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ABSTRACT

Simulation plays a vital role in analyzing discrete-event
systems, particularly, in comparing alternative system
designs with a view to optimize system performance.
Using simulation to analyze complex systems, however,
can be both prohibitively expensive and time consuming.
We present effective algorithms to intelligently allocate
computing budget for discrete-event  simulation
experiments with different system structures. These
algorithms dynamically determine the best simulation
lengths for all simulation experiments and thus
significantly reduce the total computation cost for a desired
confidence level. Numerical illustrations are included. We
also compare our algorithms with our earlier approach in
which different system structures are not considered.
Numerical testing shows that we can further improve
simulation efficiency.

1 INTRODUCTION

Simulation plays a central role in designing and efficiently

managing large man-made systems such as communicatiorsimulation efficiency in

networks, traffic systems, and manufacturing facilities
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The effective reduction of computation costs while
obtaining a good decision is therefore crucial. Dudewicz
and Dalal (1975) develop a two-stage procedure for
selecting the best design or a design that is very close to
the best system. In the first stage, all systems are simulated
through ny replications. Based on the results of the first
stage, the number of additional simulation replications for
each design in the second stage is estimated in order to
reach the desired confidence level. Rinott (1978) presents
an alternative way to estimate the required number of
simulation replications in the second stage. Many
researchers have extended this idea to more general
ranking and selection settings in conjunction with new
developments. Chiu (1974), Gupta and Panchapakesan
(1979), Matejcik and Nelson (1993, 1995), Bechhofer et al.
(1995), and Hsu (1996) present methods based on the
classical statistical model adopting a frequentist view.
Berger (1980), Berger and Deely (1994), Bernardo and
Smith (1994), Gupta and Berger (1988), and Chick (1997),
on the other hand, use a Bayesian framework for
constructing ranking and selection procedures.

Chen et al. (1996) present a new approach to improve
ranking and selection. The
underlying ideas are as follows. Intuitively, to ensure the

since closed-form analytical solutions are scarce for such correct selection of the best design, a larger portion of the
problems. Unfortunately, simulation can be both expensive computing budget should be allocated to those designs that

and time consuming. Suppose we want to compare
different systems (competing designs or alternative
operating policies). We condubt simulation replications
for each of thé designs. Therefore, we nek simulation
replications. Simulation results become more accurake as
increases. If the accuracy requirement is hiyhiq not
small), and if the total number of designs in a decision
problem is largel(is large), therkN can be very large,
which may easily make total simulation cost prohibitively
high and preclude the feasibility of simulation for ranking
and selection problems.
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are critical in the process of identifying the best design. In
other words, a larger number of replications must be
conducted with those critical designs in order to reduce
estimator variance. On the other hand, limited
computational effort should be expanded on non-critical
designs that have little effect on identifying the best design
even if they have large variances. In doing so, less
computational effort is spent on simulating non-critical
designs and more computational effort is spent on
simulating critical designs; hence, the overall simulation
efficiency is improved. ldeally, we want to optimally

choose the number of simulation replications for all
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designs to maximize simulation efficiency with a given ¢;: the computation cost per replication for dedign
computing budget. In fact, this question is equivalent to X;: the vector representing the simulation output for
optimally decide which designs will receive additional designi; X; = {X; :j=1,2,..N;},

computing budget for continuing the simulation further or [, :the sample average of the simulation output for design

to find an optimal way to reach an optimal design. Chen et _ 1N
al. (1997) present an approach incorporating a simple i Hi(N) = N Z Xijs
steepest-descent method (Luenberger 1984). Chen et al. =1

