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ABSTRACT A third approach is to convert multiple performance

measures to a scalar performance measure using multiple
In this paper, we develop a ranking and selection procedureattribute utility (MAU) theory. MAU theory can be used
for making multiple comparisons of systems that have instead of a costing approach when good cost data are not
multiple performance measures. The procedure combinesavailable. Alternatively, MAU theory can be used to
multiple attribute utility theory with ranking and selection embellish costing information that is considered to be
to select the best configuration from a set of K incomplete (e.g., to account for the intangibles).

configurations using the indifference zone approach. We In this paper, we focus on the third approach and

demonstrate our procedure on a simulation model of a combine multiple attribute utility theory with statistical

large project that has six performance measures. R&S using the indifference zone approach. The goal is to
select the best project configuration from a set of K

1 INTRODUCTION configurations when project performance is measured over
multiple performance measures.

In recent work, Morrice et al. (1997) developed a The remainder of the paper is organized in the

simulation model of a project that contains multiple input following manner. Section 2 describes the project example
parameters and multiple performance measures. This papeiffom Morrice et al. (1997) that will be used throughout the
details how we use the simulation and ranking and Paper. Section 3 contains a brief overview of the MAU
selection (R&S) to select the best project configuration theory. Section 4 provides the set-up for R&S and a

over K (>1) possible configurations. The K configurations description of the combined R&S and MAU procedure.
are constructed from different settings of the input Section 5 discusses one of the main research issues: the

parameters. selection of the indifference zone paramelerSection 6
Evaluating project configurations on multiple illustrates application of the procedure on the project

performance measures complicates the R&S analysis. Mostexample described in Section 2. Section 7 contains some

of the R&S literature focuses on procedures that are concluding remarks.

designed for scalar performance measures (see, for

example, Bechhofer, Santner, and Goldsman 1995). There2 EXAMPLE

are at least three ways to deal with this problem. The first

approach is to extend the theory and develop multiple We use the methodology developed in this paper to analyze

variable R&S procedures. In a business setting, a secondthe simulation model of the project described in Morrice et

approach is often used: convert project performance overal. (1997). The simulation models a large outdoor

multiple measures to a scalar measure using costs.operation called a signal quality survey. Signal quality

Costing has many obvious advantages but it has somesurveys are conducted over large geographical areas (tens

disadvantages, as well. For example, accurate cost datao hundreds of square kilometers). They are projects taking

may not be available due to insufficient resources. anywhere from a few days to a few years with the number

Additionally, it may be impossible to accurately cost of personnel ranging from 20 to 1000 people, requiring

intangibles (e.g., the quality of life, good will, etc.) even if capital equipment valued in the tens of millions of dollars,

the resources are available. and generating survey revenues ranging from hundreds of

thousands to hundreds of millions of dollars. The
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simulation model was designed to support bidding, A MAU analysis of alternatives (in our example, project
planning, and conducting these large, complicated, and configurations) explicitly identifies the measures that are
expensive projects in a profitable manner. used to evaluate the alternatives, and helps to identify those
The execution of a signal quality survey requires the alternatives that perform well on a majority of these
coordination of five types of crews (see Figure 1). Briefly, measures, with a special emphasis on the measures that are
the signal crew sends signals from several geographic considered to be relatively more important. In order to carry
locations that are recorded by the recording crew. The out the analysis, some facts regarding each of the
layout crew places receiving (or monitoring) equipment at alternatives are required, and in some cases some
several geographic locations so that the recording crew canassumptions will be needed to estimate the performance of
receive signals sent by the source crew. The transport crewthe alternatives on the measures. As an example, different
brings the layout crew receiving equipment. The packing assumptions may lead to optimistic and pessimistic cost
crew prepares receiving equipment for the transport crew estimates for the alternatives.
that is no longer required on a particular part of a survey The MAU methodology for the evaluation of a set of

