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ABSTRACT

We formulate and evaluate weighted and ordinary lea
squares procedures for estimating the parametric r
function of a nonhomogeneous Poisson process. Spe
emphasis is given to processes having an exponential
function, where the exponent may include a polynomi
component or some trigonometric components or bo
Theoretical and experimental evidence is provided
explain some surprising problems with the weighted lea
squares procedure. The ordinary least squares procedu
based on a square root transformation of the “detrende
event times; and the results of an extensive Mon
Carlo study are summarized to show the advantages
disadvantages of this procedure.

1 INTRODUCTION

In this paper we focus on arrival (counting) processes, a
more particularly, arrival processes that can be classified
nonstationary point processes. For such processes we
able to observe each arrival time exactly, and in gene
the arrival intensity (rate) changes over time. Und
certain assumptions a nonstationary arrival process can
represented as a nonhomogeneous Poisson process (NH
(Çinlar, 1975). Using NHPPs, we can accurately represe
a large class of arrival processes encountered in pract

An NHPP {N(t) : t ≥ 0} given by

N(t) = # of arrivals in [0, t] for all t ≥ 0

is a generalization of the Poisson process in which t
instantaneous arrival rateλ(t) at time t is a nonnegative
integrable function of time. The mean-value function o
the NHPP is defined by

µ(t) ≡ E[N(t)] for all t ≥ 0;
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and the relationship between the rate function and
mean-value function is

E[N(t)] =
∫ t

0
λ(z) dz for all t ≥ 0.

The probabilistic behavior of the NHPP is complete
defined by the rate or mean-value functions. The literatu
in this area includes both parametric and nonparame
methods for estimating the NHPP rate function. T
model arrival processes having several periodic effects
a long-term trend (or both), Kuhl, Wilson, and Johnso
(1997) utilized an NHPP whose rate function is of th
type exponential-polynomial-trigonometric with multiple
periodicities (EPTMP).

The principle of least squares is a method for estimati
the parameters of a statistical model fitted to sample d
by minimizing an appropriate sum of squared estimati
errors. In this paper we investigate least squares meth
for fitting NHPPs to arrival processes having paramet
rate functions such as an EPTMP-type rate function of t
form

λ(t) = exp{h(t;m, p,Θ)}, t ∈ [0, S], (1)

with

h(t;m, p,Θ) =
m∑

i=0

αit
i +

p∑
k=1

γk sin(ωkt + φk),

where

Θ = [α0, α1, . . . , αm, γ1, . . . , γp, φ1, . . . , φp, ω1, . . . , ωp]

is the vector of continuous parameters. The least squa
procedure will be used to fit the mean-value functionµ(t)
to N(t), the observed cumulative number of arrivals
time t ∈ [0, S].
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Least squares has been widely used to fit distribu
functions to observed data. For example, Swain, Ven
traman, and Wilson (1988) successfully used least squ
procedures to estimate the parameters of cumulative
tribution functions (c.d.f.’s) from the univariate Johns
translation system of distributions based on observed d
Similarly, Wagner and Wilson (1996) found least squa
to be an effective and computationally efficient method
fitting a univariate B́ezier c.d.f. to sample data. Fitting
mean-value function and a c.d.f. are similar in that b
are increasing functions which are fitted to the (poss
rescaled) cumulative frequency of occurrence of relev
sample data. Since certain variants of least squares
proven to be advantageous methods for fitting distribu
functions, we are motivated to develop appropriate le
squares procedures for estimating the mean-value fun
of an NHPP.

2 METHODOLOGY

2.1 Setup for Least Squares Estimation of NHPPs

For an NHPP{N(t) : t ≥ 0} in the interval [0, S], let
{τi : i = 1, 2, . . . , N(S)} denote the corresponding arriv
times. Throughout this paper, we let{τi : i = 1, 2, . . .}
denote a sequence of random arrival times; and a realiz
of this process (that is, an observed sequence of spe
arrival times) we will write as{ti : i = 1, 2, . . .}. If
we know the functional form of the mean-value functi
µ(t;Θ), then we have the relationship

µ(τi;Θ) = E[µ(τi;Θ)] + εi for i = 1, 2, . . . , (2)

where εi is the random error, i.e. the statistical variati
around the mean, andE[εi] = 0. If the errors {εi :
i = 1, 2, . . .} were independent and identically distribut
(i.i.d.), then we could calculate the ordinary least squa
estimates of the parameters, denotedΘ̃OLS, by minimizing
the error sum of squares

