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ABSTRACT

This paper deals with efficient algorithms for simulatin
performance measures of Gaussian random vectors.
cently, we developed a simulation algorithm which consi
of doing importance sampling by shifting the mean
the Gaussian random vector. Further variance reductio
obtained by stratification along a key direction. A cent
ingredient of this method is to compute the optimal sh
of the mean for the importance sampling. The optim
shift is also a convenient, and in many cases, an effec
direction for the stratification. In this paper, after giving
brief overview of the basic simulation algorithms, we foc
on issues regarding the computation of the optimal cha
of measure. A primary application of this methodolog
occurs in computational finance for pricing path depend
options.

1 INTRODUCTION

We consider Monte Carlo methods driven by Gauss
random variables, a primary application of which is pricin
path dependent options. In this finance application,
Gaussian random variables represent the increment
Brownian motion. Only very simple options, e.g.,
European call, can be priced analytically in closed for
For the more complicated ones, either numerical method
Monte Carlo techniques are used. Monte Carlo methods
usually used for higher dimensional problems, or proble
with stochastic parameters (like interest rates, volatilit
etc.), for which finite difference methods are very tim
consuming. A recent review of Monte Carlo metho
for security pricing may be found in Boyle, Broadie an
Glasserman (1997).

Recently, in Glasserman, Heidelberger, Shahabud
(1998) (we will denote this by GHS98), we present
an efficient Monte Carlo algorithm for estimatingα =
E[G(Z)1D(Z)] where Z is a vector ofm independent
standard normal random variables,G is some nonnegative
685
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function and1D(Z) is the indicator thatZ ∈ D for some
set D. If we let N(a, A) denote a multivariate random
vector with mean (drift) vectora and covariance matrix
A, then Z ∼ N(0, Im) where Im is the m × m identity
matrix. (Since anym dimensional multivariate normal
distribution can easily be generated fromN(0, Im), no loss
of generality is suffered in this formulation.) The method
consists first of doing an importance sampling change
measure, which is chosen to be the best (in an appropri
asymptotic setting) from among all independent multivaria
distributions, i.e., distributions of the formN(a, Im). Let
µ denote the optimal drift vector. As will be discussed in
Section 2,µ is found by solving a nonlinear optimization
problem. The related problem of finding the optimal drif
for estimating the probability,E[1D(Z)] (G(Z) ≡ 1 in
our formulation), whereD is a rare set, was addressed in
Chen, Lu, Sadowsky, and Yao (1993). Further varianc
reduction is obtained by stratifying along some directio
a, i.e., by stratifying upon a linear combinationa′Z. The
selection of a good stratification direction was analyzed
GHS98, but a particularly convenient and often effectiv
direction is to simply leta = µ, the optimal drift vector.
See, e.g., Hammersley and Handscomb (1964) for gene
discussions of both importance sampling and stratificatio

A central ingredient in this method is thus to comput
the optimal change of measure for the importance samplin
In GHS98, a bisection procedure was used for the speci
case of the Asian option (see Section 2) and non-line
optimization techniques were used for the other mo
general cases. In this paper, we use the special struct
of certain instances of this problem to derive a closed for
approximation for the optimal change of measure. We al
prove that this approximation is close to the true optimu
in an appropriate asymptotic setting. This approximatio
can be interpreted as the first iteration of a refined fixe
point iterative method developed in GHS98. In particula
the approximation is obtained by assuming thatG is linear
and explicitly solving the optimization. We then examine
the computational overhead incurred in the optimizatio
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part of the overall importance sampling and stratificatio
procedure, where the optimization is done by using th
refined fixed point iterative method mentioned above, th
bisection method (for the case of Asian options), and
non-linear optimization package.

2 BACKGROUND AND MAIN ALGORITHMS

To motivate this problem, consider the case of using Mon
Carlo to price an arithmetic Asian option on a single asse
under standard Black-Scholes assumptions. The pr
of the underlying asset under the equivalent martinga
measure is described by the stochastic differential equati
dSt = Strdt+σStdWt, wherer is the interest rate andσ
is the volatility, both of which are assumed to be constant
and Wt is the standard Brownian motion. LetT be time
horizon, and let there ben equally spaced time intervals
between[0, T ] each of length∆ = T/n. The solution of
the above equation can be simulated without discretizati
error on a discrete grid of points(∆, 2∆, . . . , n∆) by
setting Si, the stock price at theith grid point, as
Si = S0 exp((r − σ2/2)∆i + σ

√
∆
∑i

j=1 Zj), whereZj ’s
are independent standard normals, i.e.,N(0, 1)’s. Let
Z = (Z1, Z2, . . . Zn). The discounted payoff for the
arithmetic Asian option is given byG(Z)1D(Z) where
G(Z) = e−rT (

∑n
i=1 Si/n − K) and D is the region

{G(Z) ≥ 0}. The objective is then to estimate the
expected discounted payoffα = E[G(Z)1D(Z)], which
falls into our general framework (m = n in this case).