for receiving signals sent by the signal crew. alternatives typically consists of the following steps:
1. Identification of alternatives and measures,
/\ 2. Estimation of the performance of the alternatives with
Transport Veehide respect to the measures,
/,\ /,\ 3. Development of utilities and weights for the measures,
and
Packing Orew \\</ Layout Crew 4. Evaluation of the alternatives and sensitivity analysis.
\/ \(/ The alternatives and the measures form a matrix in
which each row corresponds to an alternative and each
column represents a measure. The cells of the matrix
contain estimates of the performance of each alternative on
/\ /\ each of the measures. When these estimates are uncertain, it
Siorel Crew Recording Qew is often_apprppnate_ to quantify _them W|_th ranges or le[h
She o probability distributions determined using risk analysis
\/ \‘/ methods, i.e., simulation (e.g., Clemen, 1991; Keeney and
von Winterfeldt, 1991).
Step three generates a single attribute utility function
Figure 1: Crews in a Signal Quality Survey over each measure that is scaled from 0 to 1, a weight for

each measure, and a multiple attribute utility function

Performance measures on this project include percentderived from the single attribute utility functions and the

utilization for all crew types, project duration, and cost. We weights. A single attribute utility function is a scoring
will model four project configurations differentiated by the function that maps a performance measure from its range of

number of source crews and the amount of receiving possible values to [0,1]. Common forms of this function
equipment available. Each configuration will be evaluated include concave for risk averse behavior, convex for risk
on the multiple performance measures and the best will be seeking behavior, linear for risk neutral behavior, and “S”

selected (see Section 6). shaped for a hybrid of the convex and concave functions.
For theoretical and practical reasons, one popular form for

3 MAU THEORY: AN OVERVIEW single attribute utility function is

MAU theory (Keeney and Raiffa, 1976) is one of the major U(X)= A- Be ¥RD (1)

analytical tools associated with the field of decision

analysis (see, for example, Clemen 1991). Simply, (Clemen, 1991, page 379). The quantities A, B, and RT are
decision analysis is a logical and formal approach to the parameters that must be set by the decision maker. Several
solution of problems that are too complex to solve assessment techniques exist for eliciting utility functions
informally. In the past, decision analysis has been applied from decision makers, i.e., for setting the parameters A, B
to problems such as siting an electricity generation facility and RT in the case of (1) (Logical Decisions, 1996, page
(Keeney, 1980), choosing among vendors for the 113). Figure 2 contains a graph of (1) for the productivity
evaluation of alternatives for the commercial generation of utility of transport vehicle utilization in our project example
electricity by nuclear fusion (Dyer and Lorber, 1982), and where A, B, and RT are approximately equal to 1.019,
selecting a nuclear waste clean up strategy (Keeney and2.679, and 0.2, respectively. See Section 6 for additional
von Winterfeldt, 1994). information on this utility function.
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multiple attribute utility model can be represented as

1 follows:
0.9 + n
0.8 + —
o1 Ul %)= 5 Wux) ()
_06+ =
>E<>’0'5 T where U, ([)] is a single attribute utility function over
g-‘s‘ 1 measure i that is scaled from 0 toWy, is the weight for
02} . :
01 1 measure i anaz w, =1.
0 : : : =1
0.2 0.4 06 0.8 1 If the decision maker's preference structure is not
X (Transport Vehicle Utilization) consistent with the additive model (2), then the following

multiplicative model may be used, which is based on a
weaker independence condition:

n
Several methods also exist for assigning weights to the 1+k X - 1+ kku (x
performance measures (Schoemaker and Waid, 1982, u(Xl, 2"""‘) D[ ku 0ol (3)

rl;”noegtlr?:clj zfﬁgjl?r?:,_nl:fgb ﬁp?nge(atholtja,oi)ﬁcli?jrész?bmEl)e’ 2 whereu, () is also a s'ingle attribute utility function scaled
performance measures 1l pairwise tradeoffs. In each Tom 0 fo 1, thek's are positive scaling constants
tradeoff the decision maker is asked to judge on which satisfying 0 < k <1, andk is an additional scaling
measure it is more important to improve performance. This constant that characterizes the interaction effect of different
procedure in conjunction with the constraint that the measures on preference. Methods for determining the
weights must sum to one uniquely determines weights. value k can be found in Logical Decisions (1996), page

Another popular method is the Analytical Hierarchy ) n o
Process (AHP) by Saaty (1988). 150. As a special case whey k. = 1, the multiplicative

model (3) reduces to the additive model (2). For a more
detailed discussion of the assumptions underlying these
two models, see Keeney and Raiffa (1976).

Once the performance of each alternative on each measure In this paper, we v_wlllassume that the decision make_r_s
in the alternatives-by-measure matrix has been Obtained,prefere_nce s_tructure IS mdependent and use the additive
the next step in the analysis involves assembling the model in (2) in our analysis.

measures into a “super-measure” of the desirability of each
alternative.  Utility theory provides the basis for the 4 R&SEXPERIMENTAL SETUP

appropriate approach to aggregate the seemingly disparate ) i .

measures. It is a logically consistent and tractable means”ASSUMe that there are X2 project configurations. For=2

of representing the degree to which each alternative fulfills | < K, et Xi = (X, Xg,..., Xin) denote a vector of random
decision maker’s objectives. The use of utility theory variables representing the performance measures for

Figure 2: Utility Function for Transport Vehicle Utilization

3.1 Aggregation with Multiple Attribute Utility
Functions

ensures that any recommendation reflects: configurationi. Let Eu(X;)] denote the expected utility
« the interactions, if any, between measures (unknown) for configurationand let
« the relative attractiveness of a specific level on a
measure E[u(Xi)] < E[u(X@)] < ... < Eu(Xq)]  (4)
« the relative attractiveness of performance on different

measures. denote the ordered expected utility values. The goal is to

For a more detailed presentation of these topics Seeselect the project configuration with the largest expected

Keeney and Raiffa (1976) and von Winterfeldt and utility E[u(Xy)]. If the R&S procedure achieves this goal
Edwards (1986). a “correct selection” (CS) is made. The R&S procedure is

If the decision maker's preferences are consistent with 9€signed to satisfy the following probability requirement:

some special independence conditions, then a multiple
attribute  utility model u(xl,xz,...,)g), where X
represents the level of performance on meagurean be where (1/K) <P”< 1 and 0 "< 1.

decomposed into an additive, multiplicative, or other well- Figure 3 contains the flow of the combined analysis
structured forms that simplify assessment. An additive sing MAU and R&S. The simulation model generatessM (

P{CS} > P”whenever Bj(X)] - E[u(Xy.1)] = &’
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1) replicates for each project configuration. On each
replication for each configuration, the multiple attribute
utility function in (2) is evaluated using the realizationXof meaning on the utility scale. To address this problem, we
If the utility function realizations for a given configuration suggest a two-step process of first definimjﬂator eachj,

are not normally distributed then multiple replicates are 1 <j <n,and then setting”equal to

conducted, over which the realizations are averaged. Then
multiple replicates are made of the averages in order to
produce approximately normal data for the R&S procedure.
Goldsman et al. (1991) refer to this last step as making In the first step, we useertainty equivalentslefined
macroreplications. In our analysis, we used the two-stageon the single attribute utility functions. For a single
indifference zone procedure for R&S due to Rinott (1978). attribute utility function, the certainty equivalent is equal to
In section 6, we illustrate this procedure on our project the inverse of the utility function evaluated at the expected
example. In the next section, we address the issue ofygjjity (Clemen 1991, page 372). Let EHKX;)] be the
selecting the indifference zone parameter expected utility for configuration, 2 < i < K on

performance measujel <j <nand let

When R&S is based on expected utilities, the selection
of &”can be challenging becaudéhas no direct physical

Wi+ w, &7+ L+ w8

5 SELECTION OF &

] ) ) E[ui(Xiy)] £ E[u(Xiz5)] < ... < E[Ui(X)]  (5)
In practice, the selection @ depends on the judgment of
the decision maker. Usually, it is assigned by appealing to denote the ordered expected utility values. It is important
the practical significance of the difference between the to note that the ordering in (4) is not necessarily the same
largest and second largest mean on a scale that has somgs the ordering in (5) because (4) depends on multiple

physical meaning. For example, in the study conducted by performance measures. L&Ey; denote the certainty

Goldsman et al. (1991), four airline reservation systems equivalent corresponding to EX;)]. Then, by
were compared based on their expected time to failure. In definition,

this example,d” was selected on a time scale measuring

system time to failure. E[u,(Xg)] = U(CEy)- (6)

