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ABSTRACT function and1p(Z) is the indicator thatZ € D for some

set D. If we let N(a, A) denote a multivariate random
This paper deals with efficient algorithms for simulating vector with mean (drift) vecton and covariance matrix
performance measures of Gaussian random vectors. Re-A, thenZ ~ N(0, I,,) where I,,, is the m x m identity
cently, we developed a simulation algorithm which consists matrix. (Since anym dimensional multivariate normal
of doing importance sampling by shifting the mean of distribution can easily be generated fréw{0, I,,,), no loss
the Gaussian random vector. Further variance reduction is of generality is suffered in this formulation.) The method
obtained by stratification along a key direction. A central consists first of doing an importance sampling change of
ingredient of this method is to compute the optimal shift measure, which is chosen to be the best (in an appropriate
of the mean for the importance sampling. The optimal asymptotic setting) from among all independent multivariate
shift is also a convenient, and in many cases, an effective distributions, i.e., distributions of the for¥(a, I,,). Let
direction for the stratification. In this paper, after giving a p denote the optimal drift vector. As will be discussed in
brief overview of the basic simulation algorithms, we focus Section 2,u; is found by solving a nonlinear optimization
on issues regarding the computation of the optimal change problem. The related problem of finding the optimal drift
of measure. A primary application of this methodology for estimating the probability£[1p(Z)] (G(Z) =1 in
occurs in computational finance for pricing path dependent our formulation), whereD is a rare set, was addressed in
options. Chen, Lu, Sadowsky, and Yao (1993). Further variance
reduction is obtained by stratifying along some direction
a, i.e., by stratifying upon a linear combinatiefZ. The
1 INTRODUCTION selection of a good stratification direction was analyzed in
GHS98, but a particularly convenient and often effective
We consider Monte Carlo methods driven by Gaussian direction is to simply leta = 1, the optimal drift vector.
random variables, a primary application of which is pricing  See, e.g., Hammersley and Handscomb (1964) for general
path dependent options. In this finance application, the discussions of both importance sampling and stratification.
Gaussian random variables represent the increments of
Brownian motion. Only very simple options, e.g., a A central ingredient in this method is thus to compute
European call, can be priced analytically in closed form. the optimal change of measure for the importance sampling.
For the more complicated ones, either numerical methods or In GHS98, a bisection procedure was used for the specific
Monte Carlo techniques are used. Monte Carlo methods are case of the Asian option (see Section 2) and non-linear
usually used for higher dimensional problems, or problems optimization techniques were used for the other more
with stochastic parameters (like interest rates, volatilities general cases. In this paper, we use the special structure
etc.), for which finite difference methods are very time of certain instances of this problem to derive a closed form
consuming. A recent review of Monte Carlo methods approximation for the optimal change of measure. We also
for security pricing may be found in Boyle, Broadie and prove that this approximation is close to the true optimum
Glasserman (1997). in an appropriate asymptotic setting. This approximation
Recently, in Glasserman, Heidelberger, Shahabuddin can be interpreted as the first iteration of a refined fixed
(1998) (we will denote this by GHS98), we presented point iterative method developed in GHS98. In particular,
an efficient Monte Carlo algorithm for estimating = the approximation is obtained by assuming tais linear
E|G(Z)1p(Z)] where Z is a vector ofm independent and explicitly solving the optimization. We then examine
standard normal random variables,is some nonnegative  the computational overhead incurred in the optimization
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part of the overall importance sampling and stratification
procedure, where the optimization is done by using the
refined fixed point iterative method mentioned above, the
bisection method (for the case of Asian options), and a
non-linear optimization package.

2 BACKGROUND AND MAIN ALGORITHMS

To motivate this problem, consider the case of using Monte
Carlo to price an arithmetic Asian option on a single asset,
under standard Black-Scholes assumptions.
of the underlying asset under the equivalent martingale

Assuming G(z) is appropriately smooth, this tends to

assign high probability to regions dd where G(z)g(z)

is large. It was shown in GHS98 that such a change
of measure is “asymptotically optimal” in an appropriate
setting.

The problem then is to compute the optimal drift
vector . Three main methods were mentioned/used in
GHS98 to compute the optimal drift. Assuming that
G(z) is positive in the interior of the seD, one can
use F(z) = InG(z). Hence the problem becomes to

The price find the maximum of F'(z) — 2'z/2 over the setD.