SSE(Θ̂) =
N(S)∑
i=1

{
µ(τi; Θ̂) − E[µ(τi; Θ̂)]

}2

over all values of̂Θ so that we takẽΘOLS = arg min̂Θ SSE

(Θ̂) (Seber and Wild 1989).
In the case of an NHPP, the errors{εi : i = 1, 2, . . .}

in (2) are neither independent nor identically distribu
— in particular, an NHPP has the following probabil
structure. Given an NHPP{N(t) : t ≥ 0} with rate
function λ(t) and mean-value functionµ(t), the sequenc
of arrival epochsτ1, τ2, . . . are event times of this NHP
if and only if the “detrended” arrival epochs

τ∗
i = µ(τi;Θ)
63
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Figure 1: Relationship between Original and Detrended
Arrival Times

for i = 1, 2, . . . constitute a Poisson process with rate 1
(Çinlar 1975). Figure 1 illustrates this relationship.

Since the detrended arrival timesτ∗
1 , τ∗

2 , . . . come from
a Poisson process with rate 1, the detrended interarrival
times

X∗
i =

{
τ∗
i , if i = 1,

τ∗
i − τ∗

i−1, if i = 2, 3, . . .

are i.i.d. exponential random variables with mean 1; and
τ∗
i has ani-stage Erlang distribution with scale parameter

1 so that

E[τ∗
i ] = i for i = 1, 2, . . . . (3)

Furthermore, the variance ofτ∗
i is equal to i, and the

covariance betweenτ∗
i and τ∗

j for i ≤ j is

Cov
[
τ∗
i , τ∗

j

]
= Cov

[
i∑

k=1

X∗
k ,

j∑
l=1

X∗
l

]
= i. (4)

Since the expected value ofµ(τi;Θ) is the constant
i, the covariance structure of the errors{εi : i = 1, 2, . . .}
in (2) will coincide with the covariance structure of the
detrended arrival times given in (4). To exploit the known
covariance structure of the “idealized” estimation errors
{εi : i = 1, 2, . . .}, we developed a weighted least squares
(WLS) procedure for estimating the mean-value function
of an NHPP as well as an ordinary least squares (OLS)
procedure. These methods are examined in the following
subsections.
8
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Least Squares Estimation of

2.2 Weighted Least Squares Estimation of NHPPs

It can be shown that the variance-covariance matrixV of
the idealized residuals{εi} in (2) has inverse given by

V−1 =



2 −1 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0

0 −1 2 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 1


(Kuhl, Damerdji, and Wilson 1998). In the WLS approac
to estimating the mean-value function of a target NHP
the error sum of squares to be minimized is SSE(Θ̂)
= εT(Θ̂)V−1ε(Θ̂) over all values of Θ̂, where the
ith element of the vectorε(Θ̂) of actual residuals is
εi(Θ̂) ≡ µ(τi; Θ̂) − E[µ(τi; Θ̂)] for i = 1, 2, . . . , N(S).
In terms of the vectoru(Θ̂) ≡ V−1/2ε(Θ̂) of transformed
residuals, the WLS estimate of the NHPP parameter vec
Θ is given by

Θ̃WLS = arg min
Θ̂

N(S)∑
i=1

u2
i (Θ̂),

where theith transformed residual is

ui(Θ̂) = µ(τi; Θ̂)
√

i+1
i − µ(τi+1; Θ̂)

√
i

i+1 (5)

for i = 1, 2, . . . , N(S) − 1; and the last element ofu is

uN(S)(Θ̂) =
√

1
N(S)

[
µ(τN(S); Θ̂) − N(τN(S))

]
. (6)

It is clear from (5) and (6) that all information
about the discrepancy between the empirical mean-va
function N(·) and the fitted mean-value functionµ(·; Θ̂)
has been completely eliminated from the firstN(S) − 1
elements ofu, and only the last element ofu contains
any information about the discrepancy between the
two functions. It follows that even in the idealized
situation in which the weighted least squares estimati
procedure starts with perfect (error-free) initial estimat
of the unknown parameters so that̂Θ = Θ, the value
of the objective functionSSE(Θ̂) contains relatively little
information about how closely the current estimate
the mean-value function approximates the empirical mea
value function. Therefore it should not be surprising
situations arise in which the final WLS estimate of th
mean-value function bears almost no reasonable relat
to the empirical mean-value function.

