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ABSTRACT

In this paper, we develop a ranking and selection proced
for making multiple comparisons of systems that ha
multiple performance measures. The procedure combi
multiple attribute utility theory with ranking and selectio
to select the best configuration from a set of 
configurations using the indifference zone approach. W
demonstrate our procedure on a simulation model of
large project that has six performance measures.

1 INTRODUCTION

In recent work, Morrice et al. (1997) developed 
simulation model of a project that contains multiple inp
parameters and multiple performance measures. This pa
details how we use the simulation and ranking a
selection (R&S) to select the best project configuratio
over K (>1) possible configurations. The K configuration
are constructed from different settings of the inp
parameters.

Evaluating project configurations on multiple
performance measures complicates the R&S analysis. M
of the R&S literature focuses on procedures that a
designed for scalar performance measures (see, 
example, Bechhofer, Santner, and Goldsman 1995). Th
are at least three ways to deal with this problem. The fi
approach is to extend the theory and develop multip
variable R&S procedures. In a business setting, a sec
approach is often used: convert project performance o
multiple measures  to a scalar measure using co
Costing has many obvious advantages but it has so
disadvantages, as well. For example, accurate cost d
may not be available due to insufficient resource
Additionally, it may be impossible to accurately cos
intangibles (e.g., the quality of life, good will, etc.) even 
the resources are available.
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A third approach is to convert multiple performanc
measures to a scalar performance measure using mult
attribute utility (MAU) theory. MAU theory can be used
instead of a costing approach when good cost data are 
available. Alternatively, MAU theory can be used to
embellish costing information that is considered to b
incomplete (e.g., to account for the intangibles).

In this paper, we focus on the third approach an
combine multiple attribute utility theory with statistical
R&S using the indifference zone approach. The goal is 
select the best project configuration from a set of 
configurations when project performance is measured ov
multiple performance measures.

The remainder of the paper is organized in th
following manner. Section 2 describes the project examp
from Morrice et al. (1997) that will be used throughout th
paper. Section 3 contains a brief overview of the MAU
theory. Section 4 provides the set-up for R&S and 
description of the combined R&S and MAU procedure
Section 5 discusses one of the main research issues:
selection of the indifference zone parameter δ∗. Section 6
illustrates application of the procedure on the proje
example described in Section 2. Section 7 contains so
concluding remarks.

2 EXAMPLE

We use the methodology developed in this paper to analy
the simulation model of the project described in Morrice 
al. (1997). The simulation models a large outdoo
operation called a signal quality survey. Signal qualit
surveys are conducted over large geographical areas (t
to hundreds of square kilometers). They are projects tak
anywhere from a few days to a few years with the numb
of personnel ranging from 20 to 1000 people, requirin
capital equipment valued in the tens of millions of dollar
and generating survey revenues ranging from hundreds
thousands to hundreds of millions of dollars. Th
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simulation model was designed to support bidding
planning, and conducting these large, complicated, a
expensive projects in a profitable manner.

The execution of a signal quality survey requires th
coordination of five types of crews (see Figure 1). Briefly
the signal crew sends signals from several geograph
locations that are recorded by the recording crew. Th
layout crew places receiving (or monitoring) equipment a
several geographic locations so that the recording crew c
receive signals sent by the source crew. The transport cr
brings the layout crew receiving equipment. The packin
crew prepares receiving equipment for the transport cre
that is no longer required on a particular part of a surve
for receiving signals sent by the signal crew.

Figure 1: Crews in a Signal Quality Survey

Performance measures on this project include perce
utilization for all crew types, project duration, and cost. W
will model four project configurations differentiated by the
number of source crews and the amount of  receivin
equipment available. Each configuration will be evaluate
on the multiple performance measures and the best will 
selected (see Section 6).

3 MAU THEORY: AN OVERVIEW

MAU theory (Keeney and Raiffa, 1976) is one of the majo
analytical tools associated with the field of decisio
analysis (see, for example, Clemen 1991).  Simpl
decision analysis is a logical and formal approach to th
solution of problems that are too complex to solv
informally.  In the past, decision analysis has been appli
to problems such as siting an electricity generation facili
(Keeney, 1980), choosing among vendors for th
evaluation of alternatives for the commercial generation 
electricity by nuclear fusion (Dyer and Lorber, 1982), an
selecting a nuclear waste clean up strategy (Keeney a
von Winterfeldt, 1994).

