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ABSTRACT

Bayesian forecasting models provide distributional est
mates for random parameters, and relative to classic
schemes, have the advantage that they can rapidly capt
changes in nonstationary systems using limited historic
data. Stochastic programs, unlike deterministic optimiza
tion models, explicitly incorporate distributions for random
parameters in the model formulation, and thus have th
advantage that the resulting solutions more fully hedg
against future contingencies. In this paper, we exploit th
strengths of Bayesian prediction and stochastic program
ming in a rolling-horizon approach that can be applied to
solve real-world problems. We illustrate the methodolog
on an employee scheduling problem with uncertain up
times of manufacturing equipment and uncertain productio
rates.

1 INTRODUCTION

Many of the real-world problems the operations researc
community addresses require decision making with respe
to a system that stochastically evolves over time. Havin
the right information at the right time increases our ability
to make good decisions. However, obtaining the right da
is just one of the problems that needs to be solved. F
a givendecision making process(DMP) we are interested
in a number of additional issues:

• When is it optimal to gather information?

• Once we have it, how should the information be analyze
for the DMP (this could involve any type of data analysis
or even visual inspection)?

• How should the analyzed information be used within
the DMP?
661
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• And, what information should we create? (The res
of a DMP is typically a decision that should be acted
and this can be regarded as a piece of information.)

This paper attempts to address, at some level,
last three of these questions in the context of a stocha
manpower scheduling problem. Our main goal is
create a methodology that allows information, gathe
dynamically over time, to be incorporated in the DMP
that better informed decisions can be made.

We address processes that are nonstationary, i.e.
stochastic evolution of the system changes over time.
each decision point in time, our methodology incorpora
the observed history of the process via Bayesian meth
and as a result it dynamically “adapts” the associa
probability models. Given these adapted models a n
decision is made. We repeat this procedure over
over again in a rolling-horizon manner. The propos
methodology combines techniques from Bayesian statis
stochastic programming and simulation.

The class of problems that we intend to attack h
a high-dimensional decision space and the uncertain
(usually) depend on the decision taken. Our approach
tially captures decision-dependent randomness (by mix
Bayesian analysis and stochastic optimization) and p
vides more realistic sampling procedures for the stocha
optimization model (by mixing simulation and Bayesia
analysis).

The use of simulation in Bayesian estimation h
recently received a great deal of attention. Markov ch
Monte Carlo methods allow the computation of Bayes
estimates that otherwise are intractable. Our appro
is related, but instead of embedding simulation within
Bayesian estimation procedure we instead embed Baye
updates within simulation. Specifically, we simulate sam
paths from the “predictive distributions” obtained v
Bayesian analysis. We illustrate the methodology
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applying it to a stochastic employee scheduling problem
a manufacturing system with uncertain equipment up-tim
and uncertain production rates.

2 BACKGROUND

Since the beginning of use of simulation models, research
and practitioners have wanted not only to analyze sys
performance but also to improve system performan
There is an extensive literature in stochastic optimizat
and stochastic programming; simulation and optimizatio
gradient estimation; and Bayesian analysis. We o
discuss the work most relevant to ours.

Consider the following stochastic optimization proble

z∗ = min
x∈X

Ef(x, ξx), (1)

wherex is the decision vector,f(x, ξx) is the random cost
function, ξx is a random vector (whose distribution migh
depend onx), and X is a deterministic set of feasible
decisions.

There are two main classes of simulation-based me
ods for solving (1). The one we employ is based on “ext
nal sampling” (also called the “nonrecursive” method, Pfl
(1996), “sample-path optimization”, Robinson (1996), a
the “stochastic counterpart” method, Shapiro (1991), a
it constructs an approximation of (1) by generating, for e
ample, an i.i.d. sequence of random vectorsξ1, ξ2, . . . , ξn

that have the same distribution asξ (which in this case
does not depend onx) to obtain the approximating problem

zn = min
x∈X

1
n

n∑
i=1

f(x, ξi). (2)