(1998) compare the approach given in Chen et al. (1996) 4: the unknown mean performance measpre; E[X;],
with Rinott's and Dudewicz's two-stage procedures and b: the design with the smallest sample mean
show that the new budget allocation is significantly faster performanceb = argmin { fi;}.
than two-stage procedures. '
In this paper, we will extend the results in Chen et al.
(1998) to simulation experiments with different system
structures. Namely, the simulation cost per replication
varies from one system to another. This is true for many
applications, in which some design alternatives are much
more complex than others. As a result, the simulation costs
for those complex systems are higher than others. We will
present a budget allocation approach for the simulation
experiments with different system structures. Numerical
experiments show that the presented approach is more
efficient than the one in Chen et al. (1997) which doesn't

consider the impact of different system structures. . . .
In the next section, we formulate the optimal If the simulations are performed on a sequential

computing budget allocation problem and discuss the computer, the computation costaiN; + ¢,Np + I+ CNy.
major issues in solving this optimization problem. A To reduce the simulation efforts, we might want to
Bayesian model for our budget allocation approaches is minimize the total simulation cost for a desif{€S}:
described in Section 3. In Section 4, we present an

In ranking and selection problems, while the design
with the smallest sample mean (dedyiis usually picked,
design b is not necessarily the one with the smallest
unknown mean performanc@orrect selectionis therefore
defined as the event that deshyis actually the best design
(i.e., with the smallest population performance). In the
remainder of this paper, let "CS" den@errect Selection

hus,
P{CS}=P{a=b}
=P{ a(N) < i(N), for alli #a}.

effective method of estimating sensitivity information and MiN { c,Ny + N, + [ ¢ N }
a sequential framework for dealing with budget allocation Na [N .
problems. Section 5 contains three numerical experiments. s.P{CS} 2P. (1.a)

The results show that our approach obtains the desired

confidence level while significantly reducing computation WhereP is a user-defined confidence level requirement.
cost. Section 6 concludes this paper. Or, alternatively, we wish to maximiZ{CS} by utilizing
a limited computing budgé:

2 PROBLEM FORMULATION
max P{CS}
N1, [Nk

Suppose that our goal is to select a design associated with $..¢Ny + Ny + T GNy = B, (1.b)

the smallest mean performance measure amdéng
alternative designs with unknown and possibly unequal
variances. Without loss of generality, we define the “best”
system as the one with the smallest mean performance ) . )
measure in this paper. Further assume that the simulation — 'Nere is no closed-form expression for the confidence

Some difficulties in solving (1) include the following:

output is independent from replication to replication. Note level P{CS}. .

that we consider terminating (finite-horizon) simulations in ~ — P{CS} can not be computed before conducting the
this paper. Our approach is equally applicable to steady- simulations if the mean and variance of each design
state simulations where we nebdindependent samples are unknown.

rather tharN independent simulation replications. In that ~— Most optimization techniques require sensitivity

case, the batch means method (Schmeiser 1982) can be information.

applied to ensure the independence of the samples. The _

computing budget is limited. Denote by Due to these problems, solving (1) can be very
difficult, especially wherk is not small. Since the purpose

X;: thej-thi.i.d. sample of the performance measure from Of solving (1) is to improveP{CS} with a limited
designi, computing budget, we need a relatively fast and

N: the number of simulation replications for design inexpensive way of solving (1}uring the simulation
experiment. Otherwise, the additional cost of solving (1)
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will eliminate the benefits of the optimal computing budget

After the simulation is performedy; and Sz can be

allocation. These problems are addressed in Sections 3 a”‘éalculated, ang{CS} can be estimated using a Monte Carlo

4. We first introduce a Bayesian model to estin®{eS}.
3 A BAYESIAN MODEL

To solve the budget allocation problem in ®)CS} must

be estimated. There exists a large literature on assessin
P{CS} based on classical statistical model. Goldsman and
Nelson (1994) provide an excellent survey on available

approaches to ranking, selection, and multiple comparisons

simulation regardless of whether a normal distribution or a
distribution model is adopted. However, estimaB{g@S} via
Monte Carlo simulation is time-consuming. Our budget
allocation approach, as will be presented later, needs to
estimateP{CS} several times. Since the purpose of budget

%ilocation is to improve simulation efficiency, we need a

relatively fast and inexpensive way of estimatiBfCS}
within the budget allocation procedure. Efficiency is more
crucial than estimation accuracy in this setting. From Chen

(e.g., Goldsman, Nelson, and Schmeiser 1991, Gupta and(lg%) we have

Panchapakesan 1979). In addition, Bechhofer et al. (1995)
provide a systematic and more detailed discussion on this

issue.

