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ABSTRACT

In this paper, we present an approach for measuring cert
properties of synthetic optimization problems based on t
assumed distribution of coefficient values. We show ho
to estimate the proportion of all possible solutions that a
feasible for the 0-1 Knapsack Problem. We calculate th
population variance of the possible solution values an
assess the impact of objective-constraint correlation on t
variability  of feasible solution values.  We also show how
inter-constraint correlation affects the proportion o
feasible solutions in the 2-dimensional Knapsack Problem
Finally, we discuss the significance of our findings fo
designers of computational experiments.

1 INTRODUCTION

Many research papers introduce a new method for solvi
some optimization problem.  Such papers typically includ
an evaluation of the new method’s performance o
synthetic instances of the problem of interest.  In order 
generate synthetic problem instances, a problem-generat
approach is devised and parameter values are specified
certain features of the synthetic instances, for example, t
tightness of the constraints or the density of the constra
coefficient matrix.  Many synthetic  instances are the
generated, and the observed results are summarized 
presented as indicative of the method’s performance on 
instances, including practical instances.

There is often too little understanding about how th
parameters of the problem-generation methods used 
computational experiments affect the characteristics of t
resulting synthetic instances.  When problem-generatio
parameters are chosen, the outcome of an experiment to
run is at least partially predetermined.

Methods for generating synthetic optimization
problems ought to be subjected to the same sort 
evaluations that random number generators are subjec
to, such as those described in Banks, Carson, and Nel
(1996).  Problem-generation methods often seem to 
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designed for convenience or chosen because someone e
used the same method.  There appears to be little regard 
the consequences of selecting a particular problem
generation method.

In this paper, we present an approach for measurin
certain properties of synthetic optimization problems base
on the assumed distribution of coefficient values.  The
measurements of these properties may be made before a
test problems are generated or solved.  By makin
experimenters aware of how their parameter an
distribution selections may affect the properties of the tes
problems they generate, we hope that better computation
experiments will be designed and better understanding 
the performances of solution methods will be realized.

Our paper is organized as follows.  A brief literature
review is presented in §2.  The key insight to the approac
that we use to measure properties of synthetic optimizatio
problems is outlined in §3.  We show how to estimate th
proportion of possible solutions to the 0-1 Knapsac
Problem (KP01) that are feasible in §4.  In §5, we calculat
the population variance of solution values for KP01.  We
consider the impact of objective-constraint correlation o
the variability of feasible KP01 solution values and the
impact of inter-constraint correlation on the proportion o
feasible solutions for the 2-dimensional Knapsack Problem
in §6.  We conclude with a discussion of the significance
of our findings for experimenters.

2 BACKGROUND

There have been many, many papers written about solutio
methods for optimization problems.  Rather than cite an
of those papers here, we highlight a few papers that addre
issues related to the properties of synthetic optimizatio
problems or the relationship of those properties to ou
understanding of solution procedure performance.

Hooker (1994) advocates the development on a
empirical science of algorithms.  We think the presen
effort supports that development.  By recognizing the
characteristics of synthetic optimization problems, one ca
7
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better interpret the results of computational experimen
and better assess the true capabilities and limitations
solution methods.

Loulou and Michaelides (1979) demonstrate that th
distribution of values of one coefficient type can affect th
performance of heuristics, even when the expected value
the coefficients is unchanged.

Martello and Toth (1979, 1981, 1988, 1997), Bala
and Martin (1980), and Balas and Zemel (1980), Reil
(1991), Rushmeier and Nemhauser (1993), Amini an
Racer (1994), Cario et al. (1995), and Pisinger (1997)  are
some of the papers that include an investigation of t
effect of coefficient correlation on solution procedur
performance.

Reilly (1997) shows how the parameters chosen f
common implicit correlation induction problem-generatio
methods affect the implied population correlation betwe
the objective function and constraint coefficients for som
classical optimization problems.  Reilly (1998) shows ho
various correlation induction methods affect th
distribution of objective-constraint coefficient ratios in
KP01 instances.

Pilcher and Rardin (1992) describe a procedure th
uses random cuts to generate symmetric traveling salesm
problem instances with known optimal solution value
based on a partial description of the polytope of solutions

3 BASIC APPROACH

For the most part, we confine our attention to the 0
Knapsack Problem (KP01):

Maximize  

Subject to  

                  

j=1

j=1

c x

a x b

x j

j j

n

j j

n

j

∑

∑ ≤
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where all cj > 0 , all a j > 0 , c bj
j

∑ > , and

max j ja b{ } ≤ .  We assume that the cj s  are i.i.d.

realizations of some random variable C  and that the a j s

are i.i.d. realizations of some random variable A .  We
denote the expected values of C  and A  as µC  and

µA , respectively.  The variances of  C  and A  are denoted

σC
2  and σ A

2 .

