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ABSTRACT estimation problem for Markov chains on state space
S c RY where the stationary distribution has a density
We describe a new estimator of the stationary density of a with respect to Lebesgue measure. He showed that under
Markov chain on general state space. The new estimator is certain conditions, the kernel density estimator at any
easier to compute, converges faster, and empirically gives point = is asymptotically normally distributed with error
visually superior estimates than more standard estimators proportional to (nh%)~'/2, where h, is the so-called
such as nearest-neighbour or kernel density estimators. “bandwidth”, andn is the simulation runlength. One
of the conditions needed to establish this result is that
h, — 0 asn — oco. Hence, the rate of convergence for
kernel density estimators is typically strictly slower than
n~1/2, and depends on the dimensidn In contrast, the

1 INTRODUCTION

Visualization is becoming increasingly popular as a means
of enhancing one’s understanding of a stochastic system.
In particular, rather than just reporting the mean of a
distribution, one often finds that more useful conclusions
may be drawn by seeing théensity of the underlying

random variable (see, e.g., Kelton 1997). 1.

We will consider the problem of computing the
stationary density of a Markov chain. For chains on a
finite state space, this amounts to computing or estimating
a finite number of stationary probabilities, and standard
methods may be applied easily in this case. When the

chain evolves on a general state space, however, theg

problem is not so straight-forward. General state-space
Markov chains arise naturally in the simulation of discrete-

event systems (Henderson and Glynn 1998). As a simple 4.

example, consider the customer waiting time (in the queue)
in the single-server queue with traffic intensjiy< 1 (see
Section 4). The sequence of customer waiting times 5
forms a Markov chain that evolves on the state space
[0,00). More generally, many discrete-event systems may
be described by a generalized semi-Markov process, and
such processes can be viewed as Markov chains on a
general state space (see, e.g., Henderson and Glynn 1998).

In this paper we introduce a new methodology for 6.

stationary density estimation. For a general overview of
density estimation from i.i.d. observations, see Prakasa
Rao (1983), Devroye (1985) or Devroye (1987). Yakowitz

(1985), (1989) has considered the stationary density
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estimator we propose converges at raté/? independent
of the dimensiond.

In fact, the estimator that we propose has several

appealing features.

It is relatively easy to compute (compared, say, to
nearest-neighbour or kernel density estimators).

No tuning parameters need to be selected (unlike
the “bandwidth” for kernel density estimators, for
example).

Well-established steady-state simulation output analy-
sis techniques may be applied to analyze the estimator.

The error in the estimator converges to 0 at raté/?
independent of the dimension of the state spadere
n is the simulation runlength.

The estimator is likely to give smoother estimators
than the standard kernel density estimator; see Section
4. In fact, under fairly weak assumptions, it can
be shown that the estimator istimes differentiable
(Henderson and Glynn 1998Db).

The estimator can be used to obtain a new quantile
estimator. The variance estimator for the corresponding
guantile estimator has a rigorous convergence theory,
and converges at rate—!/2 (Henderson and Glynn
1998b).
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7. Empirically, the estimator yields superior represen-
tations of stationary densities compared with other

methods (see Section 4).

To ensure the existence of the stationary distribution,
we make the following assumption. This assumption
is certainly not confining. In particular, Glynn (1994)
showed that in order for a steady-state simulation to be
“well-posed” in a certain precise sense, assump#ois
both necessary and sufficient. In the special case where
S is discrete, assumptioA corresponds with the usual
definition of positive recurrence (with a single closed
communicating class and no transient states).

Assumption A: The processX = (X,, : n > 0) is a
positive Harris recurrent Markov chain on state spéce
with stationary distributionr.
Let
P*(z,-) = P(X} € | Xo = 2)

be the k-step transition kernel ofX. The look-ahead
density estimator, as we call it, relies on the following
assumption.

Assumption B: For somem > 0, and some reference
measurey,

P™(z,dy) = p(z,y)u(dy),
wherep(z,y) is explicitly known.

Typically, m = 1, but this is not necessary. The case
where 1, is Lebesgue measure, arflis a subset of R
is perhaps most familiar, and is the context where kernel

and nearest-neighbour density estimators are most easily

applied. Note however, that in the definition there are no
restrictions ongu, so that assumptioB does not restrict
us to this context. The example in Section 4 shows that
this apparent subtlety can in fact be very useful.

