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ABSTRACT

Bayesian forecasting models provide distributional esti-
mates for random parameters, and relative to classical

e And, what information should we create? (The result

of a DMP is typically a decision that should be acted on

and this can be regarded as a piece of information.)
This paper attempts to address, at some level, the

schemes, have the advantage that they can rapidly capturelast three of these questions in the context of a stochastic

changes in nonstationary systems using limited historical
data. Stochastic programs, unlike deterministic optimiza-
tion models, explicitly incorporate distributions for random
parameters in the model formulation, and thus have the
advantage that the resulting solutions more fully hedge
against future contingencies. In this paper, we exploit the
strengths of Bayesian prediction and stochastic program-
ming in a rolling-horizon approach that can be applied to
solve real-world problems. We illustrate the methodology
on an employee scheduling problem with uncertain up-
times of manufacturing equipment and uncertain production
rates.

1 INTRODUCTION

Many of the real-world problems the operations research
community addresses require decision making with respect
to a system that stochastically evolves over time. Having
the right information at the right time increases our ability
to make good decisions. However, obtaining the right data
is just one of the problems that needs to be solved. For
a givendecision making proced®MP) we are interested

in a number of additional issues:

e When is it optimal to gather information?

e Once we have it, how should the information be analyzed
for the DMP (this could involve any type of data analysis
or even visual inspection)?

e How should the analyzed information be used within
the DMP?
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manpower scheduling problem. Our main goal is to
create a methodology that allows information, gathered
dynamically over time, to be incorporated in the DMP so
that better informed decisions can be made.

We address processes that are nonstationary, i.e., the
stochastic evolution of the system changes over time. At
each decision point in time, our methodology incorporates
the observed history of the process via Bayesian methods
and as a result it dynamically “adapts” the associated
probability models. Given these adapted models a new
decision is made. We repeat this procedure over and
over again in a rolling-horizon manner. The proposed
methodology combines techniques from Bayesian statistics,
stochastic programming and simulation.

The class of problems that we intend to attack has
a high-dimensional decision space and the uncertainties
(usually) depend on the decision taken. Our approach par-
tially captures decision-dependent randomness (by mixing
Bayesian analysis and stochastic optimization) and pro-
vides more realistic sampling procedures for the stochastic
optimization model (by mixing simulation and Bayesian
analysis).

The use of simulation in Bayesian estimation has
recently received a great deal of attention. Markov chain
Monte Carlo methods allow the computation of Bayesian
estimates that otherwise are intractable. Our approach
is related, but instead of embedding simulation within a
Bayesian estimation procedure we instead embed Bayesian
updates within simulation. Specifically, we simulate sample
paths from the “predictive distributions” obtained via
Bayesian analysis. We illustrate the methodology by
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applying it to a stochastic employee scheduling problem in and Wolfowitz (1952), Robbins and Monro (1951), and
a manufacturing system with uncertain equipment up-times stochastic quasigradient methods, e.g., Ermoliev (1988) are

and uncertain production rates. sampling-based adaptations of deterministic gradient search
algorithms. Other related procedures include stochastic
2 BACKGROUND adaptations of cutting-plane algorithms, see Dantzig and

Glynn (1990), Higle and Sen (1996a) and Infanger (1993).

Since the beginning of use of simulation models, researchers ~ Gradient estimates o f(z,£) play a key role in
and practitioners have wanted not only to analyze system these methods. In stochastic programming, gradient (or
performance but also to improve system performance. Subgradient) estimates df f(z,¢) are typically available
There is an extensive literature in stochastic optimization Via duality. For more general stochastic systems, there
and stochastic programming; simulation and optimization; are two widely u'se'd'me'thodolog|es to compute estimates
gradient estimation; and Bayesian analysis. We only Of VE/(z,&) — infinitesimal perturbation analysis (IPA),
discuss the work most relevant to ours. Glasserman (1991), Ho and Cao (1991) and the score
Consider the following stochastic optimization problem  function (SF) method, Rubinstein and Shapiro (1993),
which is also called the likelihood ratio method, Glynn
2* = minEf(z,&,), (1) (1990). IPA requires certain structures of the process
zeX whereas the SF method is more widely applicable (but
often leads to estimators with higher variance). When
gradient estimates are unavailable one can resort to methods
that use finite differences, Kiefer and Wolfowitz (1952).
A survey of Monte Carlo methods applied to solving
stochastic optimization problems is provided in Morton
and Popova (1998).
Most the literature assumes that the source of random-
ness,&, does not depend on the decision taken,Only

wherez is the decision vectorf(z, £,,) is the random cost
function, &, is a random vector (whose distribution might
depend onz), and X is a deterministic set of feasible
decisions.

