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ABSTRACT

We describe a new estimator of the stationary density o
Markov chain on general state space. The new estimato
easier to compute, converges faster, and empirically g
visually superior estimates than more standard estima
such as nearest-neighbour or kernel density estimator

1 INTRODUCTION

Visualization is becoming increasingly popular as a mea
of enhancing one’s understanding of a stochastic syst
In particular, rather than just reporting the mean of
distribution, one often finds that more useful conclusio
may be drawn by seeing thedensity of the underlying
random variable (see, e.g., Kelton 1997).

We will consider the problem of computing th
stationary density of a Markov chain. For chains on
finite state space, this amounts to computing or estima
a finite number of stationary probabilities, and standa
methods may be applied easily in this case. When
chain evolves on a general state space, however,
problem is not so straight-forward. General state-sp
Markov chains arise naturally in the simulation of discre
event systems (Henderson and Glynn 1998). As a sim
example, consider the customer waiting time (in the que
in the single-server queue with traffic intensityρ < 1 (see
Section 4). The sequence of customer waiting tim
forms a Markov chain that evolves on the state spa
[0,∞). More generally, many discrete-event systems m
be described by a generalized semi-Markov process,
such processes can be viewed as Markov chains o
general state space (see, e.g., Henderson and Glynn 1

In this paper we introduce a new methodology f
stationary density estimation. For a general overview
density estimation from i.i.d. observations, see Prak
Rao (1983), Devroye (1985) or Devroye (1987). Yakow
(1985), (1989) has considered the stationary den
647
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estimation problem for Markov chains on state spa
S ⊂ IRd where the stationary distribution has a densi
with respect to Lebesgue measure. He showed that un
certain conditions, the kernel density estimator at a
point x is asymptotically normally distributed with erro
proportional to (nhd

n)−1/2, where hn is the so-called
“bandwidth”, and n is the simulation runlength. One
of the conditions needed to establish this result is th
hn → 0 as n → ∞. Hence, the rate of convergence fo
kernel density estimators is typically strictly slower tha
n−1/2, and depends on the dimensiond. In contrast, the
estimator we propose converges at raten−1/2 independent
of the dimensiond.

In fact, the estimator that we propose has seve
appealing features.

1. It is relatively easy to compute (compared, say,
nearest-neighbour or kernel density estimators).

2. No tuning parameters need to be selected (unl
the “bandwidth” for kernel density estimators, fo
example).

3. Well-established steady-state simulation output ana
sis techniques may be applied to analyze the estima

4. The error in the estimator converges to 0 at raten−1/2

independent of the dimension of the state space, where
n is the simulation runlength.

5. The estimator is likely to give smoother estimato
than the standard kernel density estimator; see Sec
4. In fact, under fairly weak assumptions, it ca
be shown that the estimator isk-times differentiable
(Henderson and Glynn 1998b).

6. The estimator can be used to obtain a new quan
estimator. The variance estimator for the correspond
quantile estimator has a rigorous convergence theo
and converges at raten−1/2 (Henderson and Glynn
1998b).
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7. Empirically, the estimator yields superior represe
tations of stationary densities compared with oth
methods (see Section 4).

To ensure the existence of the stationary distributi
we make the following assumption. This assumpti
is certainly not confining. In particular, Glynn (1994
showed that in order for a steady-state simulation to
“well-posed” in a certain precise sense, assumptionA is
both necessary and sufficient. In the special case wh
S is discrete, assumptionA corresponds with the usua
definition of positive recurrence (with a single close
communicating class and no transient states).

Assumption A: The processX = (Xn : n ≥ 0) is a
positive Harris recurrent Markov chain on state spaceS,
with stationary distributionπ.

Let
P k(x, ·) = P (Xk ∈ ·|X0 = x)

be the k-step transition kernel ofX. The look-ahead
density estimator, as we call it, relies on the followin
assumption.

Assumption B: For somem > 0, and some reference
measureµ,

Pm(x, dy) = p(x, y)µ(dy),

wherep(x, y) is explicitly known.

Typically, m = 1, but this is not necessary. The ca
where µ is Lebesgue measure, andS is a subset of IRd

is perhaps most familiar, and is the context where ker
and nearest-neighbour density estimators are most ea
applied. Note however, that in the definition there are
restrictions onµ, so that assumptionB does not restrict
us to this context. The example in Section 4 shows t
this apparent subtlety can in fact be very useful.

