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ABSTRACT

The regenerative method of simulation output analys
exploits the regenerative structure of a stochastic process
break up a path into independent and identically distribut
cycles based on a sequence of regeneration times. I
process is regenerative with respect to more than o
sequence of regeneration times, the classical regenera
method does not exploit the additional structure. In
previous paper we introduced an efficiency-improveme
technique for regenerative simulation of processes havi
two sequences of regeneration times based on permut
regeneration cycles associated with the second seque
of regeneration points. In this paper we show how th
same basic idea can be extended to exploit more th
two regeneration sequences. In particular, for birth-dea
Markov chains, the regenerations associated with hittin
times to each state can all be exploited. We prese
empirical results that show significant variance reductio
in some cases.

1 INTRODUCTION

In Calvin and Nakayama (1998a) we introduced a ne
class of estimators for regenerative simulations of proces
with at least two sequences of regeneration times. T
estimators were proven to have the same bias and
greater (and often significantly smaller) variance than th
standard estimator. The basic idea of the method is
run a simulation of a fixed number of regenerative cycle
corresponding to one sequence of regeneration poin
permute the cycles corresponding to a second seque
of regeneration points to obtain a new sample path, a
compute an estimate based on the new path. The n
estimator is the average of the estimates computed for
possible permutations.
695
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In this paper we show how to extend the basic
idea of the previous paper to exploit more than two
distinct sequences of regeneration times. The idea no
is that permuting cycles for any of the regeneration
sequences results in a new sample path that has the sa
distribution as the original path. The new estimator is
obtained by averaging over all such transformed paths
We derive closed-form expressions for the average, s
the computational overhead is small; typically the variance
reduction far outweighs the additional computational costs

The rest of the paper is organized as follows. In
Section 2 we review the basic idea of permuted regenerativ
estimators using two regeneration sequences and descr
how the technique extends to more than two sequence
In Section 3, we derive the permuted estimator based o
only two regeneration sequences for the expectation o
a product of two quantities defined over a regenerativ
cycle. We use this representation to derive the permute
estimators for multiple regeneration sequences in Section
Section 5 presents the results of numerical experiments

2 BASIC IDEA

We first review the basic idea of the approach using
two distinct regeneration sequences and then describ
how the method extends to more than two sequence
see Calvin and Nakayama (1998a) for details on th
technique in the setting of two regenerative sequence
Let X = {X(t) : t ≥ 0} be a continuous-time stochastic
process having sample paths that are right continuous wi
left limits on a state spaceS ⊂ <d. We can handle
discrete-time processes{Xn : n = 0, 1, 2, . . .} in this
framework by lettingX(t) = Xbtc for all t ≥ 0, where
bac is the greatest integer less than or equal toa.

Let T = {T (i) : i = 0, 1, 2, . . .} be an increasing
sequence of nonnegative finite stopping times. Conside
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the random pair(X, T ) and the shift

θT (i)(X, T ) = ((X(T (i) + t)t≥0, (T (k) − T (i))k≥i) .

We define the pair(X, T ) to be a (possibly delaye
regenerative process(in the classic sense) if

(i) {θT (i)(X, T ) : i = 0, 1, 2, . . .} are identically dis
tributed; and

(ii) for eachi ≥ 0, θT (i)(X, T ) does not depend on th
“prehistory”(

(X(t))t<T (i), T (0), T (1), . . . , T (i)
)
.

See p. 19 of Kalashnikov (1994) for further deta
Simulation methods for regenerative processes have
extensively investigated; e.g., see Shedler (1993)
references therein.

We assume that there ares ≥ 2 distinct increasing
sequences of nonnegative finite stopping times,T1 =
{T1(i) : i = 0, 1, 2, . . .} with T1(0) = 0, T2 = {T2(i) :
i = 0, 1, 2, . . .}, . . ., Ts = {Ts(i) : i = 0, 1, 2, . . .}, such
that (X, T1) and (X, Tj), 2 ≤ j ≤ s, are all regenerativ
processes. For example, ifX is an irreducible, positive
recurrent, discrete-time or continuous-time Markov ch
on the state space{1, 2, . . . , s}, then we can defineTj

to be the sequence of hitting times to the statej for
1 ≤ j ≤ s, where we assume thatX(0) = 1. We use
the terminology that for1 ≤ j ≤ s, the kth j-cycle is the
segment of the sample path from timeTj(k − 1) to Tj(k).
Also, we call anyTj stopping time aj-regeneration.