Results concerning asymptotic properties of (2) allo
us to use it as an approximation of (1) when the sam
sizen is sufficiently large. Specifically, under appropria
assumptions,limn→∞ zn = z∗, and the limit points of a
sequence of optimizers to (2) solve (1), w.p.1; see Dupačová
(1991), Dupǎcová and Wets (1988), King and Rockafella
(1993), King and Wets (1991), Robinson (1996), Shap
(1991) for these and other related results. Methods
determining whenn is large enough have been propos
via estimation of the optimality gap, Dantzig and Infang
(1995), Higle and Sen (1996a), Mak et al. (1997) as well
methods based on statistical verification of the (generaliz
Karush-Kuhn-Tucker optimality conditions, see Higle a
Sen (1996b) and Shapiro and Homem-de-Mello (1996

The second class of sampling-based approache
solving (1) uses “internal sampling.” The sampling
internal because new observations ofξ are generated
within the optimization algorithm and only when the
are required. Stochastic approximation, e.g., Kie
662
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and Wolfowitz (1952), Robbins and Monro (1951), an
stochastic quasigradient methods, e.g., Ermoliev (1988)
sampling-based adaptations of deterministic gradient sea
algorithms. Other related procedures include stochas
adaptations of cutting-plane algorithms, see Dantzig a
Glynn (1990), Higle and Sen (1996a) and Infanger (1993

Gradient estimates ofEf(x, ξ) play a key role in
these methods. In stochastic programming, gradient
subgradient) estimates ofEf(x, ξ) are typically available
via duality. For more general stochastic systems, the
are two widely used methodologies to compute estimat
of ∇Ef(x, ξ) — infinitesimal perturbation analysis (IPA),
Glasserman (1991), Ho and Cao (1991) and the sco
function (SF) method, Rubinstein and Shapiro (1993
which is also called the likelihood ratio method, Glynn
(1990). IPA requires certain structures of the proce
whereas the SF method is more widely applicable (b
often leads to estimators with higher variance). Whe
gradient estimates are unavailable one can resort to meth
that use finite differences, Kiefer and Wolfowitz (1952)
A survey of Monte Carlo methods applied to solving
stochastic optimization problems is provided in Morto
and Popova (1998).

Most the literature assumes that the source of rando
ness,ξ, does not depend on the decision taken,x. Only
a few authors consider more general cases. Futschik a
Pflug (1997) and Jonsbråten et al. (1998) consider problem
in which there are a finite number of decision-depende
probability distributions that may arise.

3 MANPOWER SCHEDULING

We consider a manpower scheduling problem in a produ
tion system in which a nominal weekday work schedu
must be published at the beginning of each month in t
face of uncertain production rates and uncertain producti
equipment availability. During the course of the month
management follows the published schedule as closely
possible. However, overtime work for the weekends ma
be adaptively scheduled during the month. We utilize
Bayesian stochastic programming approach to this proble
Nominal weekday schedules are found by solving a tw
stage stochastic program with recourse that is described
Section 3.2. The random parameters in this optimizatio
model are the production rates and machine availabilitie
We construct predictive distributions for these elemen
using Bayesian models described in Section 3.1. Bas
on observations made during the month, the Bayesi
distributions are then updated at the end of the mon
prior to re-optimizing to find the schedule for the comin
month.

There are many authors who analyze schedulin
under uncertainty. Optimal strategies for single machin
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scheduling are obtained in the papers by Smith (1956
Rothkopf (1966), Sevcik (1974) and Pinedo (1983). Gittins
and Glazebrook (1977) and Hamada and Glazebrook (199
solve Bayesian stochastic job scheduling problems on
single machine. Birge and Dempster (1996) provide
a hierarchical framework of scheduling problems from
a stochastic programming perspective, emphasizing th
distinction between strategic, tactical, and operationa
models.

Kao and Queyranne (1985) use a two-stage stochast
program for a nurse scheduling problem with uncertain
demand. First-stage variables schedule regular-time staffin
levels while second-stage adaptive decisions schedu
overtime work and the hiring of temporary employees.
The model we develop in this paper schedules task
for employees to perform during three daily shifts over
the course of one month while Kao and Queyranne
use monthly time periods and a year-long budget cycle
And, the stochastic parameters in our model are machin
availabilities and production rates while demand is uncertai
in Kao and Queyranne’s work. Nevertheless, the notion
of recourse we use is similar in spirit to theirs in that
we schedule regular-time work with first-stage variables
and schedule overtime work with adaptive second-stag
decisions.