We now outline the method presented in GHS98. Le
g(z) be the m dimensional multivariate normal density
with mean0 and covariance matrixIm As is well known
from the theory of importance sampling, a zero-varianc
estimate is obtained by choosing the importance sampli
density to be

h(z) = G(z)g(z)1D(z)/α. (1)

However, it is not possible to use this change of measu
because the desired quantityα must be known from the
outset and, even if it were known, it may be difficult to
sample fromh. Nevertheless, this observation provides
useful insight: an effective importance sampling densit
should weight points according to the product of the
probability and their payoff.

In GHS98, for tractability, the onlyh(z) that is
considered isha(z), which is defined to be the original
multivariate normal measureg(z) (that had mean zero)
shifted so that the mean vector is nowa. One way of
achieving a good approximation to (1) is to align the
mode of the integrand (assuming it exists and is uniqu
G(z)g(z)1D(z) with the mode of the shifted measure, i.e.
choosea to be a vectorµ that solves

max
z∈D

G(z) e−z′z/2. (2)
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Assuming G(z) is appropriately smooth, this tends to
assign high probability to regions ofD where G(z)g(z)
is large. It was shown in GHS98 that such a chang
of measure is “asymptotically optimal” in an appropriate
setting.

The problem then is to compute the optimal drift
vector µ. Three main methods were mentioned/used i
GHS98 to compute the optimal drift. Assuming that
G(z) is positive in the interior of the setD, one can
use F (z) = lnG(z). Hence the problem becomes to
find the maximum of F (z) − z′z/2 over the setD.
Assuming that the maximum occurs in the interior of
the set D, the optimal drift µ satisfies the fixed point
equation∇F (µ) = µ. The first method is to use the usual
fixed point iterative methodµi+1 = F (µi). However, this
method did not always converge and was thus discarde
A more refined fixed point iterative method which appear
to converge more generally (and faster) was also develop
as follows. First rewrite the condition∇F (µ) = µ as
∇G(µ)/G(µ) = µ. After i iterations one can approximate
G(µ) by G(µi)+∇G(µi)(µ−µi) and∇G(µ) by ∇G(µi)
and thus setµi+1 to be the solution of

µi+1 =
∇G(µi)

G(µi) + ∇G(µi)(µi+1 − µi)
.

This set of equations has two roots, the relevant one bein
given by

µi+1 =
−B(µi) +

√
B(µi)2 + 4‖∇G(µi)‖2

2‖∇G(µi)‖2 ∇G(µi)

(3)
whereB(µi) = G(µi)−∇G(µi)µi. The third method was
to use general purpose optimization code. An iterativ
method involving bisection, that was more specific to
the Asian option with non-random volatility, was also
developed in GHS98.

Given a drift vectorµ, the likelihood ratiog(z)/hµ(z) =
exp(−µ′z+ 1

2µ′µ). Thus applying importance sampling and
using the fact thatZ + µ (whereZ ∼ N(0, Im)) has density
hµ we obtain

α = E[G(Z + µ)1D(Z + µ)e−µ′Z− µ′µ
2 ]. (4)

Equation (4) suggests the importance sampling estimat
that we use. The form of this estimator motivates the us
of stratifying uponµ′Z, which is equivalent to stratifying
upon the likelihood ratio.

3 APPROXIMATIONS FOR THE OPTIMAL
CHANGE OF MEASURE

We will now approximate solutions to the unconstrained
version of (2), i.e., where the constraintz ∈ D is removed.
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Under an appropriate asymptotic setting described belo
we show that these approximations are close to the exa
optimal. We end with a discussion of what happens whe
we re-introduce the constraintz ∈ D.

To motivate this asymptotics, consider the problem
of pricing Asian options as mentioned in Section 2. Th
approximation we propose makes use of the fact th
certain parameters in the equation forG(Z) are small,
especially the prefactorσ in front of the Zi’s. A typical
value of σ is 0.2. Hence, we letσ = δ where δ is a
small parameter. Also, a typical value ofr is 0.05 and
so, in this case,r = Θ(δ2) (a function f(δ) is said to
be Θ(δc) iff there exist positive constantsK1 and K2
such thatK1δ

c ≤ f(δ) ≤ K2δ
c for all δ small enough).

WhenG(0) > 0, S0 is usually relatively close to the strike
price K. For exampleS0 = 50 and K = 55. Hence
K = S0(1 + O(δ)).