Throughout the paper, we make the following
sumption regarding the regeneration sequences: ai-
regeneration and any(i+2)-regeneration are separated
an (i + 1)-regeneration, and any(i + 2)-regeneration an
any i-regeneration are separated by an(i+1)-regeneration
In other words, no “cycles" are allowed in regeneration
quences. For example, the assumption disallows a pr
in which a 1-regeneration is followed by a 2-regenerat
which is followed by a 3-regeneration, which is follow
by a 1-regeneration. Our assumption is satisfied, for
ample, by birth-death processes where thejth regeneratio
sequence is defined by the hitting times to statej.

We start by reviewing the technique that uses
regeneration sequences. The simplest way of explainin
technique is as follows. Suppose that we want to esti
some performance measureα, and we have available
“standard" estimator ofα, which we will call α̂m( ~X),
based on a sample path~X of a fixed numberm of 1-cycles.
Choose a regeneration sequencej, 2 ≤ j ≤ s. Construc
a new sample path~X ′ from ~X by permuting thej-cycles
in the path. More specifically, letMj be the number o
occurrences of stopping times from the sequenceTj that
occur during them 1-cycles in the path~X. Note that
69
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if Mj = 0 or 1, then the path~X has no j-cycles. If
Mj = 2, then there is only onej-cycle. Assume now that
Mj ≥ 3. Then for the given path~X, we can now look at
the (Mj − 1) j-cycles in the path. We generate a uniform
random permutation of the(Mj − 1) j-cycles within the
path ~X, and this gives us our new sample path~X ′, which
also hasm 1-cycles. Calvin and Nakayama (1998a) show
that ~X ′ and ~X have the same distribution.

Now for the new sample path~X ′, we can calculate
α̂m( ~X ′), which is just the standard estimator applied to
the new sample path~X ′. Denote the number of possible
paths ~X ′ we can construct from~X by permuting cycles
as N( ~X), which depends on~X and is therefore random.
We label these paths~X(1) = ~X, ~X(2), . . . , ~X(N( ~X)), each
of which has the same distribution as~X, and for each
one we computêαm( ~X(i)). We finally define our new
estimator forα to be

α̃m( ~X) =
1

N( ~X)

N( ~X)∑
i=1

α̂m( ~X(i)). (1)

In Section 3 we present closed-form expressions for
specific permuted estimator̃αm( ~X) when only using two
regeneration sequences.

Our purpose in this paper is to extend this idea t
exploit all regeneration sequences. To do this, we create
new sample path~X ′ from the original path~X by permuting
all regeneration sequences simultaneously. We accompl
this by first permuting the 1-cycles, then the 2-cycles, an
so on. We do this for alls regeneration sequences to ge
the new path~X ′, which has the same distribution as the
original path. We letN( ~X) denote the number of possible
paths that can be constructed in this manner, and deno
the paths by ~X(i), i = 1, 2, . . . , N( ~X), as before. We
then compute the new estimator as (1). In Section 4 w
present closed-form expressions for a specific permute
estimatorα̃m( ~X) when using all regeneration sequence
simultaneously.

3 PERMUTED PRODUCT ESTIMATORS

We consider estimating

α = E[U(1)V (1)], (2)

where

U(k) =
∫ T1(k)

T1(k−1)
fU (X(t))dt, (3)

V (k) =
∫ T1(k)

T1(k−1)
fV (X(t))dt, (4)
6
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and fU , fV : S → < are some “reward” functions. The
standard estimator ofα is

α̂m( ~X) =
1
m

m∑
k=1

U(k)V (k), (5)

and we want to derive a formula for the permuted estima
of α. In Calvin and Nakayama (1998b) we describe a cla
of performance measures that can be estimated within
framework, including likelihood-ratio derivative estimators
Tin estimators, the second moment of the cumulative rew
over a cycle, and the time-average variance constant.