Assuming that the maximum occurs in the interior of

measure is described by the stochastic differential equation the setD, the optimal drift . satisfies the fixed point

dS; = Syrdt + o S;dW,, wherer is the interest rate and

is the volatility, both of which are assumed to be constants,
and W; is the standard Brownian motion. L&t be time
horizon, and let there be equally spaced time intervals
between|0,T] each of lengthA = T'/n. The solution of
the above equation can be simulated without discretization
error on a discrete grid of pointsA,2A,...,nA) by
setting S;, the stock price at theith grid point, as

S; = Soexp((r —o2/2)Ai+ oA 22:1 Z;), whereZ;'s

are independent standard normals, i.8.(0,1)'s. Let

Z = (Z1,Zs,...Zy,). The discounted payoff for the
arithmetic Asian option is given by7(Z)1p(Z) where
G(Z) = e™(X7, Si/n — K) and D is the region
{G(Z) > 0}. The objective is then to estimate the
expected discounted payoff = F[G(Z)1p(Z)], which
falls into our general frameworkr{ = n in this case).

We now outline the method presented in GHS98. Let
g(z) be them dimensional multivariate normal density
with mean0 and covariance matriX,,, As is well known
from the theory of importance sampling, a zero-variance
estimate is obtained by choosing the importance sampling
density to be

h(z) = G(2)g(2)1p(2)/a. @
However, it is not possible to use this change of measure
because the desired quantity must be known from the
outset and, even if it were known, it may be difficult to
sample fromh. Nevertheless, this observation provides a
useful insight: an effective importance sampling density
should weight points according to the product of their
probability and their payoff.

In GHS98, for tractability, the onlyi(z) that is
considered ish,(z), which is defined to be the original
multivariate normal measure(z) (that had mean zero)
shifted so that the mean vector is naw One way of
achieving a good approximation to (1) is to align the
mode of the integrand (assuming it exists and is unique)
G(2)g9(2)1p(z) with the mode of the shifted measure, i.e.,
choosea to be a vectoru that solves
—2'z/2

max G(z) e

)
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equationVF () = p. The first method is to use the usual
fixed point iterative methog:;; = F(u;). However, this
method did not always converge and was thus discarded.
A more refined fixed point iterative method which appears
to converge more generally (and faster) was also developed
as follows. First rewrite the conditioVF (i) = p as
VG(p)/G(1) = p. After i iterations one can approximate
G(p) by G(pi) +VG(pi)(p— pi) and VG (p) by VG(u;)

and thus sejs;+; to be the solution of

i = VG (i)
T Gw) + VG () (pis1 — pa)

This set of equations has two roots, the relevant one being
given by

_ = B(u) + VB(i)? + 4IVG ()2
2 VG (pa)l?

VG(M)

®3)
whereB(p;) = G(u;) — VG (p;) ;. The third method was
to use general purpose optimization code. An iterative
method involving bisection, that was more specific to
the Asian option with non-random volatility, was also
developed in GHS98.

Given adrift vectoy, the likelihood ratigy(z) /h,.(2) =
exp(—p'z+ 34/ p). Thus applying importance sampling and
using the fact thaf + u (whereZ ~ N (0, I,,,)) has density
h,, we obtain

Hit1 =

o
p)

a=E[G(Z+plp(Z+pe?7 5] (4)
Equation (4) suggests the importance sampling estimator
that we use. The form of this estimator motivates the use
of stratifying upony’Z, which is equivalent to stratifying
upon the likelihood ratio.

3 APPROXIMATIONS FOR THE OPTIMAL
CHANGE OF MEASURE

We will now approximate solutions to the unconstrained
version of (2), i.e., where the constraint D is removed.
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Under an appropriate asymptotic setting described below,
we show that these approximations are close to the exact
optimal. We end with a discussion of what happens when
we re-introduce the constrainte D.