In general we now considerG(z) of the formG̃(δz, δ)
and study the behavior of the solution of the unconstraine
version of

max
z∈D

G̃(δz, δ) e−z′z/2 (5)

as δ → 0. To capture the basic flavor of the discussion
below, consider the simplified versionG(z) = G̃(δz) of
the asymptotics above. Using the substitutionv = δz, we
can transform the corresponding simplified version of (5
to

max
v∈δD

G̃(v) e−v′v/(2δ2). (6)

If we assume modest limitations on the growth rate o
G̃(v) with increasing‖v‖, then for all sufficiently small
δ, only the region in a small neighborhood of0 matters in
computing the maximum. This is illustrated in Figure 1
In this small neighborhood,̃G(v) may be approximated by
G̃(0) + ∇G̃(0)v, and so the solution of the unconstrained
version of (6) tends to be close to that of

max
v

(G̃(0) + ∇G̃(0)v) e−v′v/(2δ2).

The solution of the latter is easily obtained in closed form
as 

−G̃(0) +
√

G̃(0)2 + 4δ2‖∇G̃(0)‖2

2‖∇G̃(0)‖2


∇G̃(0).

In order to state and prove this idea rigorously fo
the more difficult case ofG(z) = G̃(δz, δ), we need the
following assumptions:

Assumption 1 (a) G̃(x, δ), ∇G̃(x, δ) and ∇δG̃(x, δ)
are continuous at(0, 0). (∇G̃(x, δ) is the vector of
derivatives with respect to the arguments given byx;
∇δ is the derivative with respect to the last argument.
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Figure 1: Illustrating the linear approximation toG in
a neighborhood of 0. Asδ → 0, the normal density
becomes more peaked around 0, and thus optimizing t
density times the linear approximation is almost the sam
as optimizing the density timesG.

(b) G̃(0, δ) > 0 (equivalent toG(0) > 0) and Θ(δc) for
somec ≥ 0.

(c) ‖∇G̃(0, δ)‖ is Θ(1) (i.e., at least one of the elements
of ∇G̃(0, 0) is non-zero).

(d) The solution to the unconstrained version of (5) i
unique for eachδ. Call it µ ≡ µδ.

(e) ‖µδ‖ is O(1).

Assumption 1(d) is not necessary, but we have it he
in order to simplify the presentation. Sample condition
under which Assumption 1(e) is true are provided i
Proposition 1 below.

Theorem 1 Suppose Assumption 1 holds. Let

µ̃ ≡ µ̃δ =

(
−G(0) +

√
G2(0) + 4‖∇G(0)‖2

2‖∇G(0)‖2

)
∇G(0).

(7)
Then ‖µ̃δ − µδ‖

‖µδ‖ → 0

as δ → 0.

Remark 1: The µ̃ may also be expressed in terms
of G̃(·, ·) by using the fact thatG(0) = G̃(0, δ) and
∇G(0) = δ∇G̃(0, δ). But the representation given by (7)
is more practical.
Remark 2: The µ̃ is also the first iteration of the refined
fixed point iteration method given by (3), with the starting
point µ0 being 0.

The proof of Theorem 1 is deferred to Appendix A
The approach we adapt in the proof is as follows. Und
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the transformationG(z) = G̃(δz, δ), the µ ≡ µδ should
satisfy the fixed point equation

∇G̃(δν, δ) = νG̃(δν, δ)/δ. (8)

Let Aδ be the set of solutions to this fixed point equatio
for a givenδ. We “approximate”all ν ∈ Aδ that lie in a
ball of a sufficiently large but constant (i.e., independe
of δ) radius around 0, and then choose the relevant on

Now we formally specify one of the circumstance
under which‖µδ‖ is O(1).

Assumption 2 [G̃(x, δ)]+e−‖x‖2/2 → 0, uniformly in
δ, for all δ small enough, as‖x‖ → ∞.

Assumption 2 is true in most problems wher
E[G(Z)] = E[G̃(δZ, δ)] is finite.

Proposition 1 Suppose Assumption 1(a) - 1(d) an
Assumption 2 hold. Consider the case whereG̃(0, δ)
is Θ(1). Then‖µδ‖ is O(1).

The proof of this proposition is given in Appendix
B. Similar results may also be shown for other cases, b
they are much more tedious.

Now let us see what happens when we re-introdu
the constraintz ∈ D in the maximization problem. Note
that D may also depend onδ (e.g., if D is of the form
{z : G(z) ≥ 0}), so we denoteD by Dδ. Obviously,
the above approximations would go through if the s
Dδ included a ball of sufficiently large (constant) radiu
around 0, for all (sufficiently small)δ > 0. In practice,
we found this is procedure to be quite accurate even wh
only a weaker condition is satisfied:0 lies in the interior
of the setDδ for all (sufficiently small) δ > 0. If we
found out before hand thatinfz∈Dδ

‖z‖ → ∞ as δ → 0,
then due to Assumption 1(e),µδ will not lie in the feasible
region (for all sufficiently smallδ). In fact, in many cases
where0 6∈ Dδ, it turns out that this is the case. Then th
approximation cannot be expected to be close, althou
one still use the iterative procedure of (3) starting at 0.