AssumptionB is critical to our approach. Therefore,
our methodology cannot be applied to estimate the common
density of i.i.d. r.v’s. To see why, note that in the i.i.d.
casep(z,y) = q(y) for all z, andq is the unknown density.
But we require explicit knowledge qf, and hence;.

The remainder of this paper is organized as follows.
In Section 2 we introduce the look-ahead density estimator
and derive some of its pointwise convergence properties.
Then, in Section 3 we consider global convergence issues.
Finally, Section 4 is devoted to a comparison of the look-
ahead density estimator with a kernel density estimator
through a numerical example.

2 THE LOOK-AHEAD ESTIMATOR

Before introducing the look-ahead density estimator, we
prove some preliminary results.

648

Lemmal If A and B hold, thenw < p, i.e., 7 is
absolutely continuous with respect to

Proof: Supposeu(B) = 0. Then P™(x, B) = 0 for all
x € S. Hence
~(B) = / P™ (2, B)r(dz) = 0.
S

a
Hence, the Radon-Nikodym theorem implies that the

stationary distributionr has a density with respect io,

i.e., thatw(dz) = w(x)u(dz). (Note that we are using

to represent both the stationary distribution and its density

with respect tou. The appropriate interpretation should

be clear from the context.) Our next result sets the scene

for the definition of the look-ahead density estimator.

Lemma 2 If A and B hold, then [ 7 (dz)p(z,-) is a
version of the stationary density.

Proof: Observe that for all measurable sé&tgmeasurable
with respect to the sigma-field on whighis defined),

/B ruldy) = w(B)

/W(dx)Pm(x,B)

JS

/S () / pla. y)uldy)(de)

B
/ / r(@)p(e, y)u(dz)p(dy).
BJS

Since this holds for all measurable séis it follows that

/S m(x)p(z, y)u(dr) p ae.

m(y)

Hence

/ r(dz)p(z,y) 1)
S

is a version of the stationary densityd

Remark In the case that both(:) and [ (x)p(z,-) are
continuous, we can generally expect equality everywhere,
and not justy a.e. For example, this will hold whem is
Lebesgue measure on the real line.

To avoid having to state pointwise convergence proper-
ties as holding foy:-almost ally, we will henceforthdefine
7(y) to be equal to (1), even when this is infinite valued.
This new definition changes(y) on a set ofu measure
0, and is merely a theoretical convenience. Practically
speaking, this makes no difference to the estimator.

The above result suggests that we might estimégg
via the look-ahead estimator

1

P( Xk, y).
0

n

=

(2)

SR

Tn(y)

~
Il
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Our next result reveals certain pointwise convergence
properties of this estimator, including the rate of con-
vergence. In preparation for this result, note that Harris
recurrent Markov chains are known to contain regener-

applications. In the introduction we mentioned that general
discrete-event simulations may be viewed as general state-
space Markov chains. This is done by appending additional
information to the state-space until the resulting process is

ative structure (see, e.g., Asmussen 1987, or HendersonMarkov (see, e.g., Henderson and Glynn 1998). In such

and Glynn 1998). So suppose that the chain is
classically regenerative, i.e., there exist stopping times
0=T(-1) <T(0) <T(1) <T(2) < --- such that the
random elements

X(i) = (Xp(1y+r 1 0 < k < T(i) = T(i — 1))

are independent for > 0, and identically distributed
for ¢ > 1. Now define, for a real-valued cost function
f:S—Rand allk > 1, the random variables

T(k)—1
W(f) = > f(X;) and
j=T(k—1)

T, = T(k) - T(k - 1)a

corresponding to the “cost” accumulated in regenerative
cycle k, and the length of théth cycle.

Theorem 3 Suppose that assumptioAsand B hold.

1. The estimatorr,(y) is almost surely convergent, i.e.,
forall y € S,

m(y) — 7(y) a.s.,
asn — oQ.