The system we consider is a production line in a
major manufacturer of automobile parts. The production
line consists of several cells, each of which produces
or assembles, different parts of the final product. The
production equipment consists of a set of lathe machine
located in the initial cell of the production line. These
machines produce different types of shafts that are necessa
components for all the items produced by the production
line. Due to the key role that these machines play in the
production process, they operate up to 24 hours a day, o
3 shifts, each 8 hours long.

The production line has its own manager. At the end
of each month the manager receives the demand foreca
for the next month which specifies the required numbe
of shafts per type per week. Because the plant does n
have a large warehouse where production can be store
the line operates almost as a just-in-time system, i.e
finished products are shipped to customers as soon as th
are produced. The nature of the industry is such tha
finished products may be viewed as commodities: there
substantial competition, and the manufacturer would like
to maintain a high level of customer satisfaction. As a
result, if a demand cannot be met on time, it is sent via
a special express delivery service (which costs more tha
standard shipping) as soon as production is completed.
the delay is too long, then the manufacturer must also pa
a contractual penalty cost.
663
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There are scheduled down-times for production equip
ment for reasons such as preventive maintenance or beca
the crew is training, attending a meeting, or on a break
In addition, lathe machines fail at random times and
then require corrective maintenance. Another source o
uncertainty involves crew production rates. While the en
gineering department produces specifications of how man
shafts can be produced per hour for each shaft type o
each lathe machine, there is considerable variability in th
actual production rates, both within a crew over time a
well as between crews.

The production-line manager is allocated a budget b
upper management for the coming month. The budget
a portfolio of different accounts. For instance, there is
an account for workers’ production wages (i.e., pay fo
time spent producing shafts), and other accounts to pa
for training, for preventive or corrective maintenance, etc
At the end of each shift, the crews fills out a time card
describing what was done during the 8 hour shift. A
typical example is: 6 hours operating (production) time
1 hour corrective maintenance, and 1 hour meeting time
The production-line manager, and senior management, a
primarily interested in properly managing the account fo
production costs.

An important task that the line manager must perform
is to construct a manpower schedule for shaft productio
for the coming month so that the requested demand fo
shafts will be met in a timely fashion. The decision make
(manager) is motivated to construct a good schedule. Th
main goal is to deliver the requested production on time. I
practice, the manager decides on an initial schedule whic
is then adjusted over the course of the month. For instanc
if, due to low production rates and machine availabilities
insufficient shifts were scheduled to meet demand, the
overtime production shifts would be scheduled for the
weekends. The workers’ overtime wages are higher tha
the regular-time wages.

If the allocated production budget is exceeded by
more than 2% in one month, then the manager receive
a negative review. Because accurate production budgeti
is important to senior management, this measure is on
of the criteria used to decide percentage wage increas
for production managers and workers as well as to decid
how bonuses are distributed when profits are high.

Lathe machines have different production rates fo
each shaft type and for each crew as well as differen
down-time rates. Based on the demand schedule, a
these relative efficiencies, the production-line manage
makes work assignments to each shift crew for productio
on each lathe machine in an attempt to meet demands
time and to stay within the production budget.

Decision-dependent randomness arises in this settin
for the following reason: As described in Section 3.1, a
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the end of each month we construct predictive distribution
for production rates based on observations which, in tur
depend on the production schedule we selected. For reas
of computational tractability we then solve the subseque
month’s problem as a separate stochastic optimizati
problem (see Section 3.2), in a rolling-horizon fashion
It would require a more sophisticated model in orde
to explicitly capture the potential advantage of makin
decisions now that could “gather information” for the
future. In work along these lines: Artstein and Wet
(1993) describe a framework for modeling the gatherin
of information in stochastic optimization problems, and
Jonsbr̊aten (1997) describes a stochastic programmin
approach for optimizing the sequence in which oil well
are drilled with Bayesian updating of well characteristics

3.1 Bayesian Model for Production Rates and
Up-Time of the Equipment

In this section we introduce Bayesian models for machin
up-time and production rates. If we had a large amou
of historical data from a system believed to be relativel
stationary, then classical point estimates and empiric
frequency distributions could be used. However, when w
do not have enough reliable data, or we have a new ty
of shaft to produce or a new lathe machine to operate
the equipment does not fail very often, then the use
classical estimates may yield unsatisfactory results. W
have empirical evidence that the stochastic behavior
the system is nonstationary and we propose a Bayes
time-dynamic model to capture this nonstationarity.