To motivate this asymptotics, consider the problem
of pricing Asian options as mentioned in Section 2. The
approximation we propose makes use of the fact that
certain parameters in the equation f6f{(Z) are small,
especially the prefactos in front of the Z;’s. A typical
value of o is 0.2. Hence, we let = § where§ is a
small parameter. Also, a typical value ofis 0.05 and
so, in this casey = ©(6?) (a function f(§) is said to
be ©(6°) iff there exist positive constant&’; and K»
such thatK;6¢ < f(6) < K6 for all 6 small enough).
WhenG(0) > 0, Sy is usually relatively close to the strike
price K. For exampleS; = 50 and K = 55. Hence
K = Sy(1+4 0(9)).

In general we now conside¥(z) of the formG(6z, §)
and study the behavior of the solution of the unconstrained
version of

max  G(6z,6) e * /2
z€D

(®)

asé — 0. To capture the basic flavor of the discussion

below, consider the simplified versiof(z) = G(6z) of
the asymptotics above. Using the substitutios: 6z, we

can transform the corresponding simplified version of (5)
to
A —v'v/(26%)
max G(v) e . (6)

If we assume modest limitations on the growth rate of
G(v) with increasing||v|, then for all sufficiently small

6, only the region in a small neighborhood @fmatters in
computing the maximum. This is illustrated in Figure 1.
In this small neighborhoocﬂ'(v) may be approximated by
G(0) + VG(0)v, and so the solution of the unconstrained

version of (6) tends to be close to that of
max  (G(0) + VG(0)v) e~V'/(26%),

The solution of the latter is easily obtained in closed form

as
( ) VG(0).

In order to state and prove this idea rigorously for

the more difficult case ofz(z) = G(éz,6), we need the
following assumptions:

~G(0) + 1/ G(0)? + 482V G(0)]
2|[VG(0)]?

Assumption 1 (@) G(x,6), VG(z,8) and VsG(z, )
are continuous at0,0). (VG(z,§) is the vector of
derivatives with respect to the arguments givenzby
Vs is the derivative with respect to the last argument.)
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Figure 1: lllustrating the linear approximation 1@ in

a neighborhood of 0. AsY — 0, the normal density
becomes more peaked around 0, and thus optimizing the
density times the linear approximation is almost the same
as optimizing the density time§.

G(0,6) > 0 (equivalent toG(0) > 0) and ©(6¢) for
somec > 0.

(b)

(© [IVG(0,8)] is©(1) (i.e., at least one of the elements
of VG(0,0) is non-zero).

The solution to the unconstrained version of (5) is
unique for eachy. Call it p = ps.

sl is O(1).

Assumption 1(d) is not necessary, but we have it here
in order to simplify the presentation. Sample conditions
under which Assumption 1(e) is true are provided in
Proposition 1 below.

(d)

(e)

Theorem 1 Suppose Assumption 1 holds. Let

(—G0)+ G0 + AIVGO)]?
e ( 2VGO)P ) Ve
(7
Then
726 — psll 0
[ as]|
asé — 0.

Remark 1: The i may also be expressed in terms
of G(-,-) by using the fact thatG(0) = G(0,6) and
VG(0) = 6VG‘(O,6). But the representation given by (7)
is more practical.
Remark 2:The i is also the first iteration of the refined
fixed point iteration method given by (3), with the starting
point 1o being O.

The proof of Theorem 1 is deferred to Appendix A.
The approach we adapt in the proof is as follows. Under
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the transformationG(z) = G(6z,6), the u = us should
satisfy the fixed point equation
VG(6v,68) = vG(6v,6)/6. (8)
Let As be the set of solutions to this fixed point equation
for a givend. We “approximate”all v € As that lie in a
ball of a sufficiently large but constant (i.e., independent
of $) radius around 0, and then choose the relevant one.
Now we formally specify one of the circumstances
under which||us|| is O(1).

Assumption 2 (G(x,6) e~ 1I=I”/2 = 0, uniformly in
6, for all 6 small enough, ad/z|| — oo.

Assumption 2 is true in most problems where

E[G(Z)] = E[G(62, )] is finite.

Proposition 1  Suppose Assumption 1(a) - 1(d) and
Assumption 2 hold. Consider the case whevé0, o)
is ©(1). Then|us| is O(1).

The proof of this proposition is given in Appendix

B. Similar results may also be shown for other cases, but ™

they are much more tedious.

