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ABSTRACT

In this paper we compare the average performance of
class of low-discrepancy quasi-Monte Carlo sequences
global optimization. Weiner measure is assumed as
probability prior on all optimized functions. We sho
how to construct van der Corput sequences and we p
their consistency. Numerical experimentation shows t
the van der Corput sequence in base 2 has a better ave
performance.

1 INTRODUCTION

The Monte Carlo method may be described, in sim
terms, as a numerical method based on random samp
It is therefore a method with a strong statistical a
probabilistic flavor. Quasi-Monte Carlo methods are t
deterministic version of the classical Monte Carlo metho
in the sense that the random samples in the Monte C
method are replaced by well-chosen deterministic poin

For numerical integration, the Monte Carlo meth
promises integration errors for which the order of ma
nitude, in terms of the number of nodes, is independ
of the dimension. However, it yields only a probabilist
(unguaranteed) bound on the integration error. Moreo
the analysis shows that a deterministic error bound can
established if deterministic nodes are used. This lead
the idea of selecting deterministic nodes in such a w
that the error bound is as small as possible. This i
expresses the fundamental principle of quasi-Monte C
Method. The main aim is to select deterministic points
which the deterministic bound is smaller than the pro
bilistic Monte Carlo error bound. In fact, for many Mon
Carlo methods, it is possible to develop correspond
quasi-Monte Carlo methods as their deterministic versio

There are quasi-Monte Carlo methods not only
numerical integration, but also for various other numeri
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problems such as optimization. Quasi-Monte Carlo based
(deterministic) algorithms have shown a superior average
performance (asymptotically) compared to other Monte
Carlo based (random) algorithms for approximating the
global maximum of a Brownian motion. Calvin (1995) has
shown that, for the Brownian motion prior, if observations
form a deterministic equi-spaced grid, then the average error
is about 82% as large as if the points are chosen at random
uniformly over the unit interval. Ritter (1990) investigated
the optimality of the equi-spaced grid algorithm for finite
number of observations. He showed that it is optimal for
two observations, but not in general. Al-Mharmah and
Calvin (1997) has shown that a deterministic algorithm that
uses the images of a certain deterministic sequence unde
the inverse cumulative probability function of the beta
distribution has a better asymptotic average performance
than the optimal Monte-Carlo based algorithm. The
question of the optimal deterministic sequence that could
minimize the average value of the approximation error is
still an interesting question that needs to be answered.

The purpose of this paper is to present a comparison
of the average performance on several quasi-Monte Carlo
sequences for approximating the global maximum of one-
dimensional real-valued functions defined on the unit
interval. The average performance is defined as the
expected difference between the observed maximum value
and the actual global maximum. For that, Brownian
motion will be used as a probabilistic model for the
one-dimensional continuous functions, and the objective
function is to be taken as one realization of a Brownian
motion process. We use an average-case framework,
which can be thought of as averaging the error over many
independent realizations of the algorithm on different
objective functions. The concept of average optimality is
more useful in this setting than the worst case analysis
where the error can be arbitrarily large unless stringent
conditions are placed on the set of objective functions, such
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as convexity and differentiability. Optimization algorithm
based on average optimality are surveyed in Mockus (19
Törn andZ̆ilinskas (1989), and Betró (1991). Applications
of quasi-Monte Carlo methods are surveyed in Niederre
(1992).

In the next section we introduce the problem and
terminology. In Section 3 we show how to construct v
der Corput sequences as a class of low discrepancy q
Monte Carlo sequences and we discuss their dispersion
consistency characteristics. In Section 4 we compare
average performance of different van der Corput sequen

2 NOTATION AND TERMINOLOGY

Given the set of continuous real-valued functions defin
on the unit interval C([0, 1]), let f ∈ C([0, 1]) be
the objective function to be maximized. Also, l
f∗ = max{f(t); t ∈ [0, 1]} denote its global maximum
To approximatef∗ we assume that we are allowed
observe the functionf at n locations. Lett1, t2, . . . , tn
be the sequence of the observation sites in[0, 1], and let
Mn be the maximum of then observed values;

Mn = max
1≤i≤n

f(ti).

Our goal is to compare the average performance
several deterministic sequences based on their ave
approximation errorE(∆n), where

∆n = max
1≤i≤n

f(ti) − f∗.

Suppose that we have some prior knowledge ab
the relative likelihood of various functions, and that w
can formalize this knowledge in a form of a probabili
measureµ on C([0, 1]). Consequently, we can view an
function f ∈ C([0, 1]) as a sample path of a stochas
process. Hence,

E(∆n) =
∫

f∈C([0,1])

(
max

1≤i≤n
f(ti) − f∗

)
dµ(f). (1)

The Wiener measure onC([0, 1]) will be taken as the
probability distribution; i.e.,f is taken to be a sampl
path of a Brownian motion process. It is natural to u
a Gaussian measure, such as the Wiener measure,
model for a random objective function that has multip
local minima with positive probability. Brownian motio
is one of only a few non-trivial stochastic processes
which the distribution of the minimum is even known.