A total of four months (January–April) of data was
collected. For each eight-hour shift we have the numb
of machine up-hours and the type of shaft and numb
produced. We model the up-time rather than the downtim
The primary reason for this concerns the nature of the da
that was collected. As described above, lathe operato
account for each of the eight hours of their shift on a tim
card. Because of management’s emphasis on product
accounting, a premium is placed on workers accurate
documenting the time spent producing shafts, i.e., th
up-time data is very reliable. On the other hand, from th
data cards it was clear that the same care was not tak
in distinguishing the different reasons (e.g., meeting tim
versus corrective maintenance) for downtime. During th
week, the production equipment is virtually never idle fo
lack of something to produce. (In fact the high utilization
is what lead to the desire for better scheduling.)

The stochastic optimization model defined in Sec
tion 3.2 is executed at the end of each month to obta
a manpower schedule for the coming month. At thes
decision points we: (i) perform a statistical analysis of th
past month’s data and update our distributional forecast
664
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the stochastic up-times and production rates for the com
month, and (ii) simulate the sample paths for these ran
parameters over the next month that are needed in
Monte Carlo approximation of the stochastic programm
model.

First we describe the Bayesian model for up-hou
From the data cards, it was clear that the up-time va
entered by the operators are discrete rather than continu
This is not surprising as it is natural for the operators
estimate such times to within an hour. As a result,
divide the eight-hour shift into eight one-hour subinterva
Denote byAHcmt the up-time of the equipment (availab
hours) during the eight-hour shift of crewc on machine
m on dayt. We assume a hierarchical Bayesian structu
and model the (random) probability mass function (pmf)
AHcmt. Let Z be a random vector with realizations of th
form (r1, . . . , r8), whereri = 0, 1, 2, . . . and

∑8
i=1 ri = n.

Heren represents the total number of observations ov
month andri is the number of instances when the obser
up-hours fell into the interval(i − 1, i], i = 1, . . . , 8. We
assume thatZ is distributed as a multinomial rando
vector with parametersn and W = (W 1, . . . ,W 8),
where0 ≤ W i ≤ 1 and the values of the components
W are unknown. The pmf forAHcmt is obtained by
dividing each of the components ofZ by n. While the
pmf for AHcmt depends on the shift, machine, and tim
we suppress the dependency ofZ and W on c, m, and
t for clarity of the presentation.

Suppose thatW is a Dirichlet random variable with
parametric vectorα ≡ 0 (which is the improper prior
density, see DeGroot (1970), p.222. When prior knowle
is available a proper prior distribution is used instead.
the end of a month we haven observations of up
times for a particular crew-machine (c-m) combination
with ri, i = 1, . . . , 8 observations in each interva
The Dirichlet distribution is a conjugate prior (see f
instance DeGroot (1970), p.174) for the multinom
distribution, and as a result, the posterior distribut
of W givenri, i = 1, . . . , 8 is a Dirichlet distribution with
parametric vector(α1 + r1, . . . , α8 + r8). The predictive
distribution for Z is a multinomial-Dirichlet distribution
with parameters(α1 + r1, . . . , α8 + r8) (for details see
Bernardo and Smith (1994), p.441. Thus, genera
an observation ofAHcmt in a “fully Bayesian” manner
involves two steps. First, we generate an observation
the pmf of AHcmt, i.e., 1

nZ, given r1, . . . , r8 from the
predictive multinomial-Dirichlet distribution. Then, give
this instance of the pmf, we generate an observation
AHcmt. We use a simpler approach that still captu
time-dynamic updating. In particular, using the conditio
mean of 1

nZ (see Bernardo and Smith (1994), giv
the previous months observations yields the follow
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distributional forecast forAHcmt:

P [AHcmt = i] =
αi + ri∑8

j=1 (αj + rj)
, i = 1, . . . , 8. (3)

In generating observations of the up-hours we sample fro
(3).

Now we turn to the Bayesian model for production
rates. Denote byPDscmt the hourly production rate for
crew shift c of a shaft of types on machinem on day
t. We follow the model given in DeGroot (1970), p.169
and assume thatPDscmt has a normal distribution with
unknown meanM and precisionR. (The precision is
the reciprocal of the variance.) Furthermore, letM and
R have an improper joint prior distributionπ(M, R) =
1/R, R > 0. Then, (see DeGroot (1970), p.170) give
the observed production rates for one monthpdscmt =(
pd1

scmt, pd2
scmt, . . . , pdn

scmt

)
, the posterior distribution for

M is Student-t with parameters̄x, (n−1)/
(
s2

)
, andn−1

degrees of freedom, wherēx ands2 are the sample mean and
variance of the observed rates. The posterior distributi
for R is Gamma with parameters(n − 1)/2 and ns2/2.
The predictive distribution forPDscmt is a Student-t
distribution with parameters̄x,

[
(n − 1)(n + 1)s2

]−1
and

n − 1 degrees of freedom. In constructing the Mont
Carlo approximation, we actually draw observations from
a truncated version of the predictive Student-t to ensure
nonnegative rates, i.e.,

max
{

t
(
x̄,

[
(n − 1)(n + 1)s2]−1

, n − 1
)

, 0
}

. (4)

To assure that we are sampling up-times from
representative distribution we performed 9 Kolmogorov
Smirnov tests (one for each of the 3 shifts in Februar
March, and April). The null hypothesis states that th
difference between observed and predicted up-times do
not exceed the differences that would be expected to oc
by chance. In all 9 of the tests we could not reject th
null hypothesis at0.05 level of significance. Therefore,
we regard the mathematical model (3) from which w
sample up-times to feed into the scheduling model as
appropriate one. Similar tests can be performed for t
production rates. However, the four-month data set has
different types of shafts and three crews; as a result, the
are many possible combinations and for some crew-sh
pairs there are a small number of observations.

3.2 Stochastic Programming Formulation

We propose a stochastic programming model for scheduli
shaft production — at the level of daily crew shifts — fo
one month to minimize the expected value of a weighte
sum of penalties for late and nondelivered shipments pl
a penalty for exceeding the target budget. We adopt t
665
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following assumptions and notation. The days of th
month are denoted by the setT . This set is partitioned
into T = R∪O, where the disjoint setsR andO represent
weekdays (regular-time) and weekend-days (overtime).
before, the random up-times and production rates a
denotedAHcmt andPDscmt. The corresponding sample
space is denotedΩ, and a realization of the random vector
(AH,PD), is denoted(AHω, PDω).

We utilize a two-stage stochastic program with re
course, see Beale (1955), Dantzig (1955), Wets (197
that has the following structure: At the beginning o
the month a nominal production schedule is specified f
Monday–Friday of each week,[xmax

scmt]t∈R, which states
the number of hours crew shiftc should spend producing
shafts on machinem on dayt. This scheduling decision
constitutes the “first-stage” decision because it must
made with only distributional knowledge of the machin
up-times and crew production rates. This schedule
subject to the following constraint:

∑
s

xmax
scmt ≤ AHmax

cmt ∀c, m, t ∈ R. (5)

Here, AHmax
cmt is an optimistic bound on machine avail-

ability, i.e., eight hours per crew shift less schedule
down-time for reasons such as preventive maintenan
After this scheduling decision has been made, an o
servation of machine availabilities and production rate
(AHω

cmt, PDω
scmt) is revealed for allt ∈ T (i.e., for both

the weekdays and the weekends for the entire mont
Knowing this sample pointω, a set of second-stage recours
decisions is made that consists of four parts: (i)actual
weekday (regular-time) production schedules,[xω

scmt]t∈R,
(ii) weekend (overtime) production schedules,[yω

scmt]t∈O,
(iii) unmet demand variables for shipments,[zω

st]t∈T , and
(iv) the amount by which the target budget is exceede
vω.

The actual weekday production schedule,[xω
scmt]t∈R,

is essentially a scaled version of the nominal schedule wh
ensures that weekday machine availability constraints, w
stochastic availabilityAHcmt = AHω

cmt, are obeyed. This
is effected via

xω
scmt = min

{
xmax

scmt,

[
AHω

cmt

AHmax
cmt

]
xmax

scmt

}

∀ s, c, m, t ∈ R. (6)

Thus, the weekday schedule,[xω
scmt]t∈R, is determined by

(6), given the up-time realizations and nominal schedu
This method for specifying the actual weekday schedu
is related to an idea that Powell and Frantzeskakis (199
call “restricted recourse” from their work in dynamic
stochastic network optimization. Note that the distributio
of AHcmt is for a “typical” day. Occasionally,AHmax

cmt

has a small value for irregular but scheduled down-tim
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and (6) ensures that the actual schedule reflects the
unavailabilities. The weekend schedules,[yω

scmt]t∈O, are
recourse decisions in the usual sense while the shorta
variables, [zst]t∈T , and budget exceedance variablevω

are “accounting” variables from which appropriate late
delivery and up-side budget-deviation penalties are assign
via piecewise-linear convex penalty functionsgst and h.