For Z = U, V , let Z↑
ii(k) (resp., Z↓

ii(k)) be the
kth instance of theZ functional over an excursion
from an i-regeneration back to ani-regeneration with
no interveningj-regenerations forj < i (resp.,j > i), but
with regenerations from the other sequences possible
between. For example, if the first six regenerations a
from sequences 1, 2, 3, 2, 1 and 2, then

U↑
11(1) =

∫ T1(1)

T1(0)
fU (X(t)) dt,

and

U↓
22(1) =

∫ T2(2)

T2(1)
fU (X(t)) dt.

For i, j ∈ S, let hij be the number of times that a
stopping time from thei sequence is followed next by
a stopping time from thej sequence, and number th
instances of theZ functional between these times

Zij(1), Zij(2), . . . , Zij(hij).

We also number theZ↑
ii’s

Z↑
ii(1), Z↑

ii(2), . . . , Z↑
ii(hii + hi,i+1),

and similarly number theZ↓
ii’s

Z↓
ii(1), Z↓

ii(2), . . . , Z↓
ii(hii + hi,i−1).

We first specialize to the cases = 2. The proof of
the following theorem follows from a similar result tha
appears in Calvin and Nakayama (1998b).

Theorem 1 Suppose we want to estimateα defined in
(2), and assume thatE[U(1)2V (1)2] < ∞. The permuted
estimator is given by

α̃m(1, ~X) =

1
h1,1 + h1,2


h1,1∑

k=1

U11(k)V11(k)

+
h1,2∑
k=1

(U12(k)V12(k) + U21(k)V21(k))
697
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+
1

h1,2

h1,2∑
k=1

U12(k)
h1,2∑
j=1

V21(j)

+
1

h1,2

h1,2∑
k=1

V1,2(k)
h1,2∑
j=1

U21(j)

+
1

h1,2

h1,2∑
k=1

(U12(k) + U21(k))
h2,2∑
j=1

V ↑
22(j)

+
1

h1,2

h1,2∑
k=1

(V12(k) + V21(k))
h2,2∑
j=1

U↑
22(j)

+
h2,2∑
l=1

U↑
22(l)V

↑
22(l)

+
2

1 + h12

∑
i,j≤h2,2,

i6=j

U↑
22(i)V

↑
22(j)




if M2 ≥ 3, and α̃m( ~X) = α̂m( ~X) otherwise, where
α̂m( ~X) is the standard estimator ofα as defined in (5).
The estimator satisfiesE[α̃m( ~X)] = α and

Var(α̃m( ~X)) ≤ Var(α̂m( ~X)).

The estimator̃αm(1, ~X) of Theorem 1 is the expec-
tation of the standard estimator̂αm( ~X(i)) with respect to
a random permutation of the 2-cycles and 1-cycles. Th
similar result from Calvin and Nakayama (1998b) alluded
to above is the expectation with respect to 2-cycles onl
and is slightly more complicated and less efficient.

4 MULTIPLE REGENERATIVE
SEQUENCES

In the previous section we presented a closed-form
expression for the estimator obtained by permuting tw
regeneration sequences. We now present the formula
the estimator usings > 2 distinct regeneration sequences
for the proof and details see Calvin and Nakayama (1998c
Our new estimator will be the expectation of the standar
estimator with respect to a random transformation of th
original path.

To present the new estimator, we need to introduc
some notation. First, fix a “return state"v, 1 ≤ v ≤ s.
We consider estimatingα defined by (2)–(4), but with the
T1 sequence replaced byTv.

For 1 ≤ i ≤ s, define

ξi =
hi,i∑
k=1

Uii(k)Vii(k) (6)
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βi,i+1 =
hi,i+1∑
k=1

[Ui,i+1(k)Vi,i+1(k)

+Ui+1,i(k)Vi+1,i(k)]

+
1

hi,i+1


hi,i+1∑

k=1

Ui,i+1(k)
hi,i+1∑
j=1

Vi+1,i(j)

+
hi,i+1∑
k=1

Vi,i+1(k)
hi,i+1∑
j=1

Ui+1,i(j)


 .