Now let us see what happens when we re-introduce o

the constraintz: € D in the maximization problem. Note
that D may also depend oh (e.g., if D is of the form

{#z : G(z) > 0}), so we denoteD by Ds. Obviously,
the above approximations would go through if the set
D;s included a ball of sufficiently large (constant) radius
around 0, for all (sufficiently smally > 0. In practice,

el

Vmin

Figure 2: lllustrating the situation whelv¢ D and p is
in the interior of D.

4 COMPUTATIONAL ISSUES AND NUMERICAL
RESULTS

In this section we

test the accuracy of the approximation scheme de-
scribed in the previous section and

investigate, numerically, the overhead involved in
solving the optimization problem to compute the
optimal drift vector .

Regarding the second point, a reasonable measure of this
overhead is to compare the number of function evaluations,
M, required to achieve optimality (to a given level of

we found this is procedure to be quite accurate even when precision) to the number of replication), that a standard

only a weaker condition is satisfied: lies in the interior
of the setDs for all (sufficiently small)s > 0. If we
found out before hand thatf.cp, ||z|| — co asé — 0,
then due to Assumption 1(e)s will not lie in the feasible
region (for all sufficiently smalb). In fact, in many cases
where( ¢ Dy, it turns out that this is the case. Then the

simulation would require to achieve a desired level of
accuracy. As each such function evaluation or replication
both require evaluating=, their computational costs are
comparable. IfAM//N is small, then IS+stratification is
cost-effective for even a modest reduction in variance (or
more precisely, for a modest reduction in the variance

approximation cannot be expected to be close, although times the work per sample, see GHS98). On the other

one still use the iterative procedure of (3) starting at 0.
Let us take a closer look at (6) corresponding to
the simpler asymptotic€i(z) = G(6z), when 0 € §Ds
is not satisfied. For simplicity, assume th@&bs = D,
i.e., it is independent ob. Then one can expect that
the optimal solution to (6) (that can be expressed as
o where p now denotes the optimal solution to the
version of (5) with the simpler asymptotics ) will occur
close t0 v, = min,cp ||v]| (see Figure 2) and3(v)
is approximately linear in the small region aroung;,.
Hence if one were to start the iteration procedure given
by (3) atv.,.;»/6 then one may again expect asymptotic
convergence after one iteration. The problem is that in
most cases determining,,;,, is as difficult as determining
the solution to (6) itself.
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hand, if M/N is large, then the method must produce large
variance reductions to be cost-effective. For the purpose of
this paper, our definition of the required sample size will
be the number of samples required for a 95% confidence
interval to have a relative half width of1%, i.e., if the
estimated per sample standard deviation using standard
simulation isS and the estimated price of the optionfs

we requirel.965/v/N = 0.01P, or N = (1.965/0.01P)2,

We consider four models, which are described in full
detail in GHS98: the arithmetic Asian option with constant
volatility (denoted Asian), the arithmetic Asian option with
the Hull-White stochastic volatility model (denoted HW),
the Cox, Ingersoll, Ross interest rate model for pricing a
bond (denoted CIR), and the Cox, Ingersoll, Ross interest
rate cap model (denoted CIR-Cap). In the interest of space,
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we do not describe these models or their parameters here,

but refer the reader to GHS98. Far time steps, the
Asian model hasn = n and the HW, CIR, and CIR-Cap
models haven = 2n.

For the Asian option, it was shown in GHS98
that the optimalp could be found by reducing the
set of n optimality equations to a single nonlinear
equation that can be solved by bisection. A high
degree of accuracy was typically found in only about a
dozen function evaluations, which is negligible compared
to the cost of the simulation. For example, in the
notation of Section 2, consider the parameter settings
n=16,0 = 0.3, K = 50,5, = 50,7 = 0.05 and T = 1.

With these parameters the required sample size using
standard simulation is about 88,000 replications. IS and
stratification reduces the variance by about a factor of
1,300. However, each such sample requires about 10%
more CPU time than standard simulation (due to the

increased cost of sampling from the stratified distribution).

Thus the method improves the the efficiency (work times

variance) by about a factor of 1,186 (1,300/1.1).

We will also use this example to illustrate the accuracy
of the approximation: described in the previous section.
Define the Relative Error (RE) to bgi — p||/ ||u||. For

the same parameter setting as in the above example, the

RE is 0.0596. Note that the payoff at zero is positive
in this case, as required for the approximation. It also
worthwhile to see how the RE behaves as a function of
the volatility (0), as in this casey may be interpreted
directly aso. As o decreases from 0.3 to 0.03, the RE
decreases to 0.00754.