Figure 2 shows an example of the anomalous behav
that can result from using the WLS procedure to fit a
639
NHPP. In this example, the empirical mean-value function
represents the arrival of patients at a kidney-transplant
center in the United States over the time period January
1, 1991 – December 31, 1995. The divergence between
the fitted and empirical mean-value functions provides a
striking example of the way in which the WLS estimation
procedure can fail in practice.
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Figure 2: Weighted Least Squares Estimate of the Mean-
Value Function (Smooth Curve) versus the Empirical Mean-
Value Function of Kidney Transplant Center 103 (Step
Function).

2.3 Ordinary Least Squares Estimation of NHPPs

Because of the fundamental problems that we encountered
in using the WLS procedure for estimating NHPPs, we
developed an alternative approach based on a variance-
stabilizing transformation together with an OLS estimation
procedure. When building a statistical model for which the
variance of the original response variable is proportional
to its mean (as in (3) and (4)), a standard variance-
stabilizing transformation is to work with the square root
of the original response (Box, Hunter, and Hunter 1978).
Therefore, we have implemented the following square root
transformation to “normalize” and “stabilize the variance”
of the dependent variable in our statistical model of the
detrended arrival epochs so that the associated idealized
residuals have the following form

εi =
√

µ(τi;Θ) − E
[√

µ(τi;Θ)
]

(7)

for i = 1, 2, . . . .
In Kuhl, Damerdji, and Wilson (1998) we show that

as i → ∞, E[
√

µ(τi;Θ)] is asymptotic to
√

i − 1
4 and

Var[
√

µ(τi;Θ)] → 1
4 ; moreover idealized residuals of the

form
√

µ(τi;Θ) −
√

i − 1
4 converge in distribution to a
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normal distribution with mean zero and variance1
4 ,

√
µ(τi;Θ) −

√
i − 1

4
D−→

i→∞ N(0, 1
4 ) .

Thus, we see that the square root transformation does
fact stabilize the variance of the idealized residuals{εi}
in (7); and we obtain the variance stabilized–ordinary lea
squares estimate for the parameter vectorΘ as

Θ̃OLS = arg min
Θ̂

N(S)∑
i=1

(√
µ(τi; Θ̂) −

√
i − 1

4

)2

. (8)

The next step is to identify an appropriate numeric
procedure for minimizing the sum of squared errors o
the right-hand side of (8).

3 PARAMETER ESTIMATION
PROCEDURE

Given an EPTMP-type rate function of the form (1
we must determine the degreem of the polynomial
component of the exponent and least squares estimate
the parameters ofΘ. To determinem, we will use a
sequential model selection procedure. Based on the ini
estimates of the parameters, we perform a likelihood ra
test to determine the appropriate degreem. Then we
condition the estimation of the parameters on a fixed va
of m and compute the final least squares estimate of
parameter vectorΘ.

The procedure for obtaining the least squares estim
Θ̃m conditioned on a fixed value ofm involves a numerical
search procedure over the relevant parameter space.
have investigated several numerical search procedu
including the Levenberg-Marquardt procedure, which is
specialized search gradient-search method for least squ
problems (Kennedy and Gentle 1980), and the Neld
Mead simplex search procedure (Barton 1996, Olss
1974, Olsson and Nelson 1975), which is a general dire
search method for unconstrained optimization of continuo
response functions that may be nondifferentiable. We ch
the Nelder-Mead simplex search procedure to perform t
numerical optimization because of its ability to hand
weighted least squares formulations of our proble
Moreover in the case of least squares estimation of
mean-value function for an NHPP having an EPTMP
type rate function, we found that the performance a
computational efficiency of the Nelder-Mead procedu
is approximately equivalent to that of the Levenber
Marquardt procedure.

The initial parameter estimates are based on me
ods by Kuhl, Wilson, and Johnson (1997) for rapidl
approximating the maximum likelihood estimates of th
640
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parameters of an EPTMP-type rate function. To determine
the degreem of the polynomial, the user can specify
the minimum and maximum degree of the polynomial
to be fitted. For each degreem of the polynomial, let
Θ̂m denote the initial estimate of the parameter vector
Θ based on the procedure of Kuhl, Wilson, and Johnson
(1997). We use the likelihood ratio test of Lee, Wilson
and Crawford (1991) to determine the final estimate ofm.
Suppose a sequence ofn events is observed at the epochs
t1 < t2 < · · · < tn in a fixed time interval[0, S] as a
realization of an NHPP with a rate function of the form
(1). For each trial degreem, we letLm

(
Θ̂m

∣∣∣n, t
)

denote

the corresponding log-likelihood function evaluated atΘ̂m,
given N(S) = n and t = (t1, t2, . . . , tn). Under the null
hypothesis that the current value ofm is the true degree
of the trend component of the underlying EPTMP-type
rate function, the test statistic