    Packing Crew

Transport Vehicle

     Layout Crew

      Recording Crew     Signal Crew
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A MAU analysis of alternatives (in our example, project
configurations) explicitly identifies the measures that are
used to evaluate the alternatives, and helps to identify those
alternatives that perform well on a majority of these
measures, with a special emphasis on the measures that ar
considered to be relatively more important.  In order to carry
out the analysis, some facts regarding each of the
alternatives are required, and in some cases some
assumptions will be needed to estimate the performance of
the alternatives on the measures.  As an example, different
assumptions may lead to optimistic and pessimistic cost
estimates for the alternatives.

The MAU methodology for the evaluation of a set of
alternatives typically consists of the following steps:

1.  Identification of alternatives and measures,
2.  Estimation of the performance of the alternatives with

respect to the measures,
3.  Development of utilities and weights for the measures,

and
4.  Evaluation of the alternatives and sensitivity analysis.

The alternatives and the measures form a matrix in
which each row corresponds to an alternative and each
column represents a measure.  The cells of the matrix
contain estimates of the performance of each alternative on
each of the measures.  When these estimates are uncertain, 
is often appropriate to quantify them with ranges or with
probability distributions determined using risk analysis
methods, i.e., simulation (e.g., Clemen, 1991;  Keeney and
von Winterfeldt, 1991).

Step three generates a single attribute utility function
over each measure that is scaled from 0 to 1, a weight for
each measure, and a multiple attribute utility function
derived from the single attribute utility functions and the
weights. A single attribute utility function is a scoring
function that maps a performance measure from its range of
possible values to [0,1]. Common forms of this function
include concave for risk averse behavior, convex for risk
seeking behavior, linear for risk neutral behavior, and “S”
shaped for a hybrid of the convex and concave functions.
For theoretical and practical reasons, one popular form for
single attribute utility function is

U(X) A Be (X/RT)= − − (1)

(Clemen, 1991, page 379). The quantities A, B, and RT are
parameters that must be set by the decision maker. Severa
assessment techniques exist for eliciting utility functions
from decision makers, i.e., for setting the parameters A, B
and RT in the case of (1) (Logical Decisions, 1996, page
113). Figure 2 contains a graph of (1) for the productivity
utility of transport vehicle utilization in our project example
where A, B, and RT are approximately equal to 1.019,
2.679, and 0.2, respectively. See Section 6 for additional
information on this utility function.
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Figure 2: Utility Function for Transport Vehicle Utilization

Several methods also exist for assigning weights to t
performance measures (Schoemaker and Waid, 198
Logical Decisions, 1996, page 130). For example, 
method called the Trade-off method, includes all n (> 1)
performance measures in n-1 pairwise tradeoffs. In each
tradeoff the decision maker is asked to judge on whic
measure it is more important to improve performance. Th
procedure in conjunction with the constraint that th
weights must sum to one uniquely determines weight
Another popular method is the Analytical Hierarchy
Process (AHP)  by Saaty (1988).

3.1 Aggregation with Multiple Attribute Utility
Functions

Once the performance of each alternative on each meas
in the alternatives-by-measure matrix has been obtaine
the next step in the analysis involves assembling th
measures into a “super-measure” of the desirability of ea
alternative.  Utility theory provides the basis for the
appropriate approach to aggregate the seemingly dispar
measures.  It is a logically consistent and tractable mea
of representing the degree to which each alternative fulfil
decision maker’s objectives.  The use of utility theor
ensures that any recommendation reflects:

• the interactions, if any, between measures
• the relative attractiveness of a specific level on 

measure
• the relative attractiveness of performance on differe

measures.
For a more detailed presentation of these topics s

Keeney and Raiffa (1976) and von Winterfeldt and
Edwards (1986).

If the decision maker’s preferences are consistent wi
some special independence conditions, then a multip

attribute utility model u x1, x2 ,..., xn( ), where xi

represents the level of performance on measure i,  can be
decomposed into an additive, multiplicative, or other wel
structured forms that simplify assessment.  An additiv
721
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multiple attribute utility model can be represented a
follows:

u x1, x2 ,..., xn( )= wiui xi( )
i =1

n

∑ (2)

where ui ⋅( )  is a single attribute utility function over

measure i that is scaled from 0 to 1, wi  is the weight for

measure i and wi = 1
i = 1

n

∑ .