Consistency of any optimization method means t
the observed maximum converges to the global maxim
as the number of observations increases to∞, i.e.

lim
n→∞ max{f(t1), f(t2), . . . , f(tn)} → f∗,
624
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for all continuous functions onC[0, 1]. Discrepancy of a set
of observation sites can be viewed as a quantitative meas
for the irregularity of distribution. For the one-dimension
case, discrepancy can be expressed in different forms s
as star discrepancyD∗

n(S) and extreme discrepancyDn(S),
where (for0 ≤ t1 ≤ t2 ≤ . . . ≤ tn)

D∗
n(t1, t2, . . . , tn) =

1
2n

+ max
1≤i≤n

∣∣∣∣ti − 2i − 1
2n

∣∣∣∣ ,

and

Dn(t1, t2, . . . , tn) = 1
n + max

1≤i≤n

(
i

n
− ti

)

− min
1≤i≤n

(
i

n
− ti

)
.

A low-discrepancy sequence is informally defined as
sequenceS for which D∗

n(S) or Dn(S) is small for
n ≥ 1.

Dispersion may be viewed as a measure for t
deviation from denseness. Formally speaking, let(T, d)
be a bounded metric space and letS be a sequence tha
consists oft1, t2, . . . , tn ∈ T . If we order the points of
S such that0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, then the dispersion
dn(S) of S in T is defined as

dn(S) = max (t1, 0.5(t2 − t1), 0.5(t3 − t2), . . . ,
0.5(tn − tn−1), 1 − tn).

Discrepancy and dispersion of a certain set (
sequence) of observations are related to each ot
Niederreiter (1992) shows that every low-discrepancy
(or sequence) is a low-dispersion point set (or sequen
but not conversely. Therefore, we will limit our averag
performance comparison to the average performance
one class of low-discrepancy sequences, the van der Co
sequences.

A composite non-adaptive algorithm is one th
maintains its form as the number of observations increas
see Zhigljavsky (1991). If we denote the set of observatio
made by an algorithm up to timen bySn = {t1, t2, . . . , tn},
then we will call an algorithm composite ifSn+1 ⊃ Sn.
One clear advantage of van der Corput sequences
compositeness. A consequence of compositeness is
there is no need to determine in advance how ma
observations are to be taken in order to construct
observation set. In contrast, non-composite algorith
do not adapt gracefully as the number of observatio
changes. An example is the “uniform grid" algorithm
(non-composite) that takes equally spaced observations
a total ofn observations are to be made, they are placed
1/n, 2/n, . . ., 1. However, if the number of observation
is increased ton+1, there is no way to add an observatio
point so as to maintain a uniform grid.
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3 VAN DER CORPUT SEQUENCES

3.1 Construction

Van der Corput sequence in baseb is a low-discrepancy
sequence and can be constructed as follows (see Niederre
1992): for an integerb ≥ 2, we putZb = {0, 1, . . . , b−1};
i.e., Zb is the least residue system modeb. Every integer
n ≥ 0 has a unique digit expansion

n =
∞∑

j=0

aj(n)bj (2)

in baseb, whereaj(n) ∈ Zb for all j ≥ 0 andaj(n) = 0 for
all sufficiently largej. Also, let φb be the radical-inverse
function in baseb for an integerb ≥ 2, where

φb(n) =
∞∑

j=0

aj(n)
bj+1 (3)

for all integersn ≥ 0. Thusφb(n) is obtained fromn by
a symmetric reflection of the expansion (2) in the decim
point. Then, for an integerb ≥ 2, the van der Corput
sequence in baseb is the sequenceSb = {t1, t2, . . .} with

tn = φb(n), (4)

for all n ≥ 0. Following the above approach, Table 1
shows the first ten observation sites for five van der Corp
sequences in base 2,3,4, and 5 respectively.

For the purpose of comparing the average performan
of the above sequences, we continue generating sites fr
all sequences as will be shown in Section 4.

3.2 Consistency

Törn and Žilinskas (1989) discussed the necessary a
sufficient conditions for the convergence of a globa
optimization method for continuous functions. The
proved that a global optimization algorithm converge
to the global extremum of any continuous function i
and only if the sequence of the sampling observatio
is everywhere dense in the function domain. Hence
prove consistency of a certain algorithm, it suffices t
show that the observations become dense everywhere.
above discussion suggests that the desirable observa
sites should be evenly distributed over the unit interva
In Theorem 1 we show that any van der Corput sequen
in baseb is consistent.

Theorem 1 Let f be a continuous real-valued function
on C[0, 1]. The set of observation sites{t1, t2, . . . , tn}
generated as a van der Corput sequenceSb and applied
to f is dense in[0, 1].
625
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Proof.
Let 0 ≤ k1 ≤ k2 ≤ 1. Consider an algorithm that places
the observation sites according to a van der Corput sequen
Sb in baseb, and assume that no observation will ever be
made in the interval(k1, k2). Therefore,

tn =
∞∑

j=0

aj(n)
bj+1

should be either less thank1 or greater thank2 for all
n = 1, 2, . . .. However, asn increases to∞, there exists
m such that

n =
m∏

j=0

(b − 1)bj ,

where m is positive integer. Hence, the constants in
Equation (2) will take the values

a0 = a1 = . . . = am = b − 1,

and
am+1 = am+2 = . . . = a∞ = 0.