There are two main classes of simulation-based meth-
ods for solving (1). The one we employ is based on “exter-
nal sampling” (also called the “nonrecursive” method, Pflug
(1996), “sample-path optimization”, Robinson (1996), and

p : " : few authors consider more general cases. Futschik and
the “stochastic counterpart” method, Shapiro (1991), and a 3 ;
it constructs an approximation of (1) by generating, for ex- Pflug .(1997) and Jon nen etal. (1998) con_S|_der problems
ample, an i.i.d. sequence of random vectgtse?, ..., &" in which there are a finite number of decision-dependent

that have the same distribution gs(which in this case probability distributions that may arise.
does not depend ar) to obtain the approximating problem

3 MANPOWER SCHEDULING

n

1 .
Zn = min Ez.f(l‘,ﬁz)- (2)

~ We consider a manpower scheduling problem in a produc-

tion system in which a nominal weekday work schedule
Results concerning asymptotic properties of (2) allow must be published at the beginning of each month in the
us to use it as an approximation of (1) when the sample face of uncertain production rates and uncertain production
sizen is sufficiently large. Specifically, under appropriate equipment availability. During the course of the month,
assumptionslim,, ., z, = z*, and the limit points of a management follows the published schedule as closely as
sequence of optimizers to (2) solve (1), w.p.1; see [Bopa possible. However, overtime work for the weekends may
(1991), Dupéova and Wets (1988), King and Rockafellar be adaptively scheduled during the month. We utilize a
(1993), King and Wets (1991), Robinson (1996), Shapiro Bayesian stochastic programming approach to this problem.
(1991) for these and other related results. Methods for Nominal weekday schedules are found by solving a two-
determining whem: is large enough have been proposed stage stochastic program with recourse that is described in
via estimation of the optimality gap, Dantzig and Infanger Section 3.2. The random parameters in this optimization
(1995), Higle and Sen (1996a), Mak et al. (1997) as well as model are the production rates and machine availabilities.
methods based on statistical verification of the (generalized) We construct predictive distributions for these elements
Karush-Kuhn-Tucker optimality conditions, see Higle and using Bayesian models described in Section 3.1. Based
Sen (1996b) and Shapiro and Homem-de-Mello (1996). on observations made during the month, the Bayesian
The second class of sampling-based approaches todistributions are then updated at the end of the month
solving (1) uses ‘“internal sampling.” The sampling is prior to re-optimizing to find the schedule for the coming
internal because new observations §fare generated month.
within the optimization algorithm and only when they There are many authors who analyze scheduling
are required. Stochastic approximation, e.g., Kiefer under uncertainty. Optimal strategies for single machine
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scheduling are obtained in the papers by Smith (1956), There are scheduled down-times for production equip-
Rothkopf (1966), Sevcik (1974) and Pinedo (1983). Gittins ment for reasons such as preventive maintenance or because
and Glazebrook (1977) and Hamada and Glazebrook (1993) the crew is training, attending a meeting, or on a break.
solve Bayesian stochastic job scheduling problems on a In addition, lathe machines fail at random times and
single machine. Birge and Dempster (1996) provide then require corrective maintenance. Another source of
a hierarchical framework of scheduling problems from uncertainty involves crew production rates. While the en-
a stochastic programming perspective, emphasizing the gineering department produces specifications of how many
distinction between strategic, tactical, and operational shafts can be produced per hour for each shaft type on
models. each lathe machine, there is considerable variability in the
actual production rates, both within a crew over time as
well as between crews.