If the decision maker's preference structure is no
consistent with the additive model (2),  then the following
multiplicative model may be used, which is based on 
weaker independence condition:

1+ ku x1, x2,... ,xn( )= [1 + kkiui (xi
i =1

n

∏ )]    (3)

where ui ⋅( )  is also a single attribute utility function scaled
from 0 to 1, the ki

's are positive scaling constants

satisfying 0 ≤ ki ≤ 1, and k  is an additional scaling

constant that characterizes the interaction effect of differe
measures on preference.  Methods for determining th
value k can be found in Logical Decisions (1996), page

150.  As a special case when ki = 1
i =1

n

∑ , the multiplicative

model (3) reduces to the additive model (2).   For a mor
detailed discussion of the assumptions underlying the
two models, see Keeney and Raiffa (1976).

In this paper, we will assume that the decision maker
preference structure is independent and use the additi
model in (2) in our analysis.

4 R&S EXPERIMENTAL SETUP

Assume that there are K ≥ 2 project configurations. For 2 ≤
i ≤ K, let Xi = (Xi1, Xi2,…, Xin) denote a vector of random
variables representing the performance measures f
configuration i. Let E[u(Xi)] denote the expected utility
(unknown) for configuration i and let

E[u(X[1])] ≤ E[u(X[2])] ≤ … ≤ E[u(X[K] )]      (4)

denote the ordered expected utility values. The goal is 
select the project configuration with the largest expecte
utility E[u(X[K] )]. If the R&S procedure achieves this goal
a “correct selection” (CS) is made. The R&S procedure 
designed to satisfy the following probability requirement:

P{CS} ≥ P∗ whenever E[u(X[K] )] - E[u(X[K-1])] ≥ δ∗

where (1/K) < P∗ < 1 and 0 < δ∗ < 1.
Figure 3 contains the flow of the combined analysi

using MAU and R&S. The simulation model generates M (≥
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1) replicates for each project configuration. On ea
replication for each configuration, the multiple attribu
utility function in (2) is evaluated using the realization of Xi.
If the utility function realizations for a given configuratio
are not normally distributed then multiple replicates 
conducted, over which the realizations are averaged. T
multiple replicates are made of the averages in orde
produce approximately normal data for the R&S proced
Goldsman et al. (1991) refer to this last step as ma
macroreplications.  In our analysis, we used the two-s
indifference zone procedure for R&S due to Rinott (197
In section 6, we illustrate this procedure on our proj
example. In the next section, we address the issue
selecting the indifference zone parameter δ∗.

5 SELECTION OF δδ∗∗

In practice, the selection of δ∗ depends on the judgment o
the decision maker. Usually, it is assigned by appealin
the practical significance of the difference between 
largest and second largest mean on a scale that has 
physical meaning. For example, in the study conducted
Goldsman et al. (1991), four airline reservation syste
were compared based on their expected time to failure
this example, δ∗ was selected on a time scale measur
system time to failure.

S imu la t ion
M o d e l

S imu la t ion
Ou tpu t
Vec to r

Mul t ip le -
At t r ibu te

Ut i l i ty
M o d e l

Assess
C o m m o n

Un i ts

Assess
We igh ts

Se lec t ion
Based  on

Sca lar
M e a n

Figure 3: Analysis Flow
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When R&S is based on expected utilities, the selectio
of δ∗ can be challenging because δ∗ has no direct physical
meaning on the utility scale. To address this problem, w
suggest a two-step process of first defining a δj

∗ for each j,
1 ≤ j ≤ n, and then setting δ∗ equal to

 w1δ1
∗ + w2 δ2

∗ + … + wn δn
∗.