2
[
Lm+1

(
Θ̂m+1

∣∣∣n, t
)

− Lm

(
Θ̂m

∣∣∣n, t
)]

(9)

has approximately the chi-squared distribution with one
degree of freedom providedS andn are sufficiently large.
Thus we exploit (9) to assess the importance of successiv
increments of the likelihood function as the degree of the
estimated trend component is repeatedly incremented b
one. The degree of the fitted EPTMP-type rate function
is determined to be the smallest value ofm for which the
difference (9) is not significant at a prespecified level of
significance. The corresponding vectorΘ̂m provides the
initial parameter estimates for the Nelder-Mead simplex
search procedure to compute the final least squares estima
Θ̃m of the parameter vectorΘ.

4 EXPERIMENTAL PERFORMANCE
EVALUATION

4.1 Generation of Experimental Data

To evaluate the procedure for fitting an EPTMP-type rate
function to a nonhomogeneous Poisson process havin
multiple cyclic effects, we chose seven NHPPs which
represent processes having up to four cyclic component
or a general trend over time or both. These cases wer
chosen based on the set of experimental cases used b
Kuhl, Wilson, and Johnson (1997) to evaluate a maximum
likelihood estimation procedure for NHPPs with EPTMP-
type rate functions. Case 1 is a EPTMP-type rate function
with one periodic component. Cases 2 through 4 consist o
exponential rate functions with two periodic components.
Cases 1 and 2 do not contain a general trend ove
time. Cases 3, 4, and 5 contain general trends which
are represented by polynomials of degree 1, 2, and 3
respectively. Rate functions of type EPTMP with three
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Table 1: Parameters of NHPPs Used in the Experimental Evaluation

Case
Parameter 1 2 3 4 5 6 7

α0 3.6269 3.6269 3.6269 3.6269 4.5197 3.6269 3.6269
α1 — — 0.1000 −0.1000 −0.4743 — —
α2 — — — 0.0200 0.0873 — —
α3 — — — — −0.0041 — —
γ1 1.0592 1.0592 1.0592 1.0592 1.0592 1.0592 1.0592
φ1 −0.6193 −0.6193 −0.6193 −0.6193 −0.6193 −0.6193 −0.6193
ω1 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831 6.2831
γ2 — 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
φ2 — 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
ω2 — 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664
γ3 — — — — — 0.2500 0.2500
φ3 — — — — — 0.2500 0.2500
ω3 — — — — — 25.1327 25.1327
γ4 — — — — — — 0.7500
φ4 — — — — — — 0.7000
ω4 — — — — — — 3.1416
are

ase
the

time

ne
nnu

ated

rva
sed
in-

was
the
cies
The
ike-
ree
ase
sti-
at

ial
riod

io
ins
s.
e
al
e.
s
e

al
e
n

nt
ed

e

and four periodic components and no long-term trend
utilized in Cases 6 and 7, respectively.

The parameters of the rate function for each c
are shown in Table 1. The frequencies used in
experimentation are expressed in radians per unit
such thatω1 = 2π, ω2 = 4π, ω3 = 8π, and ω4 = π
radians per unit time. If the unit of time is taken to be o
year, then these frequencies represent annual, semia
quarterly, and biennial effects, respectively.

Realizations of the selected NHPPs were gener
over the interval[0, S] using the programmp3sim (Kuhl,
Wilson, and Johnson 1997). For each case,K = 100
independent replications were simulated over the inte
[0, 12]; and the resulting event-count samples were u
first to verify the correct operation of the piecewise
version scheme implemented inmp3sim . Then on each
replication of each case, an EPTMP-type rate function
fitted to the observed series of event times. For all of
applications of the estimation procedure, the frequen
of the periodic effects are considered to be known.
user-specified significance level for the approximate l
lihood ratio test (9) to determine the appropriate deg
of the polynomial was set equal to 0.05. In each c
with the exception of Case 7, the initial parameter e
mates specified in Section 3 were used in the approxim
likelihood ratio test (9). Since the quality of the init
parameter estimates degrades as the number of pe
641
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components increases, the approximate likelihood rat
test based on these initial parameter estimates also beg
to fail as the number of periodic components increase
In running these experiments, we found that when th
number of periodic components was greater than or equ
to four, the performance of the test (9) was unacceptabl
Therefore, in Case 7 the true maximum likelihood estimate
were used in the test statistic (9). The minimum degre
of the fitted polynomial was set to zero and the maximum
degree of the fitted polynomial was set to six on every
application of the OLS estimation procedure.