The production-line manager is allocated a budget by
upper management for the coming month. The budget is
a portfolio of different accounts. For instance, there is
an account for workers’ production wages (i.e., pay for
time spent producing shafts), and other accounts to pay
for training, for preventive or corrective maintenance, etc.
At the end of each shift, the crews fills out a time card
describing what was done during the 8 hour shift. A
typical example is: 6 hours operating (production) time,
1 hour corrective maintenance, and 1 hour meeting time.
The production-line manager, and senior management, are
we schedule regular-time work with first-stage variables primarily interested in properly managing the account for
and schedule overtime work with adaptive second-stage product!on costs. )
decisions. An important task that the line manager must perform

is to construct a manpower schedule for shaft production

The system we consider is a production line in a for the coming month so that the requested demand for
major manufacturer of automobile parts. The production shafts will be met in a timely fashion. The decision maker
line consists of several cells, each of which produces, (manager) is motivated to construct a good schedule. The
or assembles, different parts of the final product. The main goalis to deliver the requested production on time. In
production equipment consists of a set of lathe machines practice, the manager decides on an initial schedule which
located in the initial cell of the production line. These s then adjusted over the course of the month. For instance,
machines produce different types of shafts that are necessaryif, due to low production rates and machine availabilities,
components for all the items produced by the production insufficient shifts were scheduled to meet demand, then
line. Due to the key role that these machines play in the overtime production shifts would be scheduled for the
production process, they operate up to 24 hours a day, on weekends. The workers’ overtime wages are higher than
3 shifts, each 8 hours long. the regu|ar-[ime wages.

The production line has its own manager. At the end If the allocated production budget is exceeded by
of each month the manager receives the demand forecastMore than 2% in one month, then the manager receives
for the next month which specifies the required number & negative review. Because accurate production budgeting
of shafts per type per week. Because the plant does notiS important to senior management, this measure is one
have a large warehouse where production can be stored, Of the criteria used to decide percentage wage increases
the line operates almost as a just-in-time system, i.e., for production managers and workers as well as to decide
finished products are shipped to customers as soon as they’0W bonuses are distributed when profits are high.
are produced. The nature of the industry is such that Lathe machines have different production rates for
finished products may be viewed as commodities: there is €ach shaft type and for each crew as well as different
substantial competition, and the manufacturer would like down-time rates. Based on the demand schedule, and
to maintain a high level of customer satisfaction. As a these relative efficiencies, the production-line manager
result, if a demand cannot be met on time, it is sent via makes work assignments to each shift crew for production
a special express delivery service (which costs more than on each lathe machine in an attempt to meet demands on
standard shipping) as soon as production is completed. If time and to stay within the production budget.
the delay is too long, then the manufacturer must also pay Decision-dependent randomness arises in this setting
a contractual penalty cost. for the following reason: As described in Section 3.1, at

Kao and Queyranne (1985) use a two-stage stochastic
program for a nurse scheduling problem with uncertain
demand. First-stage variables schedule regular-time staffing
levels while second-stage adaptive decisions schedule
overtime work and the hiring of temporary employees.
The model we develop in this paper schedules tasks
for employees to perform during three daily shifts over
the course of one month while Kao and Queyranne
use monthly time periods and a year-long budget cycle.
And, the stochastic parameters in our model are machine
availabilities and production rates while demand is uncertain
in Kao and Queyranne’s work. Nevertheless, the notion
of recourse we use is similar in spirit to theirs in that
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the end of each month we construct predictive distributions the stochastic up-times and production rates for the coming
for production rates based on observations which, in turn, month, and (ii) simulate the sample paths for these random
depend on the production schedule we selected. For reasongparameters over the next month that are needed in our
of computational tractability we then solve the subsequent Monte Carlo approximation of the stochastic programming

month’s problem as a separate stochastic optimization model.

problem (see Section 3.2), in a rolling-horizon fashion.
It would require a more sophisticated model in order
to explicitly capture the potential advantage of making
decisions now that could “gather information” for the
future. In work along these lines: Artstein and Wets
(1993) describe a framework for modeling the gathering
of information in stochastic optimization problems, and
Jonsbaten (1997) describes a stochastic programming
approach for optimizing the sequence in which oil wells
are drilled with Bayesian updating of well characteristics.