Let us take a closer look at (6) corresponding
the simpler asymptoticsG(z) = G̃(δz), when 0 ∈ δDδ

is not satisfied. For simplicity, assume thatδDδ = D̄,
i.e., it is independent ofδ. Then one can expect tha
the optimal solution to (6) (that can be expressed
δµ where µ now denotes the optimal solution to the
version of (5) with the simpler asymptotics ) will occu
close to vmin ≡ minv∈D̄ ‖v‖ (see Figure 2) andG̃(v)
is approximately linear in the small region aroundvmin.
Hence if one were to start the iteration procedure giv
by (3) at vmin/δ then one may again expect asymptot
convergence after one iteration. The problem is that
most cases determiningvmin is as difficult as determining
the solution to (6) itself.
688
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Figure 2: Illustrating the situation when0 6∈ D and µ is
in the interior ofD.

4 COMPUTATIONAL ISSUES AND NUMERICAL
RESULTS

In this section we

1. test the accuracy of the approximation scheme de
scribed in the previous section and

2. investigate, numerically, the overhead involved in
solving the optimization problem to compute the
optimal drift vectorµ.

Regarding the second point, a reasonable measure of th
overhead is to compare the number of function evaluation
M , required to achieve optimality (to a given level of
precision) to the number of replications,N , that a standard
simulation would require to achieve a desired level of
accuracy. As each such function evaluation or replicatio
both require evaluatingG, their computational costs are
comparable. IfM/N is small, then IS+stratification is
cost-effective for even a modest reduction in variance (o
more precisely, for a modest reduction in the variance
times the work per sample, see GHS98). On the othe
hand, ifM/N is large, then the method must produce large
variance reductions to be cost-effective. For the purpose o
this paper, our definition of the required sample size wil
be the number of samples required for a 95% confidenc
interval to have a relative half width of±1%, i.e., if the
estimated per sample standard deviation using standa
simulation isS and the estimated price of the option iŝP
we require1.96S/

√
N = 0.01P̂ , or N = (1.96S/0.01P̂ )2.

We consider four models, which are described in full
detail in GHS98: the arithmetic Asian option with constant
volatility (denoted Asian), the arithmetic Asian option with
the Hull-White stochastic volatility model (denoted HW),
the Cox, Ingersoll, Ross interest rate model for pricing a
bond (denoted CIR), and the Cox, Ingersoll, Ross interes
rate cap model (denoted CIR-Cap). In the interest of spac
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we do not describe these models or their parameters h
but refer the reader to GHS98. Forn time steps, the
Asian model hasm = n and the HW, CIR, and CIR-Cap
models havem = 2n.

For the Asian option, it was shown in GHS9
that the optimal µ could be found by reducing the
set of n optimality equations to a single nonlinea
equation that can be solved by bisection. A hi
degree of accuracy was typically found in only about
dozen function evaluations, which is negligible compar
to the cost of the simulation. For example, in th
notation of Section 2, consider the parameter setti
n = 16, σ = 0.3, K = 50, S0 = 50, r = 0.05 and T = 1.
With these parameters the required sample size us
standard simulation is about 88,000 replications. IS a
stratification reduces the variance by about a factor
1,300. However, each such sample requires about 1
more CPU time than standard simulation (due to t
increased cost of sampling from the stratified distributio
Thus the method improves the the efficiency (work tim
variance) by about a factor of 1,180 (≈ 1, 300/1.1).

We will also use this example to illustrate the accura
of the approximatioñµ described in the previous section
Define the Relative Error (RE) to be‖µ̃ − µ‖/ ‖µ‖. For
the same parameter setting as in the above example
RE is 0.0596. Note that the payoff at zero is positi
in this case, as required for the approximation. It a
worthwhile to see how the RE behaves as a function
the volatility (σ), as in this case,δ may be interpreted
directly asσ. As σ decreases from 0.3 to 0.03, the R
decreases to 0.00754.