2. In addition, if X is classically regenerative, and
E(Yi(p(-,y))? +72) < oo, then

Vvn (7n(y) ©))

where N (0,1) is a standard normal r.v.,= denotes
weak convergence, and

52 = ENilp(,y) —7(y))”
v E’Tl '

—m(y)) = o,N(0,1),

Proof: Almost sure convergence (Part 1) follows by the
strong law for Harris chains (Proposition 3.7, Asmussen
(1987), p. 154). The CLT follows directly from Theorem
3.2 of Asmussen (1987), p. 1360

Theorem 3 shows that in general, the look-ahead
estimator is almost surely convergent, that the error in
the estimator is normally distributed, and that the error
decreases at rate—'/2. This rate of convergence of the
error is an improvement on the rafeh?)~'/? obtained
by Yakowitz (1989) for kernel density estimators.

To conclude this section, we discuss a generalization
of the look-ahead estimator that should be of great use in
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contexts, it is likely that one will only be interested in the
stationary density of some functional of the process.

For example, suppose we are estimating the density
of the steady-state waiting time in a single-server queue,
where the arrival process is a superposition of two renewal
processes. The sequence of customer waiting times is not
necessarily Markov, unless we adjoin the times till the next
arrival in each arrival renewal process to the state space
[0,00). But we are primarily interested in the stationary
distribution of the customer waiting times, and not the
r.v.'s associated with event times.

To handle this situation, lef be a function defined on
the state-spacé that identifies the variables of interest.
In the above examplef(w,t;,t2) = w, wheret; andt,
are the times till the next arrivals in the 2 renewal arrival
processes. Next, we replace assumptoith

Assumption B For somem > 0, and some underlying
measurey,

P(f(Xm) € dy) = p(z,y)u(dy).

Note that if f : S — T, for some spacel’, then
p:SxT — R andpu is a measure on the spae After
redefining = to be the stationary distribution of (Xy),
all the results of this section go through with the obvious
modifications. The results of the following section also
hold with similar modifications.

3 GLOBAL PROPERTIES

In the previous section we discussed pantwiseconver-
gence properties of the look-ahead density estimator. In
this section we turn to the estimatogdobal convergence
properties. In particular, we show thaf, converges in

Ly to w (Theorem 4), and furthermore, that under rea-
sonable conditionsr,(y) converges tor(y) uniformly

in y (Theorem 5). Convergence ih; ensures that for

a given simulation runlengt, errors of a given size

in m,(y) can only occur on a small (with respect tg

set. Uniform convergence is especially important in a
visualization context. If one can guarantee that the error
in the estimatotr,,(y) is uniformly small iny, then graphs

of 7, will be “close” to .

Theorem 4 Suppose that assumptiods and B hold.
Thenw, — 7 in Ly, i.e.,

/ () — (9 u(dy) — 0
S
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as n — oo. This convergence also holds in expectation,
ie.,

E /S () — 7(y) a(dy) — 0

asn — oo.
Proof: First note that
(4)

and m,(y) + 7(y) integrates to the limit in the sense that

0< |7T71,(y) - 7T-(y)| < Wrb(y) + W(y),

Jim_ Sﬂn(y) +  7w(y) p(dy)
= 2
= / 27 (y)u(dy)
S

lim (7, (y) + 7 (y))p(dy). (5)

n—oo

J

Hence (see Exercise 16.6, p. 222, Billingsley 1986), it
follows from (4) and (5) that

lim Slwn(y) — 7w(y)| u(dy)
= [ [ ) = w0l )
= 0 a.s.

Finally, since [ |m,(y) — n(y)| n(dy) < 2 for all n, the
second result follows by dominated convergenads.

The following theorem gives simple sufficient con-
ditions for uniform convergence when the state space is
compact. For the proof, see Henderson and Glynn (1998b).

Theorem 5 Suppose thatS ¢ R? is compact, and
assumptionsA and B hold. Suppose further thap :
S x 8§ — [0,00) is continuous onS x S. Then m,
converges uniformly ter on S, i.e.,

sup [my(y) —w(y)| — 0 as.
yes

asn — oQ.