AssumptionB is critical to our approach. Therefore
our methodology cannot be applied to estimate the comm
density of i.i.d. r.v.’s. To see why, note that in the i.i.
casep(x, y) = q(y) for all x, andq is the unknown density.
But we require explicit knowledge ofp, and henceq.

The remainder of this paper is organized as follow
In Section 2 we introduce the look-ahead density estima
and derive some of its pointwise convergence propert
Then, in Section 3 we consider global convergence issu
Finally, Section 4 is devoted to a comparison of the loo
ahead density estimator with a kernel density estima
through a numerical example.

2 THE LOOK-AHEAD ESTIMATOR

Before introducing the look-ahead density estimator,
prove some preliminary results.
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Lemma 1 If A and B hold, then π � µ, i.e., π is
absolutely continuous with respect toµ.

Proof: Supposeµ(B) = 0. Then Pm(x, B) = 0 for all
x ∈ S. Hence

π(B) =
∫

S

Pm(x, B)π(dx) = 0.

2

Hence, the Radon-Nikodym theorem implies that the
stationary distributionπ has a density with respect toµ,
i.e., thatπ(dx) = π(x)µ(dx). (Note that we are usingπ
to represent both the stationary distribution and its density
with respect toµ. The appropriate interpretation should
be clear from the context.) Our next result sets the scene
for the definition of the look-ahead density estimator.

Lemma 2 If A and B hold, then
∫

S
π(dx)p(x, ·) is a

version of the stationary density.

Proof: Observe that for all measurable setsB (measurable
with respect to the sigma-field on whichµ is defined),∫

B

π(y)µ(dy) = π(B)

=
∫

S

π(dx)Pm(x, B)

=
∫

S

π(x)
∫

B

p(x, y)µ(dy)µ(dx)

=
∫

B

∫
S

π(x)p(x, y)µ(dx)µ(dy).

Since this holds for all measurable setsB, it follows that

π(y) =
∫

S

π(x)p(x, y)µ(dx) µ a.e.

Hence ∫
S

π(dx)p(x, y) (1)

is a version of the stationary density.2

Remark In the case that bothπ(·) and
∫

S
π(x)p(x, ·) are

continuous, we can generally expect equality everywhere,
and not justµ a.e. For example, this will hold whenµ is
Lebesgue measure on the real line.

To avoid having to state pointwise convergence proper-
ties as holding forµ-almost ally, we will henceforthdefine
π(y) to be equal to (1), even when this is infinite valued.
This new definition changesπ(y) on a set ofµ measure
0, and is merely a theoretical convenience. Practically
speaking, this makes no difference to the estimator.

The above result suggests that we might estimateπ(y)
via the look-ahead estimator

πn(y)
4
=

1
n

n−1∑
k=0

p(Xk, y). (2)
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Our next result reveals certain pointwise convergen
properties of this estimator, including the rate of con
vergence. In preparation for this result, note that Harr
recurrent Markov chains are known to contain regene
ative structure (see, e.g., Asmussen 1987, or Henders
and Glynn 1998). So suppose that the chainX is
classically regenerative, i.e., there exist stopping tim
0 = T (−1) ≤ T (0) < T (1) < T (2) < · · · such that the
random elements

X̃(i) = (XT (i−1)+k : 0 ≤ k < T (i) − T (i − 1))

are independent fori ≥ 0, and identically distributed
for i ≥ 1. Now define, for a real-valued cost function
f : S → IR and all k ≥ 1, the random variables

Yk(f) =
T (k)−1∑

j=T (k−1)

f(Xj) and

τk = T (k) − T (k − 1),

corresponding to the “cost” accumulated in regenerati
cycle k, and the length of thekth cycle.

Theorem 3 Suppose that assumptionsA and B hold.

1. The estimatorπn(y) is almost surely convergent, i.e.,
for all y ∈ S,

πn(y) → π(y) a.s.,

as n → ∞.

2. In addition, if X is classically regenerative, and
E(Y1(p(·, y))2 + τ2

1 ) < ∞, then

√
n(πn(y) − π(y)) ⇒ σyN(0, 1), (3)

whereN(0, 1) is a standard normal r.v.,⇒ denotes
weak convergence, and

σ2
y =

EY1(p(·, y) − π(y))2

Eτ1
.