For the other three models, nearly closed-form optim
solutions (like the bisection algorithm mentioned above)
the optimization problem are not available. We therefo
compared two general purpose approaches that do
take advantage of any problem specific structure. The
approach is to apply a nonlinear optimization package. T
specific package we chose was GRG2, which was develo
by Leon Lasdon of the University of Texas and is market
by Optimal Methods, Inc. The second approach is to ap
(3) with a suitable starting point. Both these approach
require derivative information, which were estimated usi
finite differences. The conditions under which the
methods converge to a global optimum are different, a
difficult to verify in practice. However, we did not find
convergence to be a problem, provided a “reasonab
initial point z0 was selected (see discussion below).
addition, a direct comparison of function evaluation cou
is somewhat misleading since the termination criteria
different. In the case of GRG2, the termination criter
are complex as they include checking that the object
function does not change by more than a factor ofε
for a certain number of iterations (line searches).
689
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Table 1: Number of function evaluations to achiev
convergence to optimality in the Hull-White stochast
volatility model. All results useS0 = 50, V0 = 0.09,
ν = 0, r = 0.05 and T = 1.0.

K ξ n GRG2 Fixed
Point

50 0.5 32 402 260
50 1.0 32 402 325
50 2.0 32 403 390
55 0.5 32 469 260
55 1.0 32 403 325
55 2.0 32 471 455
50 0.5 64 912 516
50 1.0 64 784 645
50 2.0 64 1044 774
55 0.5 64 915 516
55 1.0 64 915 645
55 2.0 64 1043 903

addition, GRG2 also computes the gradient at the fi
point. We set a similar termination criterion for the fixe
point iteration; the iteration terminated when the objecti
function changed by less than a factor ofε. Throughout,
we usedε = 10−4.

For the HW model the (undiscounted) payoff functio
takes the formG(z) = (A(z)−K)+ whereK is the strike
price andA(z) is the arithmetic average of the underlyin
stock prices. Note that ifµ optimizes g(z)G(z), it
also optimizesH(z) = g(z)(A(z) − K), which has the
advantage of not losing information about the shape
A(z) when A(z) ≤ K. Thus for the HW model, we
optimized H(z). Recall thatz = 0 corresponds to not
doing IS, which as described earlier is a natural start
point. However, it turns out that ifz = 0, then the partial
derivatives of H(z) are all 0 for z(n + 1), . . . , z(2n).
Therefore, we setz0(i) = 0.01 for all i and all parameter
settings.

Table 1 shows the total function evaluation coun
(including those used for the finite difference approx
mations to the derivatives) for the two methods. In a
cases, the optimization problem is solved in between 2
and 1,100 function evaluations. As expected, the cos
solve the optimization increases asn increases. Recall
that for n = 32 this is a 64 dimensional problem while
for n = 64 this is a 128 dimensional problem. Thus mo
of the function evaluations could be eliminated if parti
derivatives were computed analytically (although it is b
no means easy to compute them). While the fixed po
iteration appears to converge more quickly, part of t
difference is due to the different termination criteria.

As it may not be necessary to actually solve t
optimization to such a high degree of accuracy in ord
to obtain good variance reduction, we next investiga
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Table 2: IS + Stratification performance for the Hull
White stochastic volatility model. All results usen = 32,
S0 = 50, V0 = 0.09, ν = 0, ξ = 1.0, r = 0.05 and
T = 1.0.

K IS Function Relative Variance
Vector Calls Error Ratio

50 µ̃ 65 0.188 28.8
50 µ̂1 135 0.144 31.8
50 µ̂2 202 0.023 32.3
50 µ 402 0.0 30.6
55 µ̃ 65 0.206 27.9
55 µ̂1 135 0.162 34.9
55 µ̂2 203 0.015 43.5
55 µ 403 0.0 43.0

Table 3: Number of function evaluations to achiev
convergence to optimality in the Cox, Ingersoll, Ros
interest rate model. All results used = 2, κ = 0.05,
σ = 0.08 and T = 1.0. The starting point isz0(i) = 0.0
for all i.

r0 n GRG2 Fixed Relative
Point Error

0.044 16 142 66 0.006
0.064 16 141 66 0.005
0.084 16 141 66 0.004
0.044 64 526 258 0.013
0.064 64 526 258 0.010
0.084 64 526 258 0.009

how effective the IS+stratification procedure is for “nearl
optimal” changes of measure. To study this, letµ̂j denote
the solution when GRG2 is prematurely terminated aft
j line searches, and letµ denote the GRG2 solution when
solved to optimality, i.e., within the accuracy criteria a
described above. For the parameters listed in Table 2,µ
is obtained in 4 line searches. Table 2 lists the number
function calls required to compute an IS vector,µ′, where
µ′ = µ̃, µ̂1, µ̂2, or µ(= µ̂4). This represents the cost to
solve the problem to partial optimality. In addition, it lists
the relative error,‖µ′ − µ‖/‖µ‖ as well as the variance
ratio (estimated variance of standard simulation to th
of the IS+stratification procedure). To obtain accura
variance estimates, we used 1,000,000 replications a
all stratification used 100 strata. Table 2 illustrate
that the procedure can be highly effective even whe
the optimization problem is not solved exactly. In thi
example, it becomes more important to obtain a goo
solution when the strike priceK increases, in which case
the problem takes on the flavor of a rare event simulatio

Results for the CIR model are reported in Table 3
The problem is solved in between 50 and 550 functio
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Table 4: Number of function evaluations to achieve
convergence to optimality in the Cox, Ingersoll, Ross
interest rate cap model. All results used = 2, κ = 0.05,
σ = 0.08, r0 = 0.064 and T = 1.0.