For the other three models, nearly closed-form optimal
solutions (like the bisection algorithm mentioned above) to
the optimization problem are not available. We therefore

Table 1: Number of function evaluations to achieve
convergence to optimality in the Hull-White stochastic
volatility model. All results useS, = 50, V5 = 0.09,
v=0,r=0.05andT = 1.0.

K 13 n GRG2 | Fixed

Point
50 | 0.5 32 402 260
50 | 1.0 | 32 402 325
50 | 2.0 | 32 403 390
55| 05| 32 469 260
55| 1.0 | 32 403 325
55| 20| 32 471 455
50 | 0.5 | 64 912 516
50| 1.0 | 64 784 645
50 | 2.0 | 64 1044 774
55| 0.5 | 64 915 516
55| 1.0 | 64 915 645
55| 2.0 | 64 1043 903

addition, GRG2 also computes the gradient at the final
point. We set a similar termination criterion for the fixed
point iteration; the iteration terminated when the objective
function changed by less than a factor «of Throughout,
we usede = 107%.

For the HW model the (undiscounted) payoff function
takes the fornG(z) = (A(z) — K)* whereK is the strike
price andA(z) is the arithmetic average of the underlying
stock prices. Note that ify optimizes g(z)G(z), it
also optimizesH (z) = g(z)(A(z) — K), which has the
advantage of not losing information about the shape of
A(z) when A(z) < K. Thus for the HW model, we
optimized H(z). Recall thatz = 0 corresponds to not
doing IS, which as described earlier is a natural starting
point. However, it turns out that if = 0, then the partial

compared two general purpose approaches that do notderivatives of H(z) are all 0 for z(n + 1),...,2(2n).

take advantage of any problem specific structure. The first
approach is to apply a nonlinear optimization package. The

specific package we chose was GRG2, which was developed

by Leon Lasdon of the University of Texas and is marketed
by Optimal Methods, Inc. The second approach is to apply
(3) with a suitable starting point. Both these approaches
require derivative information, which were estimated using
finite differences. The conditions under which these
methods converge to a global optimum are different, and
difficult to verify in practice. However, we did not find

convergence to be a problem, provided a “reasonable”
initial point zyg was selected (see discussion below). In
addition, a direct comparison of function evaluation counts
is somewhat misleading since the termination criteria are
different. In the case of GRG2, the termination criteria
are complex as they include checking that the objective
function does not change by more than a factor eof

for a certain number of iterations (line searches). In
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Therefore, we sety(i) = 0.01 for all ¢ and all parameter
settings.

Table 1 shows the total function evaluation counts
(including those used for the finite difference approxi-
mations to the derivatives) for the two methods. In all
cases, the optimization problem is solved in between 250
and 1,100 function evaluations. As expected, the cost to
solve the optimization increases asincreases. Recall
that for n = 32 this is a 64 dimensional problem while
for n = 64 this is a 128 dimensional problem. Thus most
of the function evaluations could be eliminated if partial
derivatives were computed analytically (although it is by
no means easy to compute them). While the fixed point
iteration appears to converge more quickly, part of the
difference is due to the different termination criteria.

As it may not be necessary to actually solve the
optimization to such a high degree of accuracy in order
to obtain good variance reduction, we next investigate
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Table 2: IS + Stratification performance for the Hull-
White stochastic volatility model. All results use= 32,
So =50, Vo =0.09, v =0, £ = 1.0, »r = 0.05 and
T =1.0.

K IS Function | Relative | Variance

Vector Calls Error Ratio
50 m 65 0.188 28.8
50 f1 135 0.144 31.8
50 f12 202 0.023 32.3
50 o 402 0.0 30.6
55 m 65 0.206 27.9
55 1 135 0.162 34.9
55 f12 203 0.015 43.5
55 “w 403 0.0 43.0

Table 3: Number of function evaluations to achieve

convergence to optimality in the Cox, Ingersoll, Ross
interest rate model. All results us¢ = 2, x = 0.05,

o =0.08 andT = 1.0. The starting point iszy(i) = 0.0

for all 7.

