Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

AN OBJECT-ORIENTED ENVIRONMENT FOR FAST SIMULATION USING COMPILER TECHNIQUES

Yiging Huang
Ravishankar K. lyer

Center for Reliable and High Performance Computing
Coordinated Science Laboratory
University of lllinois at Urbana-Champaign
1308 W. Main, Urbana, IL 61801, U.S.A.

ABSTRACT e Transformation of process-oriented models into event-
oriented models is automatic based on compiler
In this paper, an efficient simulation environment that techniques.

utilizes compiler techniques to speed up simulation is

presented. The method is based on the utilization of e Run-time support is implemented based on event-
flexible, process-oriented modeling and the event-oriented oriented simulation that completely avoids context-
simulation, which provides minimum run-time system switching overhead.

overhead. A compiler is implemented to transform

a process-oriented model to an event-oriented model ® The technique proposed is general, and the perfor-

to completely eliminate the context-switches that are mance improvement over machine-dependent simula-
normally inherent in process-oriented simulation tools. tion package is significant.

Three different systems are simulated using the proposed

method and are compared with DEPEND, a process- The remainder of the paper is organized as follows.

oriented dependability simulation tool. Results show that Section 2 presents the motivation behind the proposed
the simulation time is reduced significantly. The techniques method and describes related work. Section 3 discusses the
proposed are general and can apply to process-orientedprocess-oriented modeling interface. Section 4 describes in
simulation models to speed up the simulation. detail the compiler-assisted transformation. Performance

results and analysis are given in Section 5. Conclusions and

future directions for this work are addressed in Section 6.
1 INTRODUCTION

Process-oriented simulation has long been employed for 2 MOTIVATION
computer system simulation (Franta 1977, Law and Kelton
1991). It offers modeling flexibility over event-oriented In process-oriented simulation, the components of a system
simulation. However, context-switching often exists in to be simulated are identified and modeled as a collection of
its run-time system, and the overhead may lead to simulation processes. Each simulation process describes the
serious performance degradation compared with event- behavior of a component such as communication, resource
oriented simulation. This paper proposes compiler-assisted management, or error propagation. Coroutines (Jain
transformation techniques to eliminate context-switching 1991) or light-weight threads (Cooper 1988, Schwetman
overhead by transforming a process-oriented model into an 1986) are usually incorporated in the run-time system
event-oriented model. A simulation environment based on to implement simulation processes. Context-switching is
the techniques is implemented to evaluate the performance used to switch between coroutines or light-weight threads.
of the method. The major contributions of the paper are Process-oriented simulation packages based on coroutines
summarized in the following: or light-weight threads in the literature include CSIM
(Schwetman 1986), YACSIM (Jump 1993), and DEPEND
e Language constructs are designed to build process- (Kumar 1993).
oriented models and to facilitate transformation to Event-oriented simulation (MacDougall 1987) models
event-oriented models. a system with explicit events identified from the dynamic

531

Huang and lyer

behavior of the system. Those events are implicitly ex- employs simulation constructs to describe events implicitly.
pressed in the process-oriented simulation using simulation Each object can represent one physical component in the
constructs that model server queues, message exchange, osimulated system, e.g., a memory module in a computer
semaphores. Event execution in the process-oriented simu-system. To describe various behavior associated with
lation requires activating a simulation process. Reactivation each object, each object contains a set of processes. A
and suspension of simulation processes are implementedprocess here is the same as a process in a process-orientec
using context-switching. Events are explicit in the event- simulation language: represents activities occurring in the
oriented simulation, therefore, context-switching is not simulated system. For example, in the M/M/1 queue, the
necessary. However, more efforts are required to develop arrival of jobs to the server can be modeled as a process,
an event-oriented model; therefore, event-oriented simula- which describes the behavior of job arrivals. If a triple-
tion is only appropriate for small to medium sized prob- modular redundant system is simulated, the voter behavior
lems. SMPL (MacDougall 1987) is an early event-oriented can be modeled as a process. Each process employs
simulation package. SIMEX, developed at University of simulation constructs to implicitly specify events occurring

Minnesota, is another event-oriented package. It allows
functions to execute like threads without context-switching.

However, it is necessary for the user to manually break the
modeling code into separate pieces to execute like threads.

in the process. The simulation constructs constitute the
event level of the modeling hierarchy. They model delay
events, message exchange events, synchronization events,
and server-related events. The object level, process level,

Utilizing the flexibility of process-oriented modeling and event level constitute the modeling hierarchy. The
and the efficiency of event-oriented simulation motivates user employs this hierarchy to build simulation models in
the development of a simulation environment that possessesthe process-oriented view.
both characteristics. Each process is transformed to a set In Figure 1, a user model is constructed utilizing this
of event functions performing the same task as the process. hierarchical framework. The three levels are shown in the
Thus, a mechanism to properly generate the event functions figure. The model consists of three objec@BJECT]1,
is essential. In this paper, compiler techniques are adopted OBJECT2, and OBJECT3. OBJECT1 and OBJECT2
to perform the transformation. synchronize through their processes using the semaphore
related simulation construct set/wait. OBJECT1 and
OBJECT3 communicate through their processes using the

3 PROCESS-ORIENTED MODELING :))
message exchange simulation construct send/receive.

3.1 Hierarchical Process-oriented Modeling

To help users to construct process-oriented models, we pro- 3.2 Modeling Hierarchy Implementation

vide an object-oriented hierarchical modeling framework, The modeling hierarchy is implemented using C++. C++
shown in Figure 1. objects are used to implement the object level. To specify
processes in an objedBROCESS member functions are
designed to extend C++ object to describe process behav-
PROCESS | ior. The extended C++ objects, tHRROCESS member
PROCESS {< coetsem(: function, and the simulation constructs are described in
! } Table 1. The names of simulation constructs start with
C. Cdelay can delay execution of a process for some
PROCESS { /P centheg simulated time or delay process execution until certain
) conditions are satisfied.CsendMsg and CrecvMsg are
setiwait o ! used to simulate process communicatioBsetSemand

CsendMsg();
srocess {, PROCESS rocess |/ PROCESS | CwaitSem synchronlze processeQ.server, CreqServer,
o CwaitSem(); o CrocuMsg0; andCendServersimulate the behavior of computer servers.
, ;
Figure 1: Process-oriented Interface Hierarchy

process level event level

object level

\

send/receive

Each simulation construct represents certain event.

4 MODEL TRANSFORMATION

Model transformation is conducted on the process-oriented

A process-oriented model is built using three levels: models described in the previous section. Figure 2 shows
object level, process level, and event level. The model a high-level picture of the transformation. The left part
consists of a set of objects at the highest level. Each of Figure 2 is the process-oriented model. Each object in

object contains a collection of processes. Each processthe process-oriented model is transformed into an object

532

An Object-Oriented Environment for Fast Simulation Using Compiler Techniques

Table 1. Extended C++ ObjectBROCESS Member Function, and Simulation Constructs

| Name | Description \

Extended C++ object Models the simulated system. They usually correspond to active components
of a physical system.

PROCESS member function| Models simulation process behavior.

Cschedule Schedules object invocation based on specific time or occurrence of certain
events.

Cdelay Models the simulation time elapse or rescheduling of a simulation prgocess
when certain condition are satisfied.

CsendMsg Simulates message sending. It specifies the destination process which receives
the sent message.

CrecvMsg Simulates message receiving. It specifies the source process of the message.
The receiving process is suspended until the message arrives.

CwaitSem Simulates synchronization. Simulation processes can wait on semaphore.

CsetSem Opposