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ABSTRACT In this paper we show how to extend the basic
idea of the previous paper to exploit more than two
The regenerative method of simulation output analysis distinct sequences of regeneration times. The idea now
exploits the regenerative structure of a stochastic process tois that permuting cycles for any of the regeneration
break up a path into independent and identically distributed sequences results in a new sample path that has the same
cycles based on a sequence of regeneration times. If adiStl’ibUtiOﬂ as the original path. The new estimator is
process is regenerative with respect to more than one Obtained by averaging over all such transformed paths.
sequence of regeneration times, the classical regenerativeWe derive closed-form expressions for the average, so
method does not exploit the additional structure. In a the computational overhead is small; typically the variance
previous paper we introduced an eﬁiciency-improvement reduction far OUtWGighS the additional Computational costs.
technique for regenerative simulation of processes having The rest of the paper is organized as follows. In
two sequences of regeneration times based on permuting Section 2 we review the basic idea of permuted regenerative
regeneration cycles associated with the second sequencesstimators using two regeneration sequences and describe
of regeneration points. In this paper we show how the how the technique extends to more than two sequences.
same basic idea can be extended to exploit more than In Section 3, we derive the permuted estimator based on
two regeneration sequences. In particular, for birth-death only two regeneration sequences for the expectation of
Markov chains, the regenerations associated with hitting a product of two quantities defined over a regenerative
times to each state can all be exploited. We present cycle. We use this representation to derive the permuted
empirical results that show significant variance reductions estimators for multiple regeneration sequences in Section 4.
in some cases. Section 5 presents the results of numerical experiments.

1 INTRODUCTION 2 BASIC IDEA

In Calvin and Nakayama (1998a) we introduced a new We first review the basic idea of the approach using
class of estimators for regenerative simulations of processestwo distinct regeneration sequences and then describe
with at least two sequences of regeneration times. The how the method extends to more than two sequences;
estimators were proven to have the same bias and nosee Calvin and Nakayama (1998a) for details on the
greater (and often significantly smaller) variance than the technique in the setting of two regenerative sequences.
standard estimator. The basic idea of the method is to Let X = {X(¢) : t > 0} be a continuous-time stochastic
run a simulation of a fixed number of regenerative cycles Process having sample paths that are right continuous with
corresponding to one sequence of regeneration points, left limits on a state spacé c ‘. We can handle
permute the cycles corresponding to a second sequencediscrete-time processe$X,, : n = 0,1,2,...} in this

of regeneration points to obtain a new sample path, and framework by letting X (t) = X, for all ¢ > 0, where
compute an estimate based on the new path. The new |a] is the greatest integer less than or equakto
estimator is the average of the estimates computed for all Let T = {T(i) : ¢ = 0,1,2,...} be an increasing
possible permutations. sequence of nonnegative finite stopping times. Consider
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the random paifX,T) and the shift if M; =0 or 1, then the pathX' has noj-cycles. If
) ) M; = 2, then there is only ong-cycle. Assume now that
O (X, T) = (X(T() + t)ezo, (T(k) = T(0)rzi) - M; > 3. Then for the given pattX, we can now look at

the( 7 —1) j-cycles in the path. We generate a uniform
random permutation of the)M; — 1) j-cycles within the
path X, and this gives us our new sample pa#, which
() {0ru(X,T) :i=0,1,2,...} are identically dis-  a|so hasn 1-cycles. Calvin and Nakayama (1998a) show
tributed; and that X’ and X have the same distribution.
(i) for eachi > 0, 61(;(X,T) does not depend on the '\l?W for the new sample pati’, we can calculate
“orehistory” am(X’), which is just the standard estimator applied to
the new sample patX’. Denote the number of possible
(X ()<, T(0),T(1),...,T(i)). paths X’ we can construct fromX by permuting cycles
as N(X), which depends otX and is therefore random.
See p. 19 of Kalashnikov (1994) for further details. we label these path¥ () :X,X(Q),...,X(N(X)), each
Simulation methods for regenerative processes have beengf which has the same distribution @, and for each
extensively investigated; e.g., see Shedler (1993) and gne we compute&m()?(i)). We finally define our new

references therein. estimator fora to be
We assume that there are> 2 distinct increasing

sequences of nonnegative finite stopping timé&s, = N(X)

{Ty(i) : i =0,1,2,...} with T13(0) = 0, Tp = {T(i) : A (X) = Z ' (1)
i=0,1,2,...}, ..., Ty = {T,(i) : i = 0,1,2,...}, such i1

that (X,71) and (X, T;), 2 < j < s, are all regenerative

We define the pair(X,T) to be a (possibly delayed)
regenerative procesgn the classic sense) if

processes. For example, K is an irreducible, positive- [N Section 3 we present closed-form expressions for a
recurrent, discrete-time or continuous-time Markov chain SPecific permuted estimatar,,(X) when only using two

on the state spac¢l,2,...,s}, then we can defind} regeneration sequences. _ o

to be the sequence of hitting times to the stateor Our purpose in this paper is to extend this idea to
1 < j < s, where we assume that(0) = 1. We use exploit all regeneration sequences. To do this, we create a
the terminology that forl < j < s, the kth j-cycleis the new sample patlX’ from the original pathX by permuting
segment of the sample path from tirfig(k — 1) to 7} (k). all regeneration sequences simultaneously. We accomplish
Also, we call anyT} stopping time aj-regeneration this by first permuting the 1-cycles, then the 2-cycles, and

Throughout the paper, we make the fo||owing as- So on. We dO_’thiS for alk regeneration sequences to get
Sumption regarding the regeneration sequences: iany the new pathX’ which has the same distribution as the
regeneration and an§j + 2)-regeneration are separated by original path. We letV(X) denote the number of possible
an (i + 1)-regeneration, and anf + 2)-regeneration and  Paths that can be constructed in this manner, and denote
anyi-regeneration are separated by(an 1)-regeneration.  the paths byX®, i = 1,2,..., N(X), as before. We
In other words, no “cycles” are allowed in regeneration se- then compute the new estimator as (1). In Section 4 we
quences. For example, the assumption disallows a processPresent closed-form expressions for a specific permuted
in which a 1-regeneration is followed by a 2-regeneration, €stimatora,,(X) when using all regeneration sequences
which is followed by a 3-regeneration, which is followed Simultaneously.
by a 1-regeneration. Our assumption is satisfied, for ex-
ample, by birth-death processes where ftieregeneration
sequence is defined by the hitting times to state

We start by reviewing the technique that uses two
regeneration sequences. The simplest way of explaining the
technique is as follows. Suppose that we want to estimate
some performance measute and we have available a
“standard” estimator ofv, which we will call &,,(X),
based on a sample paﬁ‘l of a fixed numbern of 1-cycles. T

1(k)
Choose a regeneration sequenge2 < j < s. Construct U(k) _/ fo(X(1)dt, 3)
a new sample pattX’ from X by permuting thej-cycles
in the path. More specifically, led/; be the number of
occurrences of stopping times from the sequeficahat

occur during them 1-cycles in the path)f. Note that V() :/ B Jv(X(0))dt, (4)

3 PERMUTED PRODUCT ESTIMATORS
We consider estimating
o= EUL)V(1)], )

where
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and fy, fy : S — R are some “reward” functions. The
standard estimator af is

S
m P
and we want to derive a formula for the permuted estimator
of a. In Calvin and Nakayama (1998b) we describe a class
of performance measures that can be estimated within this
framework, including likelihood-ratio derivative estimators,
Tin estimators, the second moment of the cumulative reward
over a cycle, and the time-average variance constant.
For Z = U,V, let Z).(k) (resp., Z)(k)) be the
kth instance of theZ functional over an excursion
from an i-regeneration back to afrregeneration with
no interveningj-regenerations foy < ¢ (resp.,j > i), but
with regenerations from the other sequences possible in

between. For example, if the first six regenerations are
from sequences 1, 2, 3, 2, 1 and 2, then

N T1(1)
U11(1) = /
T1(0)

. T2(2)
U22(1) = /
Ty (1)

Fori,j € S, let h;; be the number of times that a
stopping time from thei sequence is followed next by
a stopping time from thej sequence, and number the
instances of theZ functional between these times

Z;i;(1), Z;5(2), ..., Zij(hij).

We also number theZ/’s

®)

fo(X (1)) dt,

and
fu(X(t))dt.

7.

ij

7.

ij

Zsz(l)’ Z;(Z), AR Zsz(hu + hi,i+1)7

and similarly number theZili’s

Zili(l)v Zili(2)a cee le,(hu + hiio1).

We first specialize to the case= 2. The proof of
the following theorem follows from a similar result that
appears in Calvin and Nakayama (1998b).