T n GRG2 | Fixed | Relative
Point Error

0.044 | 16 142 66 0.006
0.064 | 16 141 66 0.005
0.084 | 16 141 66 0.004
0.044 | 64 526 258 0.013
0.064 | 64 526 258 0.010
0.084 | 64 526 258 0.009

how effective the IS+stratification procedure is for “nearly
optimal” changes of measure. To study this, jetdenote
the solution when GRG2 is prematurely terminated after
j line searches, and let denote the GRG2 solution when
solved to optimality, i.e., within the accuracy criteria as
described above. For the parameters listed in Tablg 2,
is obtained in 4 line searches. Table 2 lists the number of
function calls required to compute an IS vectoat, where

w' = [i, i1, fia, OF u(= fis). This represents the cost to
solve the problem to partial optimality. In addition, it lists
the relative error,||u’ — u||/||x|| as well as the variance
ratio (estimated variance of standard simulation to that
of the I|S+stratification procedure). To obtain accurate

Table 4: Number of function evaluations to achieve
convergence to optimality in the Cox, Ingersoll, Ross
interest rate cap model. All results ude= 2, x = 0.05,

o =0.08, rg =0.064 andT = 1.0.

K n GRG2 | Fixed | Relative
Point Error

0.064 | 16 209 66 0.004
0.074 | 16 314 132 0.168
0.084 | 16 526 132 0.407
0.064 | 64 1173 387 0.057
0.074 | 64 1436 387 0.025
0.084 | 64 1566 516 0.026

evaluations. Again, fixed point iteration appears to converge
more rapidly, however GRG2 again produces near-optimal
results earlier. The relative error column ligfg — wl|/
||l In this problem, i is extremely close tou, as

all cases of this problem satisfy the conditions for the
approximations to be asymptotically close, especially the
condition G(0) > 0.

For the CIR-Cap model, starting in a neighborhood
of zg = 0 produces a payoff of 0 for many of the
parameter settings (leading to a gradient estimate of 0).
We therefore choseq (i) = 0.2 for all 4, which produces
a positive payoff for all parameter settings. As reported in
Table 4, this problem is solved in between 50 and 1,600
function evaluations, with fixed point iteration converging
more rapidly. As for thei (this is not exactlyj, as
by definition, i is always computed withzo(i) = 0),
in some cases they seem to be very close, whereas in
other cases there is a wide difference. Note that in
this case the payoff is of the forrﬁ)li:1 Gi(Z)1p,(Z),
and thus strictly speaking it does not fit the framework
described earlier. However, one can easily show that if
for eachi, G;(0) > 0, then one can again expect a good
approximation. In none of the above mentioned cases is
this condition satisfied. Wit = 0.054 this condition is
satisfied and withzo(i) = 0 the relative error wa$.033
for n =16 and 0.034 for n = 64.

We also experimented with usirigas the starting point
for GRG2, which sometimes, but not always, produced
savings compared to GRG2 initialized with the values of

variance estimates, we used 1,000,000 replications and zo described above.

all stratification used 100 strata. Table 2 illustrates
that the procedure can be highly effective even when
the optimization problem is not solved exactly. In this
example, it becomes more important to obtain a good
solution when the strike pric&” increases, in which case
the problem takes on the flavor of a rare event simulation.
Results for the CIR model are reported in Table 3.
The problem is solved in between 50 and 550 function
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Table 5 reports the variance ratio (estimated variance
of standard simulation divided by estimated variance of
IS + stratification, obtained from GHS98), the required
sample sizes (in thousands) far1% relative accuracy
(derived from data reported in GHS98) and the percentage
optimization overhead. The overhead is defined to
be the corresponding number of function evaluations
required by GRG2 as shown in Tables 1-3 divided by
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. .. APPENDIX A
Table 5: Parameters are as in Tables 1, 3 and 4 with

n = 32 for the HW model, and: = 16 for the CIR and

Proof of Theorem 1: We will first give some definitions
CIR-Cap models.

and prove a lemma. For any sétC R™, define||A|| as
sup,c4 ||lz]|. Two vectorsyg andvs in R™ (where ||v||

Model Vari [ . o O
ode aflance || Sample | _om and ||vs| are positive for all sufficiently smali > 0) are
(x1000) said to be “asymptotically close” iffvs — ug||/||ug||g 0

HW, K =50,£ = 1.0 30.6 117 0.34% asé — 0. Let (vs1,...,vs) be a set of vectors iR™

HW, K =50,£ =20 | 135 190 0.21% with ||vs ;| # 0 for all i and all sufficiently smalls > 0.