Suppose that a 0-1n -vector is drawn at random from
the set of all possible 0-1 solution vectors to KP01.  Th
probability that any of the components of the vector draw
at random has value 0 is 0.5.  Similarly, the probability th
any of the components of the vector drawn at random h
value 1 is 0.5.  Therefore, the value of each vect
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component may be viewed as the outcome of an
independent Bernoulli trial where the probability of a
success and the probability of a failure are identical.

We use the notion of drawing a 0-1 n -vector at
random to determine what proportion of the possible
solutions to KP01 are feasible and how much variability
there is among possible solution values.  We consider th
impact that inducing correlation between the objective and
constraint coefficients has on the variability of feasible
solution values.  Finally, we consider how inter-constraint
correlation in the 2-dimensional Knapsack Problem affect
the proportion of feasible solutions.

4 PROPORTION OF FEASIBLE SOLUTIONS

When instances of KP01 are generated, the right-hand-sid
value in the constraint is usually set using some rule like:

b t aj
j

= ∑ ,

where 0 1< <t .  A typical value for t is 0.5.
Consider the following random variable:

F a x t aj j
j

j
j

= −∑ ∑ .

F  represents the difference between the left-hand side an
the right-hand side of the KP01 constraint.  A non-positive
value of F  indicates that the KP01 solution selected at
random is feasible. F  is asymptotically normal with

µ µF An t= −( . )0 5

and
σ σ µF A An t t2 2 205 1 4= + − +(( . ( )) / ) .

The probability that a randomly selected binary n - vector
is feasible, or the proportion of feasible binary n -vectors,
is Pr( ) ( / )F F F≤ = −0 Φ µ σ , where Φ  is the cumulative

distribution function (c.d.f.) for the standard normal
random variable.

Let A U~ { , , ... , }1 2 25  be the random variable that
represents the constraint coefficient values.  (Our notatio
indicates that A  is uniformly distributed over the integers
from 1 to 25.)  Table 1 shows values of Pr( )F ≤ 0  for
various values of t when n = 100 and n = 500.

Table 1: Values of Pr( )F ≤ 0

t n = 100 n = 500
0.25 <0.0001 <0.0001
0.30 0.0003 <0.0001
0.40 0.0409 0.0001
0.45 0.1912 0.0254
0.48 0.3633 0.2171
0.50 0.5000 0.5000
0.52 0.6367 0.7829
0.55 0.8088 0.9746
0.60 0.9591 0.9999
0.70 0.9997 >0.9999
0.75 >0.9999 >0.9999
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Note that Pr( )F ≤ 0  changes dramatically as 05. − t

increases, especially for large values of n .  This suggests
that KP01 test problems generated with the same value 
t  and different values of n  may not be comparable.

Optimization problems with very many or very few
feasible solutions tend to be relatively easy to solve with a
enumerative procedure (e.g., branch and bound).  If near
all solutions are feasible, a greedy procedure for selectin
variables to be set to 1 will likely be quite effective.  If
very few solutions are feasible, then it is unlikely that there
will be many deep searches along any branches in th
solution tree.  We conclude that values of  Pr( )F ≤ 0  that
are neither small nor large would likely be associated with
relatively challenging KP01 instances.  However, we do
not think that this measure of test problem difficulty alone
will fully explain the observed performances of
enumerative methods on KP01 instances.  Other measur
of problem characteristics or problem difficulty should be
considered as well.

5 VARIABILITY OF SOLUTION VALUES

We use the same approach that we used in the last secti
to quantify the variability of KP01 solution values.
Consider the following random variable:

V c xj j
j

= ∑ ,

which is asymptotically normal with
µ µV Cn= / 2

and
σ σ µV C Cn2 2 22 4= +( ) / .

We see that the variability of the objective function
coefficients and the expected value of the those
coefficients determines the variability of the solution
values of all possible KP01 solutions.  The relative
variability in solution values may determine how effective
certain bounding and dominance criteria may be.

Reilly (1998) studies the relative variability in solution
values of KP01 instances under various problem-
generation schemes by examining the distribution of the
random variable C A/ .

6 EFFECT OF CORRELATION

In many KP01 papers, the effect of correlation on solution
procedure performance is addressed.  Examples of suc
papers include Martello and Toth (1979, 1988, 1997)
Balas and Zemel (1980), Pisinger (1997), and Reilly (1991
1993, 1998).  Generally, KP01 instances are more difficul
to solve when there is strong positive correlation betwee
the objective and constraint coefficients.  We determine
how objective-constraint correlation may effect the
variability of feasible solution values.  In addition, we
consider the proportion of feasible solutions for the 2-
619
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dimensional Knapsack Problem and how it is affected 
the inter-constraint correlation.

6.1  On variability of solution values

To assess the impact that objective-constraint correlat
has on the proportion of feasible solutions to KP01, w
calculate the joint probability that a randomly selected 0
n -vector is feasible and that its solution value falls with
a specified range.