Figure 3: Analysis Flow
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From (6), the quantity” is defined by the R&S
Simulation probability requirement:
Model o _ Y -u . o
P{CS} = P”wheneveu;(CEyj) - U(CEk.1j) = §
where (1/K) <P”< 1 and 0 <§"” < 1. To setd", one can
invert U(CEyj ), U(CEk.1) and establish an indifference
. . zone based oICEy; and CEx.qj. Since the latter two
Simulation o ! ; :
gquantities are on the scale of the original performance
Output measure, the decision maker should be able to establish an
Vector indifference zone more easily than on the utility scale.
Assess Once an indifference zone has been established on the
A Common scale of the original performance measure, the results can
’ Y. Units be substituted back into the utility function in order to
Multiple- |, establishg”,
Attribute It is important to note that for a constant indifference
Utility zone parameter valug” on the utility measure, the
N indifference zone on the original performance measure will
Model ~J Assess _ o SR
Weiahts be variable unless the utility function is linear. However,
l g the indifference zone constructed on the performance
. measure axis need only be established for two points. If the
Selection utility curve accurately reflects the decision maker's
Based on preferences, then the zone defined by any other two points
Scalar on the performance measure axis will adjust accordingly.
Mean To demonstrate how the zone changes and to check for
consistency, we find it helpful to plot an indifference-zone,

preference-zone diagram (Bechhofer et al. 1995, page 178)
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for CEx; andCEy.yj. The curve dividing the indifference-
zone from the preference-zone is constructed by setting

U(CEyqy) - U(CEry) =8

and solving forCEy;. For the utility function in (1), the
resultant expression is

y il
CEy;j = CRk_g; - RT L5/ PB* (CBx-ui/RD +1

Figure 4 contains three indifference-zone, preference-zone

diagrams corresponding tﬁpﬂ equal to 0.2, 0.1, and 0.01,
respectively, for the transport vehicle utilization example

in Figure 2. The indifference-zone always appears below
the curve and the preference-zone above as indicated on

the graphs. AsqD decreases the indifference zone

parameter on the performance measure axis decreases and
tends toward a constant value. This explains why the
relationship becomes more lineargi&ecreases.
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Figure 4: Indifference-Zone, Preference-Zone Curves

We justify the second step of the procedure, i.e., to set
d"equal tow; 5,7+ w, &7+ ... + w, &by noting that from
(2) the E[uK))] equals

WiE[u(Xia)] + WoE[Ux(Xi2)] + ... + WhE[Un(Xipn)].
6 APPLICATION OF THE PROCEDURE

In this section, we illustrate our methodology on an
example. Although the data used in the example are not
real, they are representative. The simulation model
generated results on a job that is realistic in both size and
structure. Additionally, the utility functions and weights
were assessed based on informal discussions with
personnel who have field management experience.

We define the configurations based on resource levels
along two dimensions: the number of source crews and the
number of units of receiving equipment. Resource decisions
along these two dimensions are considered the most
important on a signal quality survey. We consider four
configurations: one and two source crews in conjunction
with 1100 and 1300 units of receiving equipment. All other
resources and parameters remain fixed.

The performance measures include survey cost, survey
duration and utilization for the following four crews: source,
layout, transport, and packing. The recording crew is not
included because it rarely bottlenecks production. The utility
function for the survey cost and survey duration were
defined over a range considered reasonable for a survey of
the given size and complexity. Specifically, survey cost was
defined over the range of 80 to 190 thousand US dollars
with the following utility function:

1.004~ ( 7.52E - 0*X/2000)
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Job duration was defined over the range 240 to 480 hourseach configuration. The hypothesis of normality was not

with the following utility function: rejected for any of the samples based on the Chi-square,
Kolmogorov-Smirnov, and Anderson-Darling tests in
1.002- ( 6.16E - 0630(/40)_ BestFit(Palisade, 1996).

Table 1 contains the results from the first stage of the
R&S procedure. The configurations are numbered as

The utility functions for the crew utilizations were all ; . ; :
follows: a single source crew with 1100 units of equipment

defined over the range 0.2 to 1.0 since a utilization of less . ) . )
that 0.2 would not be acceptable in the field. Utility (1): @ Single source crew with 1300 units of equipment (2),

functions for utilization are challenging to construct two source crews W.'t:: isl,gg un_|ts Olf equ_|pment (2)’ _?Qd
because management must balance two factors: desiredWO Source crews wit units of equipment (4). The

productivity and worker satisfaction. To address this issue, nhumfber Olf addi;ionrgll observations6i/vgr3e_ caBIcuIF]exrt]e? usingl
we assigned two utility functions to each utilization [N€ formulae and tables on pages 61-63 in Bechhofer et al.

performance measure, one for each factor. Both functions (1995)' Note that eaph additional observation requires an
have the following form for all utilization measures: additional ten simulation runs.