K n GRG2 Fixed Relative
Point Error

0.064 16 209 66 0.004
0.074 16 314 132 0.168
0.084 16 526 132 0.407
0.064 64 1173 387 0.057
0.074 64 1436 387 0.025
0.084 64 1566 516 0.026

evaluations. Again, fixed point iteration appears to converg
more rapidly, however GRG2 again produces near-optim
results earlier. The relative error column lists‖µ̃ − µ‖/
‖µ‖. In this problem, µ̃ is extremely close toµ, as
all cases of this problem satisfy the conditions for the
approximations to be asymptotically close, especially th
condition G(0) > 0.

For the CIR-Cap model, starting in a neighborhood
of z0 = 0 produces a payoff of 0 for many of the
parameter settings (leading to a gradient estimate of 0
We therefore chosez0(i) = 0.2 for all i, which produces
a positive payoff for all parameter settings. As reported i
Table 4, this problem is solved in between 50 and 1,60
function evaluations, with fixed point iteration converging
more rapidly. As for theµ̃ (this is not exactlyµ̃, as
by definition, µ̃ is always computed withz0(i) = 0),
in some cases they seem to be very close, whereas
other cases there is a wide difference. Note that i
this case the payoff is of the form

∑l
i=1 Gi(Z)1Di(Z),

and thus strictly speaking it does not fit the framework
described earlier. However, one can easily show that
for eachi, Gi(0) > 0, then one can again expect a good
approximation. In none of the above mentioned cases
this condition satisfied. WithK = 0.054 this condition is
satisfied and withz0(i) = 0 the relative error was0.033
for n = 16 and 0.034 for n = 64.

We also experimented with using̃µ as the starting point
for GRG2, which sometimes, but not always, produce
savings compared to GRG2 initialized with the values o
z0 described above.

Table 5 reports the variance ratio (estimated varianc
of standard simulation divided by estimated variance o
IS + stratification, obtained from GHS98), the required
sample sizes (in thousands) for±1% relative accuracy
(derived from data reported in GHS98) and the percentag
optimization overhead. The overhead is defined t
be the corresponding number of function evaluation
required by GRG2 as shown in Tables 1-3 divided b
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Table 5: Parameters are as in Tables 1, 3 and 4 w
n = 32 for the HW model, andn = 16 for the CIR and
CIR-Cap models.

Model Variance Sample Opt.
Ratio Size Overhead

(×1000)
HW, K = 50, ξ = 1.0 30.6 117 0.34%
HW, K = 50, ξ = 2.0 13.5 190 0.21%
HW, K = 55, ξ = 1.0 43.0 251 0.16%
HW, K = 55, ξ = 2.0 21.5 466 0.10%

CIR, r0 = 0.044 105 1.54 9.2%
CIR, r0 = 0.064 152 1.06 13.3 %
CIR, r0 = 0.084 200 0.79 17.8 %

CIR-Cap, K = 0.064 39.1 65 0.22%
CIR-Cap, K = 0.074 36.8 167 0.08%
CIR-Cap, K = 0.084 48.2 413 0.03%

the required sample sizes (expressed as a percenta
This is a conservative estimate of the overhead, since
optimization may not need to be solved to such a high degr
of accuracy. For the HW and CIR-Cap models, the requir
sample sizes are in the tens to hundreds of thousan
the optimization overheads are less than1%, and the
variance reductions range from 13.5 to 200. Interpretin
for example, the first row of Table 5, we see that IS
stratification would obtain the same±1% relative accuracy
in about 3,800 (≈ 117, 000/30.6) replications. However,
each such sample takes about 17% more CPU time th
standard simulation. Including the cost of the optimizatio
(400), IS + stratification achieves comparable accuracy
effectively 4, 850(≈ 400 + 1.17 × 3, 800) replications.