4 AN EXAMPLE

In this section, we compare the look-ahead density estimator
with a kernel density estimator through a numerical
example. Specifically, we estimate the (known) stationary
distribution of the customer waiting time sequence in
the M/M/1 queue. In this system, customer(n > 1)
arrives at timeT,,, and requires a service timg,. The
sequence of service time§/, : n > 0) is i.i.d., and
eachV; is exponentially distributed with mean—'. The
sequence of interarrival timeg@/,, : n > 1) is i.i.d., where
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U, =T, —T,_1 is exponentially distributed with mean
A~! (note that we defind, = 0). The interarrival and
service time sequences are independent.IXgtdenote the
waiting time excluding service of theth customer. Then
it is well known that the sequencd’ = (W,, : n > 0)
satisfies the Lindley recursion

WrL+1 - [Wn + X7L+1]+7

where Xnﬁvn_l - U, for n > 1, and for z € R,
[x]T 2 max{z,0}. Observe thatX,, : n > 1) is i.i.d., so

that W is a Markov chain ot% = [0, o0). If pé)\/u <1,
then W is positive Harris recurrent (see Asmussen 1987,
p. 181).

The stationary distribution ofit’ is a mixture of
a unit mass at 0, and an exponentially distributed r.v.
with mean (u — A\)~!. Thus, it is convenient to take
u(dx) = bo(dx) + I(x > 0)dx, wheredy is the probability
measure that assigns a mass of 1 to the origin.
stationary distribution then has densitywith respect to
u, wherew(0) =1 — p, and forz > 0,

The

() = p(p — N)e™ =7,
To define the look-ahead estimator we need to define
p(z,-), the transition density ofV with respect tou. It
is straightforward to show thai(z,0) = (1 + p)~le=?7,
and fory > 0,

p(z,y) exp(—ply — =" — Az — y]™h).

= m
The look-ahead density estimator satis then given by

n—1

n > p(Wi,y).

k=0

A
7TL(3J§”):

Defining the kernel density estimator is slightly more
problematical, due to the presence of the point mass at 0
in the stationary distribution, and to the need to select a
kernel and bandwidth. To estimate the point mass at 0 we
use

n—1

rrc(0in) S0t S I(W, = 0),
k=0

the mean number of visits to 0 in a run of length For
y > 0, we estimater(y) using

n—1
mc(yin) 2 (nh) 1S I(Wi > 0)((y — Wie) /),
k=0
where
_ €—£2/2
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is the density of a standard normal r.v., ahgl= n—1/5.
This choice ofh,, (modulo a multiplicative constant) yields

the optimal rate of mean-square convergence in the case
where the observations are i.i.d. (Prakasa Rao 1983, p. 182),2.

and so it seems a reasonable choice in this context.
For this example we chose= 0.5 andu = 1, so that
p = 0.5. To remove the effect of initialization bias (note

that both estimators are affected by this), we simulated

a stationary version o by sampling W, from the
stationary distribution.

Density Estimators for the M/M/1 Queue
05 T T T T T T T

ook ahead
[ o] 0OK-aheal
045 +  kernel

waiting time

Figure 1. Density estimates from a run of length 100.

Density Estimators for the M/M/1 Queue
0.6 T T T T T T T

exact
O look-ahead
+  kernel
0.5¢ b

0.4F b

waiting time

Figure 2: Density estimates from a run of length 1000.

The density estimates far > 0 together with the exact
density are plotted for simulation runlengths »of= 100
(Figure 1) andn = 1000 (Figure 2). We observe the
following from these figures.
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1. For bothn = 100, and n = 1000, the look-ahead
density appears to closely match the exact density.

For bothn = 100, andn = 1000, the kernel density
estimator appears to perform better away from the
origin. It's performance near the origin is particularly
poor.

Overall, the look-ahead density appears to be a far
better representation of the exact density than the
kernel density.

4. The look-ahead density appears to be monotone for
both runlengths.

5. The kernel density has several local modes, as is
strikingly evident in Figure 1.

The poor performance of the kernel density estimator
relative to the look-ahead density estimator was, perhaps,
expected, owing to the different convergence rates discussed
in Section 2. Particularly notable is the poor performance
of the kernel density estimator near the boundary. With
increasingly long runlengths, and smaller bandwidths, this
effect may be expected to diminish, but progress is slow
as exemplified in Figure 2 for a run of length 1000.

We anticipate that similar behaviour can be expected
on far more general systems, and therefore conclude that
when applicable (i.e., when assumptioAs and B are
satisfied), the look-ahead approach discussed in this paper
should be the preferred methodology for density estimation.
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