HW, K =556 =1.0 | 43.0 251 0.16% ’ .

HW, K — 55 ¢ — 2.0 215 166 0.10% Assume that none of them are asymptotically close to each
CIR, 1o — 0044 105 154 9.20% other. A setds C R™ is said to be “asymptotically close”
CIR, ro = 0.064 152 106 | 133 % 0 s 1 iff sup,cq, L 0 asé — 0. The setd; is
CIR, 1o = 0.084 200 0.79 17.8 % . Ve .

CiR-Cap, K = 0.064 39.1 65 0.95% said to be asymptotically close @s.1, ..., vs ) iff

CIR-Cap, K = 0.074 36.8 167 0.08%

CIR-Cap, K = 0.084 48.2 413 0.03% .|l — s

sup (| min ———— | — 0 (9)
veAs \1<isk |||

asé — 0. In arough sense, (9) means that all the elements

. . of As are asymptotically close to at least ong;.
the required sample sizes (expressed as a percentage). We consider three sub-cases for Assumption 1(a):

This is a conservative estimate of the overhead, since the
optimization may not need to be solved to such a high degree Case 1: G(0,6) is ©(1), i.e., G(0,0) > 0.

of accuracy. For the HW and CIR-Cap models, the required N .

sample sizes are in the tens to hundreds of thousands,Case 2: G(0,0) is ©(¢), i.e., G(0,0) = 0 and
the optimization overheads are less tha#, and the |VsG(0,0)] > 0.

variance reductions range from 13.5 to 200. Interpreting, o~ . . .

for example, the first row of Table 5, we see that IS + Case 3. G(0,9) is ©(6%), with ¢ > 1.
stratification would obtain the samiel % relative accuracy Other cases (e.9G(0,6) is ©(5°) with 0 < ¢ < 1)
in about 3,800 £ 117,000/30.6) replications. However, can similarly be handled.

each such sample takes about 17% more CPU time than

standard simulation. Including the cost of the optimization Lemma 1 Suppose Assumption 1 holds. Létr =
(400), IS + stratification achieves comparable accuracy in As N Bgr, whereBp, is a ball of constant radius around
effectively 4, 850(~ 400 + 1.17 x 3,800) replications. 0. Then

For the CIR model, which prices a bond paying Case 1: For all

100 at writy. th defined relative t R > 0, As r is asymptotically close
at maturity, the accuracy was defined relative to 10 VG(0,0)6/G(0,0). Also VG(0,0)8/G(0,0) and

(100 — P). Standard simulation achieves this level of R . ~ ~
accuracy in about 1,000 replications. Thus the relative (VOG;()?Q ?e((;)syfvmvgltf)rt]icglI)/e?:'[l(;\;?elent 10V G(0,6)6/G

cost of the optimization is high, and in fact this type of
elaborate variance reduction technique seems unnecessaryCase 2: Let (y1,72), be given by
However, if one wants to achieve “penny accuracy”, i.e.,

+0.01 absolute accuracy, then the required sample sizes _VC0.0) + +/VCH0.0)2 + 4V (0. 0V 12
increase to between 30,000 and 50,000, the percentage 0G(0,0) \/ é~( ) + 4[VG(0,0)]
optimization overhead decreases and the procedure becomes 2([VG(0,0)(

computationally attractive.
VG(0,0),

respectively. Then for alR > max(||v1 |, [|v21)), 4s.r
is asymptotically close tdvi,v2). Also, y; and
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Case 3: For all R > 1, As r is asymptotically close
to £VG(0,0)/[|VG(0,0)||. Also, £VG(0,6)/|VG
(0, 6)|| are asymptotically close t&e VG(0)/||VG(0)||,
respectively.