4.2 Formulation of Performance Measures

To evaluate the performance of the OLS estimation
procedure, we used both visual-subjective and numeric
goodness-of-fit criteria. These numerical performanc
measures were utilized by Kuhl, Wilson, and Johnso
(1997) to evaluate the maximum likelihood estimation
procedure for fitting an EPTMP-type rate function. These
include absolute measures of error for each experime
and relative performance measures that can be compar
across the different experiments. For replicationk of a
given case (k = 1, . . . , K), the estimated rate function is

denoted byλ̃k(t) and the estimated mean-value function
is denoted bỹµk(t).

As defined in Kuhl, Wilson, and Johnson (1997),
we let δk and δ∗

k respectively denote the average absolut
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Table 2: Statistics Describing the Errors in Estimatingλ(t) and µ(t), t ∈ [0, 12]

Case
1 2 3 4 5 6 7

µ(S) 586 588 1126 967 968 599 714
δ 10.0 11.4 16.0 12.2 14.4 14.4 12.6
Vδ 0.65 0.47 0.36 0.27 0.62 0.40 0.36
Qδ 0.21 0.23 0.17 0.15 0.18 0.29 0.21

δ∗ 23.7 29.4 65.5 80.3 56.3 40.7 52.5
Vδ∗ 0.60 0.47 0.42 0.32 0.57 0.48 0.37
Qδ∗ 0.48 0.60 0.70 1.00 0.70 0.82 0.88
∆ 12.4 12.8 15.6 12.9 16.1 11.0 11.6
V∆ 0.84 0.73 0.70 0.59 0.63 0.82 0.59
Q∆ 0.043 0.043 0.033 0.038 0.036 0.037 0.031
∆∗ 25.1 25.4 37.4 33.3 34.7 23.4 24.3
V∆∗ 0.74 0.64 0.65 0.52 0.54 0.73 0.53
Q∆∗ 0.087 0.086 0.081 0.097 0.077 0.078 0.065
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error and maximum absolute error that occur in estimatin
the rate functionλ(t) on thekth replication of the target
NHPP over the time interval[0, S]. Similarly, we let
∆k and∆∗

k respectively denote the average absolute err
and maximum absolute error that occur in estimating th
mean-value functionµ(t) on the kth replication of the
target NHPP over the time interval[0, S]. The sample
mean of the observations{δk : k = 1, . . . , K} is denoted
by δ; and Vδ denotes corresponding sample coefficient o
variation. The statisticsδ∗ andVδ∗ are computed similarly
from the observations{δ∗

k : k = 1, . . . , K}. The sample
statistics∆, V∆, ∆∗, and V∆∗ are defined in the same
fashion. As in Kuhl, Wilson, and Johnson (1997), w
also report the “normalized” statisticsQδ, Qδ∗ , Q∆, and
Q∆∗ to facilitate comparison of results for different rate
functions.

In addition to performance measures that indicate t
ability of the least squares procedure to fit an EPTMP-typ
rate and mean-value function to the rate and mean-va
function of the underlying NHPP, we have formulate
performance measures that indicate the ability of th
least squares procedure to fit the observed arrival proce
Space limitations preclude elaboration of these performan
measures in this paper. For a detailed discussion of the
statistics and their application in the present Monte Car
study, see Kuhl, Damerdji, and Wilson (1998).

Beyond the numerical performance measures of goo
ness of fit to the underlying arrival process or to
realization of that process, graphical methods are us
to provide a visual means of determining the quality o
the estimates. For each case, the underlying theoreti
rate (respectively, mean-value) function is graphed alo
with a tolerance band for the estimated rate (respective
642
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mean-value) function. Kuhl, Wilson, and Johnson (1997)
provide a detailed description of the method used to
construct these tolerance bands.

4.3 Presentation of Results

The statistical results on the estimation ofλ(t) and µ(t)
for each experimental case are shown in Table 2. Thes
statistics describe the errors in estimating the underlying
theoretical rate and mean-value functions. Table 3 show
the frequency distribution of the fitted degree of the
polynomial trend taken over100 replications for each
case. Figures 4.3 through 4.3 contain the graphs o
90% tolerance bands for the rate function and mean-value
function for cases 1, 5, and 7.

4.4 Analysis of Results

The statistical results in Table 2 seem to be reasonabl
for the selected measures of performance. Since thes
experimental cases are based on those of Kuhl, Wilson
and Johnson (1997), we will use their statistical results a
a benchmark for evaluating the performance of our leas
squares estimation procedure.