For the CIR model, which prices a bond paying
100 at maturity, the accuracy was defined relative
(100 − P̂ ). Standard simulation achieves this level o
accuracy in about 1,000 replications. Thus the relativ
cost of the optimization is high, and in fact this type o
elaborate variance reduction technique seems unnecess
However, if one wants to achieve “penny accuracy”, i.e
±0.01 absolute accuracy, then the required sample siz
increase to between 30,000 and 50,000, the percent
optimization overhead decreases and the procedure beco
computationally attractive.
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APPENDIX A

Proof of Theorem 1: We will first give some definitions
and prove a lemma. For any setA ⊂ Rm, define‖A‖ as
supz∈A ‖z‖. Two vectorsν′

δ and νδ in Rm (where‖ν′
δ‖

and ‖νδ‖ are positive for all sufficiently smallδ > 0) are
said to be “asymptotically close” iff‖ν̃δ − ν′

δ‖/‖ν′
δ‖ → 0

as δ → 0. Let (νδ,1, . . . , νδ,k) be a set of vectors inRm

with ‖νδ,i‖ 6= 0 for all i and all sufficiently smallδ > 0.
Assume that none of them are asymptotically close to ea
other. A setAδ ⊂ Rm is said to be “asymptotically close”
to νδ,1 iff supν∈Aδ

‖ν−νδ,1‖
‖νδ,1‖ → 0 as δ → 0. The setAδ is

said to be asymptotically close to(νδ,1, . . . , νδ,k) iff

sup
ν∈Aδ

(
min

1≤i≤k

‖ν − νδ,i‖
‖νδ,i‖

)
→ 0 (9)

asδ → 0. In a rough sense, (9) means that all the elemen
of Aδ are asymptotically close to at least oneνδ,i.

We consider three sub-cases for Assumption 1(a):

Case 1: G̃(0, δ) is Θ(1), i.e., G̃(0, 0) > 0.

Case 2: G̃(0, δ) is Θ(δ), i.e., G̃(0, 0) = 0 and
|∇δG̃(0, 0)| > 0.

Case 3: G̃(0, δ) is Θ(δc), with c > 1.

Other cases (e.g.,̃G(0, δ) is Θ(δc) with 0 < c < 1)
can similarly be handled.

Lemma 1 Suppose Assumption 1 holds. LetAδ,R =
Aδ ∩ BR, whereBR is a ball of constant radiusr around
0. Then

Case 1: For all R > 0, Aδ,R is asymptotically close
to ∇G̃(0, 0)δ/G̃(0, 0). Also ∇G̃(0, 0)δ/G̃(0, 0) and
∇G(0)/G(0) (which is equivalent to∇G̃(0, δ)δ/G̃
(0, δ)) are asymptotically close.

Case 2: Let (γ1, γ2), be given by


−∇δG̃(0, 0) ±

√
∇δG̃(0, 0)2 + 4‖∇G̃(0, 0)‖2

2‖∇G̃(0, 0)‖2




∇G̃(0, 0),

respectively. Then for allR > max(‖γ1‖, ‖γ2‖), Aδ,R

is asymptotically close to(γ1, γ2). Also, γ1 and γ2
are asymptotically close to(

−G(0) ±√G2(0) + 4‖∇G(0)‖2

2‖∇G(0)‖2

)
∇G(0), (10)

respectively.
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Case 3: For all R > 1, Aδ,R is asymptotically close
to ±∇G̃(0, 0)/‖∇G̃(0, 0)‖. Also, ±∇G̃(0, δ)/‖∇G̃
(0, δ)‖ are asymptotically close to±∇G(0)/‖∇G(0)‖,
respectively.

Proof of Lemma 1: Consider Case 1. In this case
we only make use of the fact that both̃G(x, δ) and
∇G̃(x, δ) are continuous at(0, 0). In that case, for all
ε > 0, one can select aδ0 such that for all δ ≤ δ0
and ν ∈ BR (i.e., bounded)|G̃(νδ, δ) − G̃(0, 0)| < ε and
‖∇G̃(νδ, δ) − ∇G̃(0, 0)‖ < ε. Since G̃(0, 0) > 0, this
implies that for allε′ > 0, one can findδ′

0 such that for
all δ ≤ δ′

0 and ν ∈ BR,

‖∇G̃(νδ, δ)
G̃(νδ, δ)

− ∇G̃(0, 0)
G̃(0, 0)

‖ ≤ ε′.

Then from (8) we get that forν ∈ Aδ,R

‖ν

δ
− ∇G̃(0, 0)

G̃(0, 0)
‖ ≤ ε′.

