examples. On the other hand, tables 2, 4 and 6 include
test results using our earlier approach (Chen et al. 199
which doesn't consider different simulation cost structure
739
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Example 1.
The simulation costs of all designs are

[c1, c2, c3, .., c10]
= [4.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0].

Table 1:  Consider different simulation structur
Average total number of simulation replications an
P{CS} by OCBA. We compare different numbers o
promising designs we pick at each iteration f
further simulation.

m = 1 m = 2
P* Total # of

Replication
s

P{CS} Total # of
Replication

s

P{CS}

60% 453.9 72.1% 405.9 71.5%
80% 815.8 82.5% 818.6 80.8%
90% 1348.6 95.2% 1181.2 96.3%
95% 1550.6 96.7% 1435.8 98.7%

Table 2: Without considering different simulatio
structure. Average total number of simulatio
replications and P{CS} by OCBA. We compare
different numbers of promising designs we pick 
each iteration for further simulation.

m = 1 m = 2
P* Total # of

Replication
s

P{CS} Total # of
Replication

s

P{CS}

60% 473.2 71.2% 418.9 66.8%
80% 857.3 89.5% 853.6 88.0%
90% 1506.5 91.1% 1342.4 95.6%
95% 1952.6 96.0% 1667.9 97.4%

Example 2.
The simulation costs of all designs are

[c1, c2, c3, .., c10]
= [3.0,3.0,2.0,1.0,3.0,2.0,1.0,1.0,1.0,1.0].

Table 3:  Consider different simulation structure.

m = 1 m = 2
P* Total # of

Replication
s

P{CS} Total # of
Replication

s

P{CS}

60% 483.70 78.2% 468.93 69.8%
80% 838.02 88.6% 873.47 89.5%
90% 1378.64 90.9% 1367.45 96.2%
95% 1804.58 99.1% 1830.52 98.4%
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Table 4: Without considering different simulation structure

m = 1 m = 2
P* Total # of

Replication
s

P{CS} Total # of
Replication

s

P{CS}

60% 499.70 66.3% 480.24 71.4%
80% 850.66 83.4% 1013.98 80.8%
90% 1445.60 94.5% 1472.47 91.1%
95% 1942.86 98.8% 1973.82 99.1%

Example 3.
The simulation costs of all designs are

[c1, c2, c3, .., c10]
= [1.0,1.0,2.0,1.0,1.0,2.0,1.0,3.0,2.0,4.0].

Table 5: Consider different simulation structure.

m = 1 m = 2
P* Total # of

Replication
s

P{CS} Total # of
Replication

s

P{CS}

60% 415.66 78.5% 392.25 71.5%
80% 563.79 85.4% 571.72 90.5%
90% 826.05 95.6% 768.53 97.0%
95% 964.23 98.2% 991.34 97.4%

Table 6: Without considering different simulation
structure.

m = 1 m = 2
P* Total # of

Replication
s

P{CS} Total # of
Replication

s

P{CS}

60% 426.44 72.5% 430.28 75.5%
80% 644.14 89.6% 614.22 91.3%
90% 909.17 96.3% 890.11 95.5%
95% 1142.74 96.8% 1130.06 96.5%

6 CONCLUSIONS

From the above numerical testing, we observe that und
different simulation cost structure, our newly develope
algorithm can effectively improve simulation efficiency
The efficiency improvement is particularly significant
when the confidence requirement is high.
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