In this paper, a Bayesian model (Bernardo and Smith,
1984) is used to develop an effective approach for solving
the budget allocation problem in (1). Under a Bayesian
model, we assume that the simulation outpythas a

normal distribution with unknown megn. The unequal
variance aiz can be known or unknown. After the
simulation is performed, a posterior distribution mf
p(L50X;), can be constructed based on the prior knowledge

on the system’s performance and the simulation output.
The probability of correctly selecting the best design can
then be estimated by

P{CS} = p(ip < 4,1 #b OX;, i=1,2,..k).

First, consider the case where the variam:ize is
known. Further assume that the unknown mgahas the

conjugate normal prior distribution M vz). Under this

assumption, the posterior distribution for any simulation
output still belongs to the normal family. In particular, the
posterior distribution ofy; is

Jizvz

oln + NVL, )
Lo NV

o2 +Nv?

P(L4EXi) ~ N(

P{CS} = ﬁ p(up < 15 OXp, Xj) =APCS. )
i=li#zb

We refer to the lower bound of the correct selection
probability in (2) as thé\pproximate Probability of Correct
Selection(APCS. APCScan be computed very easily and
quickly; no extra Monte Carlo simulation is needed.
Numerical testing in Chen (1996) shows thBCSprovides a
reasonably good approximation #®{CS}. Furthermore,
sensitivity information on the confidence level with respect to
the number of simulation replicatiord, which is central to
the allocation of the computing budget, can be easily obtained.
APCSiis therefore used to approxima®§CS} within the
budget allocation procedure.

Note thatAPCSin (2) can be computed easily regardless
of whether the posterior is normally ordistributed For
notational simplicity and the ease of discussion, we will only
discuss the case of normal distribution in the rest of the paper,
which is the case when the variances are known. If the
variances are unknown, the discussions are still valid except
thatt distribution model is used.

4  SENSITIVITY ESTIMATION AND
ASEQUENTIAL APPROACH

We now present a cost-effective method to estimate the
sensitivity information and a sequential approach to resolve
the difficulties in solving (1). Before conducting the

Suppose that the performance of any design is unknown simulation, neitherAPCS nor a good way to allocate the

before conducting the simulation and thas an extremely

large number. Then the posterior distributiopiofs given by
_ o?
DW£M0~NWn?T)
1
If the variancea? unknown, a-distribution model can be

used (Inoue and Chick 1998, Chen et al. 1998). Then the

posterior distribution of; has & distribution with
mean =[;/N;,

precision =N, /S? ,
degrees of freedomN; -1.
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simulation budget is known. Therefore, all designs are initially
simulated with ng replications, yielding the following

posterior distribution for the performance of design
1% o?
N(_ z Xij: _l_)
N =1 Mo
We use this distribution to obtain the necessary
sensitivity information. Lef); be the additional computing
budget allocated to designmore specifically/; is a non-
negative integer denoting the number of additional
simulation replications allocated to design We are
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interested in assessing how tABCSwould be affected if
an additional simulation budget Af is allocated to design

replications. Instead of finding the bégt, No, ..., Ny at the
beginning of a simulation experiment, we sequentially add

i. Note that this assessment must be done before actuallycomputing budget and determine the number of simulation

conducting 4; simulation replications on desigh A

replications such that the improvement BAPCS is

preposterior distribution (Berger 1980 and DeGroot 1970) maximized. In doing sd\, A, .., Ax won't be too large.
can provide a means for such a purpose. However, a Monte K