Theorem 1 Suppose we want to estimate defined in
(2), and assume thakb[U(1)?V(1)?] < co. The permuted
estimator is given by

am(1,X) =
hi1
ﬁ > Un(k)Via (k)
11t hie |
hi,2
+ Y (Ura(k)Vaa(k) + U (k) Ve ()
k=1
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hi,2 hi,2
Z Uta( )ZVm(J)
L2335 j=1
hi2 hi,2
Z Vi2(k) Z U1 ()
j=1
1 hi2 ha 2
+EZ(U12 )+ Ui (k Zsz J)
2 k=1
1 hi2 ha 2
“rT Z (V12 + V21 Z U22
1,2 =1
ha 2

+ZU22 V(1)

=1

L
14 hio

> ULEVL()

i,j<hg s,
i#£]

if M, > 3, and a,,(X) = @, (X) otherwise, where
am(X) is the standard estimator of as defined in (5).
The estimator satisfie®[a,,(X)] = « and

Var(am, (X)) < Var(@n,(X)).

The estimatoram(l,)f) of Theorem 1 is the expec-
tation of the standard estimatér,, (X)) with respect to
a random permutation of the 2-cycles and 1-cycles. The
similar result from Calvin and Nakayama (1998b) alluded
to above is the expectation with respect to 2-cycles only,
and is slightly more complicated and less efficient.

4 MULTIPLE REGENERATIVE
SEQUENCES

In the previous section we presented a closed-form
expression for the estimator obtained by permuting two
regeneration sequences. We now present the formula for
the estimator using > 2 distinct regeneration sequences;
for the proof and details see Calvin and Nakayama (1998c).
Our new estimator will be the expectation of the standard
estimator with respect to a random transformation of the
original path.

To present the new estimator, we need to introduce
some notation. First, fix a “return state, 1 < v < s.
We consider estimating defined by (2)—(4), but with the
T, sequence replaced b,.

For 1 <i < s, define

(6)



Calvin and Nakayama

and
Bijit1 =
hiit1
D Uiini (k) Viiga (k)
k=1
+Uit1,i(k)Vig1,:(k)]
1 hi it hi it
o Y Uiiea(k) Y Vieri()
i,5+1 —1 j=1
hi it hiit1
+ 3 Vian(k) Y Uipri(d)
k=1 j=1
Also define
hi i1
M1 = Y, Wiina(k) + Uipr4(k)),
k=1
hiig1
M= Y (Viir1(k) + Vigra(k))
k=1

(by assumptionp; ;+1 = h;1,;) and

Ri,i hii
%U:ZUi,i(k% v = Viilk).
k=1 k=1

For 1 < < s, define

hiithi it s

slY = Z Uﬂ(k)ZZ??g,kH +
k=1

k=1
hiithiit

slV="3

S
Vi (k) = an‘c/,k+1 +

k=1 k=1
and
hiithi it i
S = > ULR) = i+
k=1 k=1
hiithiit1 s
SY= DT VR =D e+
k=1 k=1
Set
hs.s
1 s
o= D Uso(k)Vas(k) = }f :
S.8 k}:l S,S
and
1 &
0, = — Ui (K)Vi1(k) = —.
1 h1’1 kz::l 11( ) 11( ) h1,1

Fori=s—1,5s—2,...,v+ 1, defined® recursively by

0" =
1
Rii =+ hiig1 + hiio1

1 v U

+ (h, ,+1> (ngiHSiTH + 772,/¢+1SJ+1)
(2 ) sisty,
1 + hi,i+1 +1~i4+1

+ ((hz‘+1,i+1 + hiv1,it2) (hijit1 — 1)) pi+l
1+ hi,i+1

and fori =2,3,...,v — 1, defined; recursively by

(& + Bii+1

6; =
1

hii+ hiig1 + hii
v U
+ <771'U71,isil—1 + 771“/71,1'53—1)

2
——— ) 5 st
+ (1+hl,1—1) 1—1~i—1

(hici,i—1 + hic1i—2)(hii—1 — 1)
) ) ) 0, )
* ( 1+ hii-1 !

(& + Bi—1,

Finally, the permuted estimator is given by

am(v) =
1
hv,v + hv,v+1 + hv,'u—l

1 v U
+ (h ) (773@+1Sl+1 + ’71‘1/,@+1511+1)
v,v+1

2

e STU STV

+ (1 +hv,v+1> v+1~v4+1

+ ((hv+1,v+1 + hv+1,v+2)(hv,v+1 - 1)) 9v+1
1 + hv,v+1

14 U
+61)—1,v + (771[;}—171151%—1 + 771‘)/—1,1)511)—1)

2 WU alV
+ (1 i hv,v—l) S’uflsvfl

(h'u—l.'u—l + hv—l.v—Q)(hv v—1 7 1)
) ) ; ev_ .
* ( 1+ h'u,vfl !