Also define

ηU
i,i+1 =

hi,i+1∑
k=1

(Ui,i+1(k) + Ui+1,i(k)) ,

ηV
i,i+1 =

hi,i+1∑
k=1

(Vi,i+1(k) + Vi+1,i(k)) ,

(by assumption,hi,i+1 = hi+1,i) and

γU
i =

hi,i∑
k=1

Ui,i(k), γV
i =

hi,i∑
k=1

Vi,i(k).

For 1 ≤ i ≤ s, define

S↑U
i =

hi,i+hi,i+1∑
k=1

U↑
ii(k) =

s∑
k=i

ηU
k,k+1 + γU

k ,

S↑V
i =

hi,i+hi,i+1∑
k=1

V ↑
ii(k) =

s∑
k=i

ηV
k,k+1 + γV

k ,

and

S↓U
i =

hi,i+hi,i+1∑
k=1

U↓
ii(k) =

i∑
k=1

ηU
k,k+1 + γU

k ,

S↓V
i =

hi,i+hi,i+1∑
k=1

V ↓
ii(k) =

s∑
k=i

ηV
k,k+1 + γV

k .

Set

θs =
1

hs,s

hs,s∑
k=1

Uss(k)Vss(k) =
ξs

hs,s
,

and

θ1 =
1

h1,1

h1,1∑
k=1

U11(k)V11(k) =
ξ1

h1,1
.

6

For i = s − 1, s − 2, . . . , v + 1, defineθi recursively by

θi =
1

hi,i + hi,i+1 + hi,i−1
(ξi + βi,i+1

+
(

1
hi,i+1

) (
ηU

i,i+1S
↑V
i+1 + ηV

i,i+1S
↑U
i+1

)

+
(

2
1 + hi,i+1

)
S↑U

i+1S
↑V
i+1

+
(

(hi+1,i+1 + hi+1,i+2)(hi,i+1 − 1)
1 + hi,i+1

)
θi+1

and for i = 2, 3, . . . , v − 1, defineθi recursively by

θi =
1

hi,i + hi,i+1 + hi,i−1
(ξi + βi−1,i

+
(
ηU

i−1,iS
↓V
i−1 + ηV

i−1,iS
↓U
i−1

)
+

(
2

1 + hi,i−1

)
S↓U

i−1S
↓V
i−1

+
(

(hi−1,i−1 + hi−1,i−2)(hi,i−1 − 1)
1 + hi,i−1

)
θi−1

)
.

Finally, the permuted estimator is given by

α̃m(v) =
1

hv,v + hv,v+1 + hv,v−1
(ξv + βv,v+1

+
(

1
hv,v+1

) (
ηU

v,v+1S
↑V
v+1 + ηV

v,v+1S
↑U
v+1

)

+
(

2
1 + hv,v+1

)
S↑U

v+1S
↑V
v+1

+
(

(hv+1,v+1 + hv+1,v+2)(hv,v+1 − 1)
1 + hv,v+1

)
θv+1

+βv−1,v +
(
ηU

v−1,vS↓V
v−1 + ηV

v−1,vS↓U
v−1

)
+

(
2

1 + hv,v−1

)
S↓U

v−1S
↓V
v−1

+
(

(hv−1,v−1 + hv−1,v−2)(hv,v−1 − 1)
1 + hv,v−1

)
θv−1

)
.

The following three steps summarize the calculatio
of the estimator̃αm(v).

Step 1. Generate a sample path ofm v-cycles. After
each transition is generated, increment the appropri
counters and accumulators forhij ,

∑
Uij ,

∑
Vij , and∑

UijVij for 1 ≤ i, j ≤ s.

Step 2. From the data collected in Step 1, construc
the ξi’s, βij ’s, ηU

ij ’s, ηV
ij ’s, γU

ij ’s, γV
ij ’s, S↑U

i ’s, S↑V
i ’s,

S↓U
i ’s, andS↓V

i ’s, for 1 ≤ i, j ≤ s.
98
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Step 3. Use the quantities calculated in Step 2 i
the recursive formula given above to calculate theθi,
v < i ≤ s, and theθi, 1 ≤ i < v, and from them
α̃m(v).