Proof: Almost sure convergence (Part 1) follows by th
strong law for Harris chains (Proposition 3.7, Asmusse
(1987), p. 154). The CLT follows directly from Theorem
3.2 of Asmussen (1987), p. 136.2

Theorem 3 shows that in general, the look-ahea
estimator is almost surely convergent, that the error
the estimator is normally distributed, and that the erro
decreases at raten−1/2. This rate of convergence of the
error is an improvement on the rate(nhd

n)−1/2 obtained
by Yakowitz (1989) for kernel density estimators.

To conclude this section, we discuss a generalizati
of the look-ahead estimator that should be of great use
64
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applications. In the introduction we mentioned that genera
discrete-event simulations may be viewed as general sta
space Markov chains. This is done by appending addition
information to the state-space until the resulting process
Markov (see, e.g., Henderson and Glynn 1998). In suc
contexts, it is likely that one will only be interested in the
stationary density of some functional of the process.

For example, suppose we are estimating the densi
of the steady-state waiting time in a single-server queu
where the arrival process is a superposition of two renew
processes. The sequence of customer waiting times is n
necessarily Markov, unless we adjoin the times till the nex
arrival in each arrival renewal process to the state spac
[0,∞). But we are primarily interested in the stationary
distribution of the customer waiting times, and not the
r.v.’s associated with event times.

To handle this situation, letf be a function defined on
the state-spaceS that identifies the variables of interest.
In the above example,f(w, t1, t2) = w, where t1 and t2
are the times till the next arrivals in the 2 renewal arriva
processes. Next, we replace assumptionB with

Assumption B′ For somem > 0, and some underlying
measureµ,

P (f(Xm) ∈ dy) = p(x, y)µ(dy).

Note that if f : S → T , for some spaceT , then
p : S × T → IR andµ is a measure on the spaceT . After
redefining π to be the stationary distribution off(X0),
all the results of this section go through with the obvious
modifications. The results of the following section also
hold with similar modifications.

3 GLOBAL PROPERTIES

In the previous section we discussed thepointwiseconver-
gence properties of the look-ahead density estimator.
this section we turn to the estimator’sglobal convergence
properties. In particular, we show thatπn converges in
L1 to π (Theorem 4), and furthermore, that under rea
sonable conditions,πn(y) converges toπ(y) uniformly
in y (Theorem 5). Convergence inL1 ensures that for
a given simulation runlengthn, errors of a given size
in πn(y) can only occur on a small (with respect toµ)
set. Uniform convergence is especially important in a
visualization context. If one can guarantee that the erro
in the estimatorπn(y) is uniformly small iny, then graphs
of πn will be “close” to π.

Theorem 4 Suppose that assumptionsA and B hold.
Thenπn → π in L1, i.e.,

∫
S

|πn(y) − π(y)|µ(dy) → 0
9
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as n → ∞. This convergence also holds in expectation
i.e.,

E

∫
S

|πn(y) − π(y)|µ(dy) → 0

as n → ∞.

Proof: First note that

0 ≤ |πn(y) − π(y)| ≤ πn(y) + π(y), (4)

and πn(y) + π(y) integrates to the limit in the sense tha

lim
n→∞

∫
S

πn(y) + π(y) µ(dy)

= 2

=
∫

S

2π(y)µ(dy)

=
∫

S

lim
n→∞(πn(y) + π(y))µ(dy). (5)

Hence (see Exercise 16.6, p. 222, Billingsley 1986),
follows from (4) and (5) that

lim
n→∞

∫
S

|πn(y) − π(y)|µ(dy)

=
∫

S

lim
n→∞ |πn(y) − π(y)|µ(dy)

= 0 a.s.

Finally, since
∫ |πn(y) − π(y)|µ(dy) ≤ 2 for all n, the

second result follows by dominated convergence.2

The following theorem gives simple sufficient con
ditions for uniform convergence when the state space
compact. For the proof, see Henderson and Glynn (1998

Theorem 5 Suppose thatS ⊂ IRd is compact, and
assumptionsA and B hold. Suppose further thatp :
S × S → [0,∞) is continuous onS × S. Then πn

converges uniformly toπ on S, i.e.,

sup
y∈S

|πn(y) − π(y)| → 0 a.s.

as n → ∞.