3.1 Bayesian Model for Production Rates and
Up-Time of the Equipment

In this section we introduce Bayesian models for machine
up-time and production rates. If we had a large amount
of historical data from a system believed to be relatively
stationary, then classical point estimates and empirical
frequency distributions could be used. However, when we

First we describe the Bayesian model for up-hours.
From the data cards, it was clear that the up-time values
entered by the operators are discrete rather than continuous.
This is not surprising as it is natural for the operators to
estimate such times to within an hour. As a result, we
divide the eight-hour shift into eight one-hour subintervals.
Denote byA H .,,,; the up-time of the equipment (available
hours) during the eight-hour shift of creewwon machine
m on dayt. We assume a hierarchical Bayesian structure,
and model the (random) probability mass function (pmf) of
AH,,,;. Let Z be a random vector with realizations of the
form (ry,...,rs), wherer; =0,1,2,. .. ande:1 r; = n.
Heren represents the total number of observations over a
month andr; is the number of instances when the observed
up-hours fell into the interva(i — 1,],¢ =1,...,8. We
assume thatZ is distributed as a multinomial random
vector with parameters: and W = (W,...,Wjy),
where0 < W, <1 and the values of the components of
W are unknown. The pmf fotAH ., is obtained by

do not have enough reliable data, or we have a new type dividing each of the components & by n. While the
of shaft to produce or a new lathe machine to operate or pmf for AH ,,,; depends on the shift, machine, and time,

the equipment does not fail very often, then the use of

we suppress the dependency Zfand W on ¢, m, and

classical estimates may yield unsatisfactory results. We ; ¢, clarity of the presentation.

have empirical evidence that the stochastic behavior of
the system is nonstationary and we propose a Bayesian

time-dynamic model to capture this nonstationarity.

A total of four months (January—April) of data was
collected. For each eight-hour shift we have the number
of machine up-hours and the type of shaft and number
produced. We model the up-time rather than the downtime.

Suppose thaW is a Dirichlet random variable with
parametric vectora = 0 (which is the improper prior
density, see DeGroot (1970), p.222. When prior knowledge
is available a proper prior distribution is used instead. At
the end of a month we have observations of up-
times for a particular crew-machine-{n) combination

The primary reason for this concerns the nature of the data with »;, ¢ = 1,...,8 observations in each interval.

that was collected. As described above, lathe operators The Dirichlet distribution is a conjugate prior (see for
account for each of the eight hours of their shift on a time instance DeGroot (1970), p.174) for the multinomial
card. Because of management’s emphasis on productiondistribution, and as a result, the posterior distribution

accounting, a premium is placed on workers accurately
documenting the time spent producing shafts, i.e., the
up-time data is very reliable. On the other hand, from the

data cards it was clear that the same care was not takenwith parameters(a; + 71, ..

in distinguishing the different reasons (e.g., meeting time
versus corrective maintenance) for downtime. During the
week, the production equipment is virtually never idle for
lack of something to produce. (In fact the high utilization
is what lead to the desire for better scheduling.)

The stochastic optimization model defined in Sec-
tion 3.2 is executed at the end of each month to obtain
a manpower schedule for the coming month. At these
decision points we: (i) perform a statistical analysis of the

of W givenr;, i = 1,...,8 is a Dirichlet distribution with
parametric vectofa; +71,...,as + rg). The predictive
distribution for Z is a multinomial-Dirichlet distribution
.,ag +rg) (for details see
Bernardo and Smith (1994), p.441. Thus, generating
an observation ofAH .,,,; in a “fully Bayesian” manner
involves two steps. First, we generate an observation of
the pmf of AH ., i.e., %Z, givenry,...,rg from the
predictive multinomial-Dirichlet distribution. Then, given
this instance of the pmf, we generate an observation of
AH,,;. We use a simpler approach that still captures
time-dynamic updating. In particular, using the conditional
mean of%Z (see Bernardo and Smith (1994), given

past month’s data and update our distributional forecast of the previous months observations yields the following
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distributional forecast fotAH ..,,,+:

Oti—FTi

(o +15)

8
2j=1

P[AH(:mt:i]: i=1,...,8.

In generating observations of the up-hours we sample from
(3).

Now we turn to the Bayesian model for production
rates. Denote byPD,.,,; the hourly production rate for
crew shift ¢ of a shaft of types on machinem on day
t. We follow the model given in DeGroot (1970), p.169
and assume thaPD,.,,; has a normal distribution with
unknown meanM and precisionR. (The precision is
the reciprocal of the variance.) Furthermore, et and
R have an improper joint prior distributionr(M, R) =
1/R,R > 0. Then, (see DeGroot (1970), p.170) given
the observed production rates for one momih.,,; =
(pdLemts PLernts - - -, P2, ), the posterior distribution for
M is Studentt with parameters;, (n—1)/ (s*), andn—1
degrees of freedom, whefeands? are the sample mean and
variance of the observed rates. The posterior distribution
for R is Gamma with parameters — 1)/2 and ns?/2.
The predictive distribution forPD,.,,; is a Student
distribution with parameters, [(n — 1)(n + 1)s?] ~!and
n — 1 degrees of freedom. In constructing the Monte
Carlo approximation, we actually draw observations from
a truncated version of the predictive Studeritb ensure
nonnegative rates, i.e.,

max {t (JE, [(n—1)(n+ 1)52]71 ,n— 1) ,O} :

To assure that we are sampling up-times from a
representative distribution we performed 9 Kolmogorov—
Smirnov tests (one for each of the 3 shifts in February,
March, and April). The null hypothesis states that the

(4)

following assumptions and notation. The days of the
month are denoted by the s&t This set is partitioned
into T = RUQO, where the disjoint setR andO represent
weekdays (regular-time) and weekend-days (overtime). As
before, the random up-times and production rates are
denotedAH .,,,; and PD,.,,;. The corresponding sample
space is denote@?, and a realization of the random vector,
(AH,PD), is denoted AH“, PD¥).

We utilize a two-stage stochastic program with re-
course, see Beale (1955), Dantzig (1955), Wets (1974),
that has the following structure: At the beginning of
the month a nominal production schedule is specified for
Monday—Friday of each weeKz7.%],.~, which states
the number of hours crew shift should spend producing
shafts on machinem on day¢. This scheduling decision
constitutes the “first-stage” decision because it must be
made with only distributional knowledge of the machine
up-times and crew production rates. This schedule is
subject to the following constraint:

meam SAHmaa:

scmt cmt

Ve, m,t € R. (5)

S

Here, AH)"" is an optimistic bound on machine avail-
ability, i.e., eight hours per crew shift less scheduled
down-time for reasons such as preventive maintenance.
After this scheduling decision has been made, an ob-
servation of machine availabilities and production rates
(AH, .. PD%, .)is revealed for alt € T (i.e., for both

the weekdays and the weekends for the entire month).
Knowing this sample point, a set of second-stage recourse
decisions is made that consists of four parts: agtual
weekday (regular-time) production schedulps;.,, ], %.

(ii) weekend (overtime) production schedulég;.,..;],c o

(iii) unmet demand variables for shipmenis;;], ., and

(iv) the amount by which the target budget is exceeded,

difference between observed and predicted up-times does o

not exceed the differences that would be expected to occur
by chance. In all 9 of the tests we could not reject the
null hypothesis a).05 level of significance. Therefore,
we regard the mathematical model (3) from which we
sample up-times to feed into the scheduling model as an
appropriate one. Similar tests can be performed for the
production rates. However, the four-month data set has 35
different types of shafts and three crews; as a result, there
are many possible combinations and for some crew-shaft
pairs there are a small number of observations.

3.2 Stochastic Programming Formulation

The actual weekday production schedule;,,, ], %
is essentially a scaled version of the nominal schedule which
ensures that weekday machine availability constraints, with
stochastic availabilityAH ..., = AH,, ,, are obeyed. This
is effected via

w
w _ : max AHcmt max
Lsemt = MINQ Tgemys AHmam Lsemt
cmt
Vs,c,m,t € R. (6)

Thus, the weekday scheduley,.,,;],c . is determined by
(6), given the up-time realizations and nominal schedule.
This method for specifying the actual weekday schedule

We propose a stochastic programming model for scheduling is related to an idea that Powell and Frantzeskakis (1994)
shaft production — at the level of daily crew shifts — for call “restricted recourse” from their work in dynamic
one month to minimize the expected value of a weighted stochastic network optimization. Note that the distribution
sum of penalties for late and nondelivered shipments plus of AH,,; is for a “typical” day. OccasionallyAH %"

cmt

a penalty for exceeding the target budget. We adopt the has a small value for irregular but scheduled down-times
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and (6) ensures that the actual schedule reflects thesewherex denotes the first-stage weekday production sched-

unavailabilities. The weekend schedulég;., ], . are ule, [z720%],cx; © € X denotes the constraints of (7);
recourse decisions in the usual sense while the shortage¢é = (AH, PD) represents the vector of random param-
variables, [z.],., and budget exceedance variahle eters; andf(z,&“) is the second-stage cost of operating

are “accounting” variables from which appropriate late- the production scheduling system, in terms of late-delivery
delivery and up-side budget-deviation penalties are assignedand over-budget penalties, for a fixed first-stage schedule

via piecewise-linear convex penalty functions and h. x and for a specific realization of the random up-time and

Additional data include regular-time and overtime production rate vector, as defined in (8). It is not possible
hourly wagesWWV R, andWO,; the demand schedulB,;; to solve (9) exactly and we must resort to approximations.
the production budgeB; and a weighting factor\ for We use the external sampling approach described in

the budget-deviation penalty. The value dfis selected Section 2. In our case, the expectation in (9) is with respect
so that minimizing late shipments is the primary objective to the Bayesian distributions of machine up-time (3) and
and minimizing up-side deviations from the target budget crew production rates (4), given the data observed up to that

is the secondary objective. point in time. We sample i.i.d. variateg', ..., £" from
The two-stage stochastic program can be stated as: the Bayesian distribution of and form the approximating
problem
min Ef (2™, AH, PD)
! min — f(z, €. (20)
s.t. Zx:'}f;ft < AHT Ne,m,t € R 2€X N Z
Q"nyft >0 Vs.cmteR, @) We assumed a cqn!uga_te structure and henc;e ehmmated
any computational difficulties (such as multidimensional
where integration) in generating these samples. However, if
one were to assume general distributions for machine
f (™" AH, PD) = up-times, production rates and their parameters, the above
min ngt(zst) + Ah(v) methodology may still be applied.
x,Y,2,v
,t
AH .,
St 2o s < {AHm“i} 2 s omit e R 4 CONCLUSIONS AND FUTURE WORK
cmt
PD In this paper we have presented a methodology which dy-
Z semt! Tsemt! namically incorporates information, as it becomes available,
et <t into the scheduling process. In a forthcoming paper we will
Z PDgemtrYsemer + 25t > Dgp Vs, t compare the quality of the nominal regular-time production
em,t'<t schedules obtained using four forecasting procedures: (i)
Zyscmt < AH,,, Ve.m.teO an emplrlcql_pomt_ forece_lst, (i) a I_3aye5|an p(_)lnt fpre_cast,
(iif) an empirical distribution, and (iv) a Bayesian distribu-
- tional forecast. Specifically, we will perform an all pair-
s; tWRstcmt + é; tWOCyscmt —v<B wise comparison fot., = Ef(zep, &), 2zed = Ef(Tea, &),
T ma B Zpp = Ef(a:bp,é), and zpq = Ef(xbd,é'). Here, Teps
Tsemt < Tgeme VS, C,M,t €R Ted, Top, @Ndzyy denote the respective nominal schedules
Tsemts Ysemt, Zst, ¥ > 0 Vs, c,m, t. (8) based on the four forecasting techniques and the expecta-

tions are taken with respect to the Bayesian distributions
since these represent our best forecasts of how the system
will behave. Our goal is to investigate the value of us-
ing Bayesian forecasting and stochastic programming over
classical statistical methods and deterministic optimization.

An external Monte Carlo sampling-based approxima-
tion of (7) is solved to obtain a manpower schedule to be
posted by the manager.

3.3 Bayesian Predictive Distributions and Stochastic
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