Now consider Case 2. Again, due to the continuit
of ∇G̃(x, δ) we have that for allε > 0, there existsδ0,
such that‖∇G̃(νδ, δ) − ∇G̃(0, 0)‖ < ε for all δ ≤ δ0. By
the mean value theorem and the fact thatG̃(0, 0) = 0, we
have that for allν and δ

G̃(νδ, δ)/δ = ∇δG̃(θνδ, θδ) + ∇G̃(θνδ, θδ)ν

where θ is some quantity between 0 and 1. Again b
continuity of the derivatives we have that|∇δG̃(θνδ, θδ)−
∇δG̃(0, 0)| → 0, uniformly over all ν ∈ BR. Similarly
for ‖∇G̃(θνδ, θδ) − ∇G̃(0, 0)‖. Now since ν ∈ BR,
this also holds for‖∇G̃(θνδ, θδ)ν − ∇G̃(0, 0)ν‖. Hence
|G̃(νδ, δ)− (∇δG̃(0, 0)+∇G̃(0, 0)ν)| → 0 uniformly over
ν ∈ BR as δ → 0.

Note that|∇δG̃(0, 0) + ∇G̃(0, 0)ν| is always positive
for ν ∈ Aδ,R. (Because if it were zero, then the norm
of the righthand side of (8) will be converging to zero
uniformly over ν ∈ Aδ,R, as δ → 0, whereas the norm
of the left hand side will be converging uniformly to
‖∇G̃(0, 0)‖ > 0.) In that case one can show that

‖∇G̃(νδ, δ)δ
G̃(νδ, δ)

− ∇G̃(0, 0)
∇δG̃(0, 0) + ∇G̃(0, 0).ν

‖ → 0

uniformly over ν ∈ Aδ,R, as δ → 0. Equivalently,

‖h(ν)‖ → 0 (11)

uniformly over ν ∈ Aδ,R as δ → 0, where

h(ν) ≡ ν − ∇G̃(0, 0)
∇δG̃(0, 0) + ∇G̃(0, 0).ν

.
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Now the solutions ofh(ν) = 0 is given by γ1 and
γ2. For any ε > 0, let Bε,1 and Bε,2 be two balls
around γ1 and γ2, respectively, such that‖h(z)‖ ≥ ε
for z ∈ BR − (Bε,1 ∪ Bε,2). Let ri(ε) be the radius
of Bε,i. Note that due to the continuity ofh(z), for
any ε′ > 0, there existsε > 0, such Bε,1, Bε,2 ⊂ BR,
Bε,1 ∩ Bε,2 = ∅ and max(r1(ε), r2(ε)) ≤ ε′ . Using (11),
for any ε > 0, there existsδ0, such that for allδ ≤ δ0,
the set Aδ,R will be a subset ofBε,1 ∪ Bε,2. Hence
maxν∈Aδ,R

min(‖ν − γ1‖, ‖ν − γ2‖) ≤ ε′.
The proof of the third case is very similar.2

Proof of Theorem 1: For Case 1, using the fact that
G̃(0, δ) is Θ(1), it can easily be shown that̃µδ and
∇G̃(0, δ)δ/G̃(0, δ) are asymptotically close. For Case 2
and Case 3 we need only the positive root in Lemma 1
because for allν ∈ Aδ,R that is close to the negative root,
G̃(νδ, δ) < 0 (for all sufficiently smallδ). In Case 2, the
positive root in (10) is exactlỹµδ. For Case 3, using the
fact thatG̃(0, δ) is Θ(δc), c > 1, one can easily show that
µ̃δ and∇G̃(0, δ)/‖∇G̃(0, δ)‖ are asymptotically close.2.

APPENDIX B

Proof of Proposition 1: G̃(0, δ) being Θ(1) and As-
sumption 1(a)-(b) imply thatG̃(0, 0) > 0. Using
v = δz we can transform the unconstrained version
of (5) to maxv G̃(v, δ) exp(−v′v/δ2). Using Assump-
tion 2, there exists ad > 0 and δ0 > 0, such that
for all v and δ, such that ‖v‖ > d, and δ ≤ δ0,
G̃(v, δ)e−v′v/(2δ2) ≤ G̃(v, δ)e−v′v/2 ≤ G̃(0, 0)/2. Hence,
due to the continuity ofG̃(x, δ) and the fact that̃G(0, 0)
is positive, we get that for all sufficiently smallδ, the
maximum ofG̃(v, δ)e−v′v/(2δ2) cannot occur in the region
‖v‖ ≥ d.

So now let us consider the region‖v‖ ≤ d. Let M be
the maximum ofG̃(v, δ) over ‖v‖ ≤ d and δ ≤ δ0. The
compactness of the feasible region and the conditions o
G̃(v, δ) ensure thatM exists and is positive. Then for all

v such that2δ
√

ln(G̃(0, 0)/2M) ≤ ‖v‖ ≤ d we see that

G̃(v, δ)e−v′v/(2δ2) ≤ Me−v′v/(2δ2) ≤ G̃(0, 0)/2.

So the corresponding optimal of the unconstrained versio

of (5) cannot occur in the regionz ≥ 2
√

ln(G̃(0, 0)/2M).
2
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