4 AN EXAMPLE

In this section, we compare the look-ahead density estima
with a kernel density estimator through a numerica
example. Specifically, we estimate the (known) stationa
distribution of the customer waiting time sequence i
the M/M/1 queue. In this system, customern (n ≥ 1)
arrives at timeTn, and requires a service timeVn. The
sequence of service times(Vn : n ≥ 0) is i.i.d., and
eachVi is exponentially distributed with meanµ−1. The
sequence of interarrival times(Un : n ≥ 1) is i.i.d., where
650
).

r

Un = Tn − Tn−1 is exponentially distributed with mean
λ−1 (note that we defineT0 = 0). The interarrival and
service time sequences are independent. LetWn denote the
waiting time excluding service of thenth customer. Then
it is well known that the sequenceW = (Wn : n ≥ 0)
satisfies the Lindley recursion

Wn+1 = [Wn + Xn+1]+,

where Xn
4
=Vn−1 − Un for n ≥ 1, and for x ∈ IR,

[x]+
4
= max{x, 0}. Observe that(Xn : n ≥ 1) is i.i.d., so

that W is a Markov chain onS = [0,∞). If ρ
4
=λ/µ < 1,

then W is positive Harris recurrent (see Asmussen 1987
p. 181).

The stationary distribution ofW is a mixture of
a unit mass at 0, and an exponentially distributed r.v
with mean (µ − λ)−1. Thus, it is convenient to take
µ(dx) = δ0(dx)+ I(x ≥ 0)dx, whereδ0 is the probability
measure that assigns a mass of 1 to the origin. Th
stationary distribution then has densityπ with respect to
µ, whereπ(0) = 1 − ρ, and forx > 0,

π(x) = ρ(µ − λ)e−(µ−λ)x.

To define the look-ahead estimator we need to defin
p(x, ·), the transition density ofW with respect toµ. It
is straightforward to show thatp(x, 0) = (1 + ρ)−1e−λx,
and for y > 0,

p(x, y) =
λ

1 + ρ
exp(−µ[y − x]+ − λ[x − y]+).

The look-ahead density estimator aty is then given by

πL(y;n)
4
=n−1

n−1∑
k=0

p(Wk, y).

Defining the kernel density estimator is slightly more
problematical, due to the presence of the point mass at
in the stationary distribution, and to the need to select
kernel and bandwidth. To estimate the point mass at 0 w
use

πK(0;n)
4
=n−1

n−1∑
k=0

I(Wk = 0),

the mean number of visits to 0 in a run of lengthn. For
y > 0, we estimateπ(y) using

πK(y;n)
4
= (nhn)−1

n−1∑
k=0

I(Wk > 0)ϕ((y − Wk)/hn),

where

ϕ(x) =
e−x2/2
√

2π
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is the density of a standard normal r.v., andhn = n−1/5.
This choice ofhn (modulo a multiplicative constant) yield
the optimal rate of mean-square convergence in the c
where the observations are i.i.d. (Prakasa Rao 1983, p. 1
and so it seems a reasonable choice in this context.

For this example we choseλ = 0.5 andµ = 1, so that
ρ = 0.5. To remove the effect of initialization bias (not
that both estimators are affected by this), we simula
a stationary version ofW by sampling W0 from the
stationary distribution.
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Figure 1: Density estimates from a run of length 100
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Figure 2: Density estimates from a run of length 100

The density estimates forx > 0 together with the exact
density are plotted for simulation runlengths ofn = 100
(Figure 1) andn = 1000 (Figure 2). We observe the
following from these figures.
651
1. For both n = 100, and n = 1000, the look-ahead
density appears to closely match the exact density.

2. For bothn = 100, and n = 1000, the kernel density
estimator appears to perform better away from the
origin. It’s performance near the origin is particularly
poor.

3. Overall, the look-ahead density appears to be a fa
better representation of the exact density than th
kernel density.

4. The look-ahead density appears to be monotone fo
both runlengths.

5. The kernel density has several local modes, as
strikingly evident in Figure 1.

The poor performance of the kernel density estimato
relative to the look-ahead density estimator was, perhap
expected, owing to the different convergence rates discuss
in Section 2. Particularly notable is the poor performance
of the kernel density estimator near the boundary. With
increasingly long runlengths, and smaller bandwidths, thi
effect may be expected to diminish, but progress is slow
as exemplified in Figure 2 for a run of length 1000.

We anticipate that similar behaviour can be expecte
on far more general systems, and therefore conclude th
when applicable (i.e., when assumptionsA and B are
satisfied), the look-ahead approach discussed in this pap
should be the preferred methodology for density estimation
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