Carlo simulation is needed even to estinfaRCS which

is too expensive in our OCBA framework. In this paper,
we adopt a simple and fast approximation scheme.
know that if we conduct additionad; replications on
designi, the posterior distribution for designis

1 Ny +4; o’
N Xi, ——).
(no +A, J-Zl T, + A, )

No
Assume thaty; is relatively small thatl Zl X is a good
Mo j=

Ng+A4;
> Xj. A good approximation
N +4; =1

to the preposterior distribution is

approximation to

NS —% ) for design 3)
— ” . for design.
Ny J'Zl " g+ ’

The estimatedPCScan then be calculated by plugging (3)
into the APCS formula in (2). We refer to this
approximation as EAPCS (Estimated Approximate
Probability of Correct SelectignEPACScan be computed
very easily.

Similarly, when the simulation is executed fbk,(N,,
..y Ni, Ni, Nitq, ..., NY) replications, we can also use the
available information to estimate hoMPCSwill change if
designi is given an additional budgét, i.e., EAPCYNy,
No, ..Ni1, Ni+A;, Niig, .., Ny, by using an approximated
N, o2

I

| jzl Xis —'—Ni vy ) for designi.
More specifically, when the simulation is executed for
(N1,Na,..Ni.1,N;,Ni.1,..,Ny) replications,

posterior distribution

EAPC$N1| N2| ..,Ni_]_, Ni+Ai1 Ni+11 L Nk)
. k
= p(Hp< i O Xy, Xi) M p<O Xy, X)),

j=1,j2b,j#i
‘ 2
—Ziy

. 1 N
wherel; ~ N(W Zl X N+ A ) (4)
I |

il=

On the one handy, &y, .., A should not be too large
to obtain a good estimate of tBAPCS On the other hand,

We

Let A = 3 c&. More specifically,A is a one-time
i=1
incremental computing budget in our sequential algorithm.
We sequentially increase the computing budgen yntil
the total budgeB is exhausted. At stdpl =1, 2, ...., we
therefore solve

max EAPCS Ni + A3, Ny +Ap,--, Ny +Ak),
1meer By

k
st.Y GA} =AandA; =0 for alli. (5)
i=1

In summary, we have the following algorithm for the
budget allocation problem in (1.a):

A Sequential Algorithm for
Budget Allocation (OCBA)

Optimal Computing

Step 0. Performng simulation replications for each of
thek designs,

| « 0,

N} = Ny = = Ny =n,

If APCEN,, NS, I Ny ) = P, stop,
otherwise, go to Step 2.

Solve (5).

Perform additionaA'i simulation replications
for designi,i =1, ... k.

Ni'+l = Ni' + A'i Jfori =1, ...k

| « 1 +1.

Step 1.

Step 2.
Step 3.

|
1Y
updatew > X (and SZ if the variance is
i 1=l
unknown), fori =1, ... k.
go to step 1.

At iterationl, our sequential algorithm determines the
additional number of simulation replication&';, for each
design. Since our goal is to achieve the higRéSS}, we
chooseA'i by solving (5) whereEAPCSis maximized.

Once A'i is determined for each design, we execﬂke
additional simulation replications on design This
procedure is repeated until the desired confidence Rvel

is attained or the total simulation budget is exhausted. In
Section 6 we provide further guidelines for the selection of

a sufficient number of additional replications should be ' anga.