Proof of Lemma 1: Consider Case 1. In this case
we only make use of the fact that boifi(z,§) and
VG(zx,6) are continuous af0,0). In that case, for all
e > 0, one can select &, such that for allé < ég
and v € By (i.e., bounded)G(v6,6) — G(0,0)| < € and
VG (v6,6) — VG(0,0)|| < e. Since G(0,0) > 0, this
implies that for alle’ > 0, one can findy, such that for
all 6 <6, andv € Bg,

HVG(V(S, 8) VG(0,0)

<.
Gws.6)  G(0,0)

Then from (8) we get that for € As r

v VG(0,0)

- _ < €.
15~ o <€

Now consider Case 2. Again, due to the continuity
of VG(z,6) we have that for alk > 0, there existssy,
such that| VG (v6,6) — VG(0,0)|| < € for all § < &. By
the mean value theorem and the fact t640,0) = 0, we
have that for allv and 6

G(v6,8)/8 = VsG(0v6,06) + VG(0v6, 06)v

where 6 is some quantity between 0 and 1. Again by
continuity of the derivatives we have thatsG(0v6, 05) —
VsG(0,0)| — 0, uniformly over allv € Bg. Similarly
for |[VG(0v6,06) — VG(0,0)||. Now since v € Bg,
this also holds forl|VG(6v6,08)v — VG(0,0)v|. Hence
|G(v6,8) — (V5G(0,0)+VG(0,0)r)| — 0 uniformly over
ve Brasd— 0.

Note that|VsG/(0,0) + VG(0,0)v| is always positive
for v € As r. (Because if it were zero, then the norm
of the righthand side of (8) will be converging to zero,
uniformly over v € As r, asé — 0, whereas the norm
of the left hand side will be converging uniformly to
[VG(0,0)|| > 0.) In that case one can show that

H VG(v6,6)6
G(v6,6)

B VG(0,0)
VsG(0,0) + VG(0,0).v

=0

uniformly overv € As r, asé — 0. Equivalently,
[h()]| =0 (11)
uniformly overv € A5 r asé — 0, where

VG(0,0)

M) =V = G E0.0) 1 Ve
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Now the solutions ofh(v) = 0 is given by ~; and
v2. For anye > 0, let B.; and B., be two balls
around v; and ., respectively, such thafih(z)| > e
for z € Bp — (Be1 U Be). Let ri(e) be the radius
of B.;. Note that due to the continuity of(z), for
any ¢ > 0, there existse > 0, such B 1, B.2 C Bg,
Be1 N By =0 andmax(r1(€), r2(e)) < € . Using (11),
for any ¢ > 0, there existsdy, such that for allé6 < &g,
the setAsr will be a subset ofB.; U B.2. Hence
maxyeA; , min([lv — |, [[v —2) < €.

The proof of the third case is very similar
Proof of Theorem 1:For Case 1, using the fact that
G(0,6) is ©(1), it can easily be shown thafis and
VG(0,68)6/G(0,6) are asymptotically close. For Case 2
and Case 3 we need only the positive root in Lemma 1,
because for alll € A; g that is close to the negative root,
G(v6,6) < 0 (for all sufficiently smallé). In Case 2, the
positive root in (10) is exactlyis. For Case 3, using the
fact thatG (0, 6) is ©(6¢), ¢ > 1, one can easily show that
fis andVG(0,68)/||[VG(0, 6)|| are asymptotically closex.

APPENDIX B

Proof of Proposition 1: G(0,6) being ©(1) and As-
sumption 1(a)-(b) imply thatG(0,0) > 0.  Using
v = 6z we can transform the unconstrained version
of (5) to max, G(v,8)exp(—v'v/8%). Using Assump-
tion 2, there exists ad > 0 and 6y > 0, such that
for all v and é, such that|v|| > d, and § < &,
G(v,6)e"v/(25%) < G(v,8)e="*/2 < G(0,0)/2. Hence,
due to the continuity of7(z, ) and the fact thaty(0,0)
is positive, we get that for all sufficiently smadl, the
maximum ofG (v, §)e—?"*/(26) cannot occur in the region
o] > d.

So now let us consider the regidn| < d. Let M be
the maximum ofG(v, §) over |jv|]| < d and 6 < &. The
compactness of the feasible region and the conditions on

G(v, 6) ensure thatl/ exists and is positive. Then for all
v such that26,/In(G(0,0)/2M) < |jv|| < d we see that

G(v,8)e """/ 8% < pre=v"v/(26%) < (0,0)/2.

So the corresponding optimal of the unconstrained version

of (5) cannot occur in the region> 24/In(G(0,0)/2M).

d
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