Let A U~ { , , ... , }1 2 50 and C U~ { , , ... , }1 2 100  be the
random variables representing the distributions 
coefficients values.  Also let n = 100 and t = 050. .  (Note
that Pr( ) .F ≤ =0 050 .)  Table 2 shows values of th

probabilities Pr( , . . )F VV V≤ ≤ ≤0 08 11µ µ  for different

values of Corr( , )A C .  Table 3 shows similar values of the

probability Pr( , . )F V V≤ ≥0 11µ .

Table 2: Values of Pr( , . . )F VV V≤ ≤ ≤0 08 11µ µ

Corr(A,C) Probability
-0.9998 0.3949
-0.7499 0.3996
-0.4999 0.4044
-0.2499 0.4096

0 0.4149
0.2499 0.4206
0.4999 0.4263
0.7499 0.4320
0.9998 0.4370

Table3: Values of Pr( , . )F V V≤ ≥0 11µ

Corr(A,C) Probability
-0.9998 0.0546
-0.7499 0.0479
-0.4999 0.0412
-0.2499 0.0344

0 0.0276
0.2499 0.0209
0.4999 0.0143
0.7499 0.0082
0.9998 0.0031

We observe that as the objective-constraint correlat
increases, the solution values tend to become more tig
bunched around µV .  This suggests that an enumerativ

algorithm would have more difficulty identifying an
optimal solution.  It also suggests that heuristic metho
will work well on KP01 instances with strong, positive
objective-constraint correlation because there are so m
solutions with similar, attractive solution values.
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Even though the probabilities shown in Tables 2 and
may not appear to change significantly, we must keep
mind that these probabilities represent the proportions
2n  possible solutions that are feasible and whose solut
values fall in a specified range.  A small change in the
proportions may mean a huge increase in the number
feasible solutions with competitive solution values.

6.2  Between constraints

We determine how inter-constraint correlation affects t
proportion of feasible solutions to 2-dimensional Knapsa
Problems by calculating the joint probability that bot
constraints are satisfied.

Let A U1 1 2 40~ { , , ... , }  and A U2 1 2 15~ { , , ... , }  be the

random variables representing the coefficient values in 
first and second constraints, respectively.  Suppose t
n = 100.  Table 4 shows values of  Pr( , )F F1 20 0≤ ≤  for

different correlation levels and different combinations o
t1  and t2  values.

We see in Table 4 that the proportion of feasib
solutions increases as the inter-constraint correlat
increases.  This makes sense because, as the correl
increases, the constraints become increasingly similar.  
see that

Pr Pr Pr(F2( , ) ( ) )F F F1 2 10 0 0 0≤ ≤ ≠ ≤ ≤
because F1  and F2  are correlated even if A1  and A2  are

uncorrelated.

Table 4: Values of Pr( , )F F1 20 0≤ ≤

Corr(A1, A2)
t1=0.48
t2=0.53

t1=0.50
t2=0.50

t1=0.52
t2=0.47

-0.9975 0.3227 0.3397 0.2578
-0.7481 0.3299 0.3509 0.2650
-0.4988 0.3369 0.3627 0.2720
-0.2494 0.3438 0.3753 0.2789

0 0.3503 0.3890 0.2854
0.2494 0.3562 0.4044 0.2913
0.4988 0.3610 0.4222 0.2961
0.7481 0.3635 0.4451 0.2986
0.9975 0.3637 0.4939 0.2988

7 DISCUSSION

We recommend an approach that allows experimenters
determine what properties the synthetic optimizatio
problems they intend to generate will have before any t
problems are generated or solved.  With this capabili
experimenters can compare the characteristics of their 
problems to those of practical problem instances.  
addition, knowledge of these properties may facilita
620
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better designed computational experiments an
consequently better understanding of the capabilities a
limitations of solution methods.

We think that our approach can facilitate bette
comparisons of solution procedure performance fo
different problem sizes (i.e., number of decision variable
and across problem classes.  An experimenter can, 
example, generate 100-variable and 500-variable KP
instances with the same proportion of feasible solutions 
appropriately varying t .  An experimenter could also
generate KP01 instances and 2-dimensional Knapsa
Problem instances with the same proportion of feasib
solutions to determine how the number of constrain
affects the performance of a solution procedure.

KP01 instances tend to be quite challenging for 
branch-and-bound routine when the objective-constrai
correlation is strongly positive. KP01 solution values ten
to be more similar under the same condition.  This sugge
that different types of test problems should be used 
evaluate algorithms and heuristics.  The test problems th
present the greatest challenge for a branch-and-bou
routine may be the same problems on which a gree
heuristic performs best.

Changing the distributions of coefficient values wil
change the measurements of properties that we consi
here.  An experimenter should not assume that t
performance of a solution method is insensitive to th
distribution of coefficient values.

One of the possible benefits to be realized from
measuring test problem characteristics is new insights f
designing solution procedures that can exploit the featur
of instances that are usually the most troubling for existin
solution methods.
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