allocated to the competing designs to maxinigeS}. To

We present a simple greedy approach, wharejost

resolve this trade-off, we develop the following sequential promisingdesigns are chosen and the computing budget is

algorithm for determining the number of simulation
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distributed equally among them (each design &dm ). Example 1.
Since we want to maximize tHBAPCS promisingdesigns The simulation costs of all designs are
can be defined as those designs that have the highest

potential to increase thePCSif they are simulated further. [C1, C, Cay .oy Co]
For each design, we calculate the anticipated increase in the =[4.0,3.0,2.0,1.0,1.0,1.0,1.0, 1.0, 1.0, 1.0].
APCS i.e., EAPCS if a computing budget ofA/m is
allocated to it. Then a design is chosen if BAPCS Table 1: Consider different simulation structure.
increase is among the top-Note that the simulation costs Average total number of simulation replications and
are different for different designs. The numbers of P{CS} by OCBA. We compare different numbers of
simulation replications in each iteration for different promising designs we pick at each iteration for
designs are different either. further simulation.
Step 0. Choose appropriat@ andA. Let 1, = £ " m=1 m=2
' ' ""mg’ P°  Total# of P{CS} Total#of P{CS}
Step 1. Fori =1, ..,n, calculate Replication Replication
= Iy | [ [ | s s
D = EAPCRI, :\'Zlm N"ll’ Ni J: T"lN'”’ mlN”) 60% 4539 72.1% 4059  71.5%

- APCS(Ny, N, O N ¢, N{, Niyq, QL Ny). 80% 8158  82.5% 818.6  80.8%
Step 2. Find the se§(m) = 90%  1348.6 95.2% 1181.2  96.3%

{ i : Djis among the highest} 95%  1550.6  96.7% 1435.8  98.7%

Step 3. Ali =1, for alli O §m); otherwise,A'i =0.
Table 2: Without considering different simulation

5 NUMERICAL TESTING structure. Average total number of simulation
replications andP{CS} by OCBA. We compare

This test case is a G/G/1 queue in which the objective is to different numbers of promising designs we pick at

select a design with minimum expected waiting time over a each iteration for further simulation.

set of 10 competing designs £ 10). All designs have the

same interarrival time uniformly distributed over [0.1, 1.9]. m=1 m=2

Service time in desighis uniformly distributed over [0.1, P°  Total# of P{CS} Total#of P{CS}

1.3 +0.09,i=1, 2, ..., 10. We want to find a design with Replication Replication

minimum average waiting time for customers served within S S

the first 10 time units (terminating simulation). Since a 60% 473.2 71.2% 418.9 66.8%

higher service rate results in shorter waiting times, design 1 80% 857.3 89.5% 853.6 88.0%
is the best design. In the numerical experiment, we compare 90% 1506.5 91.1% 13424  95.6%
the computation costs and the actual convergence 95% 19526 96.0% 1667.9 97.4%
probabilities P{CS} for different approaches. Various
parameter settings are used for each algorithm. Example 2.

We setA = 12 andn, = 10 in this example. To avoid  The simulation costs of all designs are
spending too much time in solving (5), we allow only a
small number of iterations when applying the steepest- [C1, Co Ca, .., Cag]
descent method. 10,000 independent experiments are =[3.0,3.0,2.0,1.0,3.0,2.0,1.0,1.0,1.0,1.0].
performed so that the average computation cosP§as}
can be estimated. For all compared algorithms in this paper, Table 3: Consider different simulation structure.
we estimate th&{CS} by counting the number of times in

which we successfully find the true best design (design 1 in m=1 m=2

this example) in those 10,000 independent experiments. P* Total#of P{CS} Total#of P{CS}
P{CS} is then obtained by dividing this number by 10,000, Replication Replication
representing the correct selection frequency. Different s s

confidence level requirements are also tested. Three 60%  483.70  78.2% 46893  69.8%
examples for different simulation costs are tested. 80% 838.02 88.6% 87347 89.5%

Tables 1, 3, and 5 contain the test results using our 90% 1378.64 90.9% 1367.45 96.2%
OCBA algorithms presented in this paper for the three 95% 180458 99.1% 183052 98.4%
examples. On the other hand, tables 2, 4 and 6 include the
test results using our earlier approach (Chen et al. 1997),
which doesn't consider different simulation cost structure.
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Table 4: Without considering different simulation structure. work. Also, this work was supported in part by the
National Science Foundation under grants DMI-9732173

m=1 m=2 and ECS-962479 and the University of Pennsylvania

P°  Total#of P{CS} Total#of P{CS} Research foundation
Replication Replication
s s REFERENCES