Therefore, from Equation (4),

tn =
m∑

j=0

b − 1
bj+1 ,

=
b − 1

b
+

b − 1
b2 + . . . +

b − 1
bm+1 ,

= 1 − 1
b

+
1
b

− 1
b2 +

1
b2 . . . − 1

bm

= 1 − 1
bm

,

which converges to1 as n → ∞. Therefore,tn will be,
eventually, greater thank2. Similarly, we can show that
tn will eventually converge to zero, and, hence, less tha
k1 if we pick

n =
m∏

j=0

bj ,

and letm → ∞ as n → ∞. Therefore, eventually, there
exists tn ∈ (k1, k2) which contradicts our assumption.

4 NUMERICAL EXPERIMENTATION

Simulation is used to compare the average performanc
of van der Corput sequences in base 2,3,4, and 5 b
estimating their average approximation error. All average
are based on 50000 independent runs. In each run th
function values are generated at the sampling location
of a van der Corput sequence from a Brownian motion
prior. Tables 2, 3, 4, and 5 show the average value o
the observed maximumE(Mn) as well as the average
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Table 1: Sample Observation Sites for the Van Der Corp
Sequences in Base 2,3,4,and 5

n S2 S3 S4 S5

1 0.5 0.333 0.25 0.2
2 0.25 0.667 0.5 0.4
3 0.75 0.111 0.75 0.6
4 0.125 0.444 0.0625 0.8
5 0.625 0.778 0.3125 0.04
6 0.375 0.222 0.5625 0.24
7 0.875 0.556 0.8125 0.44
8 0.0625 0.889 0.125 0.64
9 0.5625 0.03704 0.375 0.84
10 0.3125 0.3704 0.625 0.08

Table 2: Simulation Output for Van Der Corput Sequenc
S2

n E(Mn) E(∆n)
2 0.481798 0.316087
3 0.520939 0.276946
4 0.555338 0.242547
5 0.574304 0.223581
6 0.588510 0.209374
7 0.600230 0.197655
8 0.617022 0.180863
9 0.626513 0.171372
10 0.632028 0.165857
20 0.676564 0.121320
30 0.696680 0.101205
40 0.710129 0.087755
50 0.718799 0.079086

Table 3: Simulation Output for Van Der Corput Sequenc
S3

n E(Mn) E(∆n)
2 0.477751 0.320133
3 0.526043 0.271842
4 0.551657 0.246227
5 0.569908 0.227976
6 0.589711 0.208174
7 0.601422 0.196463
8 0.611748 0.186136
9 0.626158 0.171726
10 0.634196 0.163688
20 0.675856 0.122029
30 0.698688 0.099197
40 0.708912 0.088972
50 0.717341 0.080544
626
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Table 4: Simulation Output for Van Der Corput Sequence
S4

n E(Mn) E(∆n)
2 0.472260 0.325625
3 0.520682 0.277203
4 0.555369 0.242515
5 0.573351 0.224533
6 0.585096 0.212788
7 0.596053 0.201831
8 0.609566 0.188319
9 0.619486 0.178399
10 0.626613 0.171271
20 0.675261 0.122623
30 0.692840 0.105045
40 0.707126 0.090759
50 0.718415 0.079470

Table 5: Simulation Output for Van Der Corput Sequence
S5

n E(Mn) E(∆n)
2 0.467452 0.330433
3 0.513808 0.284077
4 0.549663 0.248221
5 0.576710 0.221175
6 0.590387 0.207498
7 0.598750 0.199134
8 0.606350 0.191535
9 0.614038 0.183847
10 0.623717 0.174168
20 0.675547 0.122337
30 0.696444 0.101441
40 0.705855 0.092029
50 0.714849 0.083036
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approximation errorE(∆n) after placingn observations
as four van der Corput sequences in base 2,3,4, and
respectively.

Linear regression is used to fit linear models to the
estimates of the expected error values as function o
the observation number for van der Corput sequences in
base 2,3,4, and 5 respectively. Table 6 summarizes th
outcomes, and shows that placing observations as anS5
sequence will be as efficient as98% compared toS2.

Table 6: Linear Regression Models
Sequence The Best Fit Model

S2 E(∆n) = 0.442755
n0.35

S3 E(∆n) = 0.444450
n0.35

S4 E(∆n) = 0.446752
n0.35

S5 E(∆n) = 0.448246
n0.35

5 CONCLUSIONS

In this paper we compare the average performance o
four low discrepancy quasi-Monte Carlo sequences, the
van der Corput sequences in base 2,3,4,and 5. Numerica
experimentation has shown that the sequence in base 2 h
slightly better average performance as compared to othe
types of sequences. The asymptotic average performanc
of the investigated sequences will be addressed elsewher
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