In general, the performance measures in Table 2 tha
describe the estimation errors in fitting the underlying rate
function (those involvingδ) are higher (worse) for the least
squares estimation procedure than the corresponding resu
reported for maximum likelihood estimation. However, the
performance measures that describe the errors in fitting th
underlying mean-value function (those involving∆) are
approximately the same for the two estimation methods
The larger rate-function estimation errors that were obtaine
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Figure 3: 90% Tolerance Intervals forλ(t), t ∈ [0, 12],
in Case 1
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Figure 5: 90% Tolerance Intervals forλ(t), t ∈ [0, 12],
in Case 7
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Figure 7: 90% Tolerance Intervals forµ(t), t ∈ [0, 12],
in Case 5
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Figure 4: 90% Tolerance Intervals forλ(t), t ∈ [0, 12],
in Case 5
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Figure 6: 90% Tolerance Intervals forµ(t), t ∈ [0, 12],
in Case 1

0 2 4 6 8 10 12
Time t

0

200

400

600

800

C
u

m
u

la
ti

ve
 M

ea
n

 A
rr

iv
al

s

Figure 8: 90% Tolerance Intervals forµ(t), t ∈ [0, 12],
in Case 7
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with the least squares procedure may be due to the fact
the objective function for the least squares procedure
based on the discrepancies between the fitted mean-v
function and the empirical mean-value function. Thus
good fit to the mean-value function does not necessa
guarantee that the fit to its derivative, the rate function, w
be good. The difference between the quality of the fits
the two methods is also evident in the plots of the rate a
mean-value functions. Also, we observe that the errors
estimating the underlying rate and mean-value functio
tend to increase as the degreem of the long-term trend and
the numberp of periodic components increase. One reas
for this may be that as the number of periodic compone
increases, the initial estimates of the parameters begi
degrade, which may cause the numerical search proce
to start too far from the optimum. Poor starting values
the parameter estimates may result in the procedure find
a local minimum least squares estimate and stopping
suboptimal solution.

Table 3 indicates the ability of the fitting procedure
determine the degree of the exponential-polynomial tre
present in the underlying NHPP rate function. The
results indicate that the likelihood ratio test based on
initial estimates for the maximum likelihood estimatio
procedure works well in general for rate functions havi
up to three periodic components. With more than th
periodic components, we were able to achieve simila
good results but at the cost of computing the final maxim
likelihood estimates to be used in the likelihood ratio te

Table 3: Frequency of Fitted Polynomial Degree f
K = 100 Realizations

True Fitted Degree
Case Degree 0 1 2 3 4 5 6

1 0 93 7 0 0 0 0 0
2 0 87 13 0 0 0 0 0
3 1 0 94 6 0 0 0 0
4 2 0 0 87 13 0 0 0
5 3 3 0 1 95 1 0 0
6 0 100 0 0 0 0 0 0
7 0 94 6 0 0 0 0 0

The plots of the 90% tolerance bands about th
rate functions indicate that the least squares estima
procedure is consistently able to fit a reasonable EPTM
type rate function to the underlying NHPP. Similar to th
results reported by Kuhl, Wilson, and Johnson (199
for maximum likelihood estimation, the plots of th
tolerance bands for least squares estimation are wi
at the peaks and valleys of the arrival rate. In additio
the tolerance bands tend to be wider as the numbe
periodic components increases.
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The plots of the 90% tolerance bands about the
mean-value function also indicate that the least square
procedure consistently provides reasonable estimates of t
underlying NHPP. Also from the plots of the tolerance
bands, one can observe that the widths of the toleranc
bands increase over time. This behavior is expected
Because the error is cumulative over time, the estimatio
error increases as the mean-value function increases.

5 CONCLUSION

In this paper we have developed a least squares method
estimating the parameters of an NHPP having an EPTMP
type rate function. This procedure has been implemente
in the public domain computer softwaremp3ls . Using this
software, we have performed an experimental evaluatio
of our least squares procedure. The results of this stud
indicate that the least squares estimation method does
good job of doing what it was designed to do. Namely, the
procedure is capable of accurately tracking the empirica
mean-value function of an NHPP. In addition, we have
developed a weighted least squares formulation of thi
problem, and have shown theoretically why weighted leas
squares fails when applied to an estimation problem with
a first- and second-order moment structure such as th
arising in estimation of the mean-value function for an
NHPP.
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