60% 499.70 66.3% 480.24 71.4%
80% 850.66 83.4% 1013.98 80.8% Bechofer R.E., T.J. Santner, and D.M. Goldsman. 1995.
90% 1445.60 94.5% 1472.47 91.1% Design and Analysis of Experiments for Statistical
95% 1942.86 98.8% 1973.82 99.1% Selection, Screening, and Multiple Comparisalthn

Wiley & Sons, Inc.
Berger, J. O. 1980. Statistical Decision Theory,

Example 3. . .
The si?nulation costs of all designs are Foulndauons, Concepts, and MethodsSpringer
Verlag.
[C1, Cos Cay s Cad] Berger, J. O., and J. Deely. 1994. "A Bayesian Approach to
- [1.0,1.0 201010201.03.02.0 4.0, Ranking and Selection of Related Means with

Alternative to AOV Methodology," Journal of
American Statistics Association. 83, 364-373.

Bernardo, J.M., and A.F.M. Smith. 19%ayesian Theory.
Wiley.

Table 5: Consider different simulation structure.

m=1 m=2
N Chen, C. H. 1996. “A Lower Bound for the Correct Subset-
P RTOtI"."I #.Of P{CS} RTOt?I#.Of P{CS} Selection Probability and Its Application to Discrete
ep |gat|on ep |gat|on Event System Simulations.lEEE Transactions on

Automatic Contrgl 41 8, 1227-1231.

Chen, C. H. 1995. An Effective Approach to Smartly
Allocate Computing Budget for Discrete Event Simu-
lation. Proceedings of the 34th IEEE Conference on

60% 415.66 78.5% 392.25 71.5%
80% 563.79 85.4% 571.72  90.5%
90% 826.05 95.6% 768.53 97.0%

95% _ 964.23  98.2% 991.34  97.4% Decision and Contrgl2598-2605.
) o ) ) ) Chen, C. H,, L. Dai, H. S. Chen, and E. Yicesan. 1998.
Table 6: Without ConS|der|ng different simulation "Efﬁcient Computa‘tion Of Op“ma' Budget A”ocation
structure. for Discrete Event Simulation Experiment," submitted
to Operations Research
m=1 m=2 Chen, H. C., C. H. Chen, L. Dai, and E. Yilcesan. 1997.
P°  Total#of P{CS} Total#of P{CS} "New Development of Optimal Computing Budget
Replication Replication Allocation For Discrete Event Simulation,”
S S Proceedings of the 1997 Winter Simulation
60%  426.44 72.5% 430.28 75.5% Conference
80% 644.14 89.6% 614.22 91.3% Chen, C. H., H. C. Chen, and L. Dai. 1996. A Gradient
90% 909.17 96.3% 890.11 95.5% Approach for Smartly Allocating Computing Budget
95% 1142.74 96.8% 1130.06 96.5% for Discrete Event SimulationProceedings of the

1996 Winter Simulation Conferenc98-405.
Chick, S. E. 1997. Selecting The Best System: a Decision-
6 CONCLUSIONS Theoretic ApproachProceedings of the 1997 Winter
Simulation Conferen¢&26-333.
From the above numerical testing, we observe that underChiu, W.K., 1974. The Ranking of Means of Normal

different simulation cost structure, our newly developed Populations for a Generalized Selection Goal.
algorithm can effectively improve simulation efficiency. Biometrikg 61, 579-584.
The efficiency improvement is particularly significant DeGroot. 19700Optimal Statistical DecisionsMcGraw-
when the confidence requirement is high. Hill Book Co., New York.

Dudewicz, E. J. and S.R. Dalal. 1975. Allocation of
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