The following three steps summarize the calculation
of the estimatorx,, (v).

(fu + 5v,v+1

Step 1. Generate a sample path of v-cycles. After
each transition is generated, increment the appropriate
counters and accumulators fby;, >~ U;;, > V;;, and
ZUij‘/;j for 1< 1,7 < s.

Step 2. From the data collected in Step 1, construct
the &'s, Bi;'s, n&'s, nl's, v5's, v's, S]7s, S1V7s,
S, and $MVs, for 1 < i,j < s.
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Step 3. Use the quantities calculated in Step 2 in
the recursive formula given above to calculate e
v<1t1<s, and thed;, 1 < ¢ < v, and from them
o (V).

The total storage required is proportional 40 The
work of the calculation in Step 1 is proportional to the
sample path length. The calculation in Step 2 requires
O(s) work, and the calculations in Step 3 also require
O(s) work, both independent of the simulation run length.

5 NUMERICAL EXPERIMENTS

We now present some numerical results from simulating a
discrete-time Markov chain using our permuted estimators.

We let each stopping-time sequence correspond to succes-

sive hitting times to a fixed state, and we compute the

estimators based on only two regeneration sequences and

the estimator using all of the sequences. We run different
experiments with different choices of return stateln the

case when only two regeneration sequences are used, the

T (resp.,T») sequence corresponds to hits to stafeesp.,
some statew # v). We examine the variance reduction
resulting from different choices ofy and compare these
to the reduction from using all sequences simultaneously.

The model is a discrete-time Markov chaili =
{X, :n=0,1,2,...} on state space& = {0,1,...,s}
with transition probability matrix

>\ J—
it
for 0 <i < s andR(0,1) = R(s,s — 1) = 1. This chain
is the discrete-time version of the Erlang loss system. As
n — 00, X, = Xeo, WhereP{X,, =i} =m;, 0<i<s,
and r = (wg,71,...,7s) is the stationary distribution of
X. (Note thatw depends on the parametgr and so we
sometimes writer = w(\) = (mo(X), m1(A), ..., ms(A)) tO
emphasize the dependence.)

Let a(\) = AE;(\)[Xo] be the steady-state average
cost, whereE . (y) is the expectation operator under the
steady-state distributiom parameterized by\, and our
goal is to estimate)a()), the derivative of the average
cost with respect to\.

We ran numerical experiments with = 20 and
A = 5. The theoretical value oba(5) is approximately
10.5. Tables 1-3 report the results of simulations of 1,000
independent replications for the return states 0, 5 and
10, respectively. The column labeled with “Avg. af,,”
(resp., “Samp. Var.”) is the average (resp., sample variance)
of the permuted estimators over the 1,000 replications. In
each table the row fow = v corresponds to the standard
(unpermuted) regenerative estimator, and the row labeled
“all" gives the results for the combined estimator (using
all regeneration sequences simultaneously).

R(i,i+1) =

1—R(i,i—1)
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Table 1: Derivative estimates,= 0.

[ w [| Avg. of a,, | Samp. Var.|

0 10.35 2.43
5 10.30 0.36
10 10.31 0.66
15 10.33 2.33
20 10.35 2.43
all 10.26 0.30

Table 2: Derivative estimates,= 5.

[ w [ Avg. of a,, | Samp. Var.|

0 10.47 0.23
5 10.47 0.23
10 10.48 0.20
15 10.47 0.22
20 10.47 0.23
all 10.49 0.16

The expected cycle lengths for different choices of
the return state vary considerably, with= 5 having the
shortest expected cycle length (about 5.7) over the entire
state space. When = 0, the expected cycle length is
quite long (about 300), and the expected cycle length for
v = 10 is about 37. Therefore, for each return state the
number of cycles simulated is adjusted so that the total
expected number of transitions in each replication is about
20,000. Forv = 0 as the return state, 67 cycles were
simulated; forv = 5 as the return state, 3,501 cycles were
simulated; and fow = 10 as the return state, 544 cycles
were required. Hence, we can directly compare the results
across the three tables. (The difference in the number of
cycles may account for the difference in the apparent bias
among the tables corresponding to the different choices of
return statev.)

Table 3: Derivative estimates, = 10.

[ w [ Avg. of a,, | Samp. Var.|

0 10.44 0.51
5 10.45 0.19
10 10.43 0.58
15 10.43 0.58
20 10.43 0.58
all 10.45 0.17
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With the three choices of return state= 0, 5, 10, the
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0.16, and 0.17, respectively. In this example we see that
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