The total storage required is proportional tos. The
work of the calculation in Step 1 is proportional to the
sample path length. The calculation in Step 2 requir
O(s) work, and the calculations in Step 3 also requir
O(s) work, both independent of the simulation run length

5 NUMERICAL EXPERIMENTS

We now present some numerical results from simulating
discrete-time Markov chain using our permuted estimato
We let each stopping-time sequence correspond to succ
sive hitting times to a fixed state, and we compute th
estimators based on only two regeneration sequences
the estimator using all of the sequences. We run differe
experiments with different choices of return statev. In the
case when only two regeneration sequences are used,
T1 (resp.,T2) sequence corresponds to hits to statev (resp.,
some statew 6= v). We examine the variance reduction
resulting from different choices ofw and compare these
to the reduction from using all sequences simultaneous

The model is a discrete-time Markov chainX =
{Xn : n = 0, 1, 2, . . .} on state spaceS = {0, 1, . . . , s}
with transition probability matrix

R(i, i + 1) =
λ

i + λ
= 1 − R(i, i − 1)

for 0 < i < s and R(0, 1) = R(s, s − 1) = 1. This chain
is the discrete-time version of the Erlang loss system. A
n → ∞, Xn ⇒ X∞, whereP{X∞ = i} = πi, 0 ≤ i ≤ s,
and π ≡ (π0, π1, . . . , πs) is the stationary distribution of
X. (Note thatπ depends on the parameterλ, and so we
sometimes writeπ ≡ π(λ) ≡ (π0(λ), π1(λ), . . . , πs(λ)) to
emphasize the dependence.)

Let α(λ) ≡ λEπ(λ)[X∞] be the steady-state averag
cost, whereEπ(λ) is the expectation operator under th
steady-state distributionπ parameterized byλ, and our
goal is to estimate∂α(λ), the derivative of the average
cost with respect toλ.

We ran numerical experiments withs = 20 and
λ = 5. The theoretical value of∂α(5) is approximately
10.5. Tables 1-3 report the results of simulations of 1,00
independent replications for the return statesv = 0, 5 and
10, respectively. The column labeled with “Avg. of̃αm”
(resp., “Samp. Var.”) is the average (resp., sample varian
of the permuted estimators over the 1,000 replications.
each table the row forw = v corresponds to the standard
(unpermuted) regenerative estimator, and the row labe
“all" gives the results for the combined estimator (usin
all regeneration sequences simultaneously).
699
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Table 1: Derivative estimates,v = 0.

w Avg. of α̃m Samp. Var.

0 10.35 2.43
5 10.30 0.36
10 10.31 0.66
15 10.33 2.33
20 10.35 2.43
all 10.26 0.30

Table 2: Derivative estimates,v = 5.

w Avg. of α̃m Samp. Var.

0 10.47 0.23
5 10.47 0.23
10 10.48 0.20
15 10.47 0.22
20 10.47 0.23
all 10.49 0.16

The expected cycle lengths for different choices o
the return state vary considerably, withv = 5 having the
shortest expected cycle length (about 5.7) over the ent
state space. Whenv = 0, the expected cycle length is
quite long (about 300), and the expected cycle length f
v = 10 is about 37. Therefore, for each return state th
number of cycles simulated is adjusted so that the to
expected number of transitions in each replication is abo
20,000. Forv = 0 as the return state, 67 cycles wer
simulated; forv = 5 as the return state, 3,501 cycles wer
simulated; and forv = 10 as the return state, 544 cycles
were required. Hence, we can directly compare the resu
across the three tables. (The difference in the number
cycles may account for the difference in the apparent bi
among the tables corresponding to the different choices
return statev.)

Table 3: Derivative estimates,v = 10.

w Avg. of α̃m Samp. Var.

0 10.44 0.51
5 10.45 0.19
10 10.43 0.58
15 10.43 0.58
20 10.43 0.58
all 10.45 0.17
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With the three choices of return statev = 0, 5, 10, the
sample variance of the standard regenerative estima
are 2.43, 0.23, and 0.58, respectively. For the combined
estimator, the corresponding sample variances are0.30,
0.16, and 0.17, respectively. In this example we see tha
the variability of the standard regenerative estimator
quite sensitive to the “return state", while the variability o
the combined permuted estimator is relatively insensiti
to the return state. Even when the “best" return state5 is
used, the combined permuted estimator gives a signific
reduction in sample variance. In the case ofv = 0, the
reduction is by a factor of about8.
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