Additional data include regular-time and overtime
hourly wages,WRc andWOc; the demand scheduleDst;
the production budgetB; and a weighting factorλ for
the budget-deviation penalty. The value ofλ is selected
so that minimizing late shipments is the primary objectiv
and minimizing up-side deviations from the target budge
is the secondary objective.

The two-stage stochastic program can be stated as

min
xmax

Ef (xmax,AH,PD)

s.t.
∑

s

xmax
scmt ≤ AHmax

cmt ∀c, m, t ∈ R

xmax
scmt ≥ 0 ∀s, c, m, t ∈ R, (7)

where

f (xmax, AH, PD) =

min
x,y,z,v

∑
s,t

gst(zst) + λ h(v)

s.t. xscmt ≤
[

AHcmt

AHmax
cmt

]
xmax

scmt ∀ s, c, m, t ∈ R
∑

c,m,t′≤t

PDscmt′ xscmt′ +

∑
c,m,t′≤t

PDscmt′yscmt′ + zst ≥ Dst ∀s, t

∑
s

yscmt ≤ AHcmt ∀c, m, t ∈ O
∑

s,c,m,t

WRcxscmt +
∑

s,c,m,t

WOcyscmt − v ≤ B

xscmt ≤ xmax
scmt ∀s, c, m, t ∈ R

xscmt, yscmt, zst, v ≥ 0 ∀s, c, m, t. (8)

An external Monte Carlo sampling-based approxima
tion of (7) is solved to obtain a manpower schedule to b
posted by the manager.

3.3 Bayesian Predictive Distributions and Stochastic
Optimization

Here we consider a solution methodology that generat
the production schedules from the stochastic program usi
the Bayesian predictive distributions. We can compact
state the stochastic optimization model as

z∗ = min
x∈X

Ef(x, ξ) (9)
666
ewherex denotes the first-stage weekday production sch
ule, [xmax

scmt]t∈R; x ∈ X denotes the constraints of (7)
ξ = (AH,PD) represents the vector of random param
eters; andf(x, ξω) is the second-stage cost of operatin
the production scheduling system, in terms of late-delive
and over-budget penalties, for a fixed first-stage sched
x and for a specific realization of the random up-time a
production rate vector, as defined in (8). It is not possib
to solve (9) exactly and we must resort to approximatio

We use the external sampling approach described
Section 2. In our case, the expectation in (9) is with resp
to the Bayesian distributions of machine up-time (3) a
crew production rates (4), given the data observed up to
point in time. We sample i.i.d. variatesξ1, . . . , ξn from
the Bayesian distribution ofξ and form the approximating
problem

zn = min
x∈X

1
n

n∑
i=1

f(x, ξi). (10)

We assumed a conjugate structure and hence elimin
any computational difficulties (such as multidimension
integration) in generating these samples. However,
one were to assume general distributions for mach
up-times, production rates and their parameters, the ab
methodology may still be applied.

4 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a methodology which
namically incorporates information, as it becomes availab
into the scheduling process. In a forthcoming paper we w
compare the quality of the nominal regular-time producti
schedules obtained using four forecasting procedures:
an empirical point forecast, (ii) a Bayesian point foreca
(iii) an empirical distribution, and (iv) a Bayesian distribu
tional forecast. Specifically, we will perform an all pair
wise comparison forzep = Ef(xep, ξ), zed = Ef(xed, ξ),
zbp = Ef(xbp, ξ), and zbd = Ef(xbd, ξ). Here, xep,
xed, xbp, andxbd denote the respective nominal schedul
based on the four forecasting techniques and the expe
tions are taken with respect to the Bayesian distributio
since these represent our best forecasts of how the sys
will behave. Our goal is to investigate the value of u
ing Bayesian forecasting and stochastic programming o
classical statistical methods and deterministic optimizati
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