(-X/0.2) . . Table 1: First Stage Results from the R&S Procedure
1.019-(2.76% ) (Desired Productivity)

Configuration| Averagel St. Dev. Add. Obg.
1-(2.06E -09p%%%)  (Worker Satisfaction). 1 0.838 | 0.0052 10
2 0.960 | 0.0043 3
There are at least two other ways to handle the balancing of 3 0.867 | 0.0044 4
these two factors. One way is to develop a single non- 4 0925 | 0.0010 0

concave (or non-convex) function that increases over an
initial range of utilization (since productivity outweighs

. ; . Table 2 contains second stage results. Configuration 2
worker dissatisfaction when workers are not overworked)

is best since it has the highest sample average. These

an? fdr?_ps Oﬁt Wher? utlllzatltt)_n_tgetr\slvtog_ dh'ght (Worlt<r(]a_r results reveal that an additional 200 units of equipment are
satisfaction outweighs productivity). We did not use this more beneficial than an additional source crew. Adding

a_pproa_ch becagse_ a non-concave f_unction causes technic%oth together is not worth the additional cost. A closer
difficulties for flnd|_ng unique certainty equivalents. The inspection of the data reveals that with 1100 units of
second approach is to constrain the upper bound on theequipment, equipment is the bottleneck. With 1300

range of ut_lllzatlon to be something Ig;s than one. hundred units, the transport vehicle crew becomes the
Howgzver, this approach forces.the decision m.aker 0 pottleneck. Therefore, adding an additional source crew
prov]de a Specific  cut-off point _beyond which does not provide much additional benefit (compare
configuration would_not even be considered. . configuration 1 and 3). In fact, the additional source crew

The MAU fun_ct|on was constr_u_cted ffof"' a welg_hted becomes a detriment to cost and the utilization of the
sum of the ten single attribute utility functions. Weights transport crew (close to 100 percent) when 1300 units of

were assigned as follows: cost (0.4), job duration (0.2), - t ilabl fi fi 2 and 4
desired productivity for each utilization (0.05), and worker equipment are available (compare configurations 2 and 4).

satisfaction for each utilization (0.05).

For the Rinott (1978) two stage procedure, we used the
following parametersd’ = 0.0035,P" = 0.9. Thed’ was
constructed using the technique described in Section 5.
Recall that for the assessmentdf any two points on the 1 0.839 0.0069
performance measure scale can be used. We chose to 2 0.960 0.0039
anchor the cost at $140 thousand and assessed an 3 0.868 0.0039
indifference zone value in the positive direction of $2,000. 4 0.925 | 0.0010
For job duration, our anchor point was 360 hours with an
indifference zone value in the positive direction of two 7 CONCLUSION
hours. All utilizations were anchored at 0.8 and assessed an
indifference zone value of 0.01 in the positive direction. In this paper we have developed an R&S procedure applied

In the first stage of the Rinott procedure, 100 to multiple project configurations that are evaluated on
simulation runs were made for each configuration. Since multiple performance measures. The core procedure relies
the MAU utility function values were not normally on the ideas and techniques found in MAU theory. Our
distributed, averages of the values were calculated basedexample demonstrates that it can be applied to realistic
on batches of size ten yielding ten macroreplications for problems in which simulation is used.

Table 2: Second Stage Results from the R&S Procedure

Configuration | Average| St. DeVv
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We will consider three issues in future research:

sensitivity analysis on the MAU assessments, other ways

of assessingd, and extending R&S methods to handle

Rinott, Y. 1978. On Two-Stage Procedures and Related
Probability-InequalitiesCommunications of Statistics:
Theory and Method&8:799-811.

vectors of performance measure. The last issue would Saaty, T. 1988The Analytical Hierarchy ProcessNew

address the case in which it is difficult to make the
assessments required for MAU theory.
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