In the first step, we use certainty equivalents defined
on the single attribute utility functions. For a single
attribute utility function, the certainty equivalent is equal to
the inverse of the utility function evaluated at the expecte
utility (Clemen 1991, page 372). Let E[uj(Xij)] be the
expected utility for configuration i, 2 ≤ i ≤ K on
performance measure j, 1 ≤ j ≤ n and let

E[uj(X[1]j )] ≤ E[uj(X[2]j )] ≤ … ≤ E[uj(X[K]j )]    (5)

denote the ordered expected utility values. It is importan
to note that the ordering in (4) is not necessarily the sam
as the ordering in (5) because (4) depends on multip
performance measures. Let CE[K]j  denote the certainty
equivalent corresponding to E[uj(X[K]j )]. Then, by
definition,

E[uj(X[K]j )] = uj(CE[K]j ).              (6)

From (6), the quantity δj
∗ is defined by the R&S

probability requirement:

P{CS} ≥ P∗ whenever uj(CE[K]j ) - uj(CE[K-1]j ) ≥ δj
∗

where (1/K) < P∗ < 1 and 0 < δj
∗ < 1. To set δj

∗, one can
invert uj(CE[K]j ), uj(CE[K-1]j ) and establish an indifference
zone based on CE[K]j  and CE[K-1]j . Since the latter two
quantities are on the scale of the original performanc
measure, the decision maker should be able to establish
indifference zone more easily than on the utility scale
Once an indifference zone has been established on t
scale of the original performance measure, the results c
be substituted back into the utility function in order to
establish δj

∗.
It is important to note that for a constant indifference

zone parameter value δj
∗ on the utility measure, the

indifference zone on the original performance measure w
be variable unless the utility function is linear. However
the indifference zone constructed on the performanc
measure axis need only be established for two points. If t
utility curve accurately reflects the decision maker’s
preferences, then the zone defined by any other two poin
on the performance measure axis will adjust accordingly.

To demonstrate how the zone changes and to check 
consistency, we find it helpful to plot an indifference-zone
preference-zone diagram (Bechhofer et al. 1995, page 17
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for CE[K]j  and CE[K-1]j . The curve dividing the indifference-
zone from the preference-zone is constructed by setting

uj(CE[K]j ) - uj(CE[K-1]j ) = δj
∗

and solving for CE[K]j . For the utility function in (1), the
resultant expression is

CE CE RT Ln B eK j K j j
CE RTK j

[ ] [ ]
* ( / )

* [ ( / ) * ][= − − +−
−

1
1] 1δ

Figure 4 contains three indifference-zone, preference-zo
diagrams corresponding to δj

∗ equal to 0.2, 0.1, and 0.01,
respectively, for the transport vehicle utilization exampl
in Figure 2. The indifference-zone always appears belo
the curve and the preference-zone above as indicated 
the graphs. As δj

∗ decreases the indifference zone
parameter on the performance measure axis decreases 
tends toward a constant value. This explains why th
relationship becomes more linear as δj

∗ decreases.
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(c)  For δj
∗ = 0.01

Figure 4: Indifference-Zone, Preference-Zone Curves

We justify the second step of the procedure, i.e., to 
δ∗ equal to w1δ1

∗ + w2 δ2
∗ + … + wn δn

∗ by noting that from
(2) the E[u(X i)] equals

w1E[u1(Xi1)] + w2E[u2(Xi2)] + … + wnE[un(Xin)].

6 APPLICATION OF THE PROCEDURE

In this section, we illustrate our methodology on a
example. Although the data used in the example are 
real, they are representative. The simulation mod
generated results on a job that is realistic in both size a
structure. Additionally, the utility functions and weights
were assessed based on informal discussions w
personnel who have field management experience.

We define the configurations based on resource lev
along two dimensions: the number of source crews and 
number of units of receiving equipment. Resource decisio
along these two dimensions are considered the m
important on a signal quality survey. We consider fo
configurations: one and two source crews in conjuncti
with 1100 and 1300 units of receiving equipment. All othe
resources and parameters remain fixed.

The performance measures include survey cost, sur
duration and utilization for the following four crews: source
layout, transport, and packing. The recording crew is n
included because it rarely bottlenecks production. The util
function for the survey cost and survey duration we
defined over a range considered reasonable for a surve
the given size and complexity. Specifically, survey cost  w
defined over the range of 80 to 190 thousand US doll
with the following utility function:

 1.004 7.52E - 05) 2000− ( e(X/ )
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Job duration was defined over the range 240 to 480 h
with the following utility function:

1.002 6.16E - 06) 40− ( e(X/ ) .

 The utility functions for the crew utilizations were a
defined over the range 0.2 to 1.0 since a utilization of l
that 0.2 would not be acceptable in the field. Utili
functions for utilization are challenging to constru
because management must balance two factors: de
productivity and worker satisfaction. To address this iss
we assigned two utility functions to each utilizatio
performance measure, one for each factor. Both functi
have the following form for all utilization measures:

1.019 2.769) 0.2− −( e( X/ )    (Desired Productivity)

1 2.06E - 09) 0.05− ( e(X/ )    (Worker Satisfaction).

There are at least two other ways to handle the balancin
these two factors. One way is to develop a single n
concave (or non-convex) function that increases over
initial range of utilization (since productivity outweigh
worker dissatisfaction when workers are not overwork
and drops off when utilization gets too high (work
satisfaction outweighs productivity). We did not use th
approach because a non-concave function causes tech
difficulties for finding unique certainty equivalents. Th
second approach is to constrain the upper bound on
range of utilization to be something less than o
However, this approach forces the decision maker
provide a specific cut-off point beyond which 
configuration would not even be considered.

The MAU function was constructed from a weighte
sum of the ten single attribute utility functions. Weigh
were assigned as follows: cost (0.4),  job duration (0
desired productivity for each utilization (0.05), and work
satisfaction for each utilization (0.05).

For the Rinott (1978) two stage procedure, we used
following parameters: δ∗ = 0.0035, P* = 0.9. The δ∗ was
constructed using the technique described in Section
Recall that for the assessment of δ∗, any two points on the
performance measure scale can be used. We chos
anchor the cost at $140 thousand and assessed
indifference zone value in the positive direction of $2,00
For job duration, our anchor point was 360 hours with 
indifference zone value in the positive direction of tw
hours. All utilizations were anchored at 0.8 and assesse
indifference zone value of 0.01 in the positive direction.

In the first stage of the Rinott procedure, 10
simulation runs were made for each configuration. Sin
the MAU utility function values were not normally
distributed, averages of the values were calculated ba
on batches of size ten yielding ten macroreplications 
724
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each configuration. The hypothesis of normality was no
rejected for any of the samples based on the Chi-squar
Kolmogorov-Smirnov, and Anderson-Darling tests in
BestFit (Palisade, 1996).

Table 1 contains the results from the first stage of the
R&S procedure. The configurations are numbered a
follows: a single source crew with 1100 units of equipmen
(1), a single source crew with 1300 units of equipment (2)
two source crews with 1100 units of equipment (3), and
two source crews with 1300 units of equipment (4). The
number of additional observations were calculated using
the formulae and tables on pages 61-63 in Bechhofer et a
(1995). Note that each additional observation requires a
additional ten simulation runs.

Table 1: First Stage Results from the R&S Procedure

Configuration Average St. Dev. Add. Obs.
1 0.838 0.0052 10
2 0.960 0.0043 3
3 0.867 0.0044 4
4 0.925 0.0010 0

Table 2 contains second stage results. Configuration 
is best since it has the highest sample average. The
results reveal that an additional 200 units of equipment ar
more beneficial than an additional source crew. Adding
both together is not worth the additional cost. A closer
inspection of the data reveals that with 1100 units o
equipment, equipment is the bottleneck. With 1300
hundred units, the transport vehicle crew becomes th
bottleneck. Therefore, adding an additional source crew
does not provide much additional benefit (compare
configuration 1 and 3). In fact, the additional source crew
becomes a detriment to cost and the utilization of the
transport crew (close to 100 percent) when 1300 units o
equipment are available (compare configurations 2 and 4).

Table 2: Second Stage Results from the R&S Procedure

Configuration Average St. Dev.
1 0.839 0.0069
2 0.960 0.0039
3 0.868 0.0039
4 0.925 0.0010

7 CONCLUSION

In this paper we have developed an R&S procedure applie
to multiple project configurations that are evaluated on
multiple performance measures. The core procedure relie
on the ideas and techniques found in MAU theory. Ou
example demonstrates that it can be applied to realist
problems in which simulation is used.
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We will consider three issues in future researc
sensitivity analysis on the MAU assessments,  other w
of assessing δ∗,  and extending R&S methods to hand
vectors of performance measure. The last issue wo
address the case in which it is difficult to make t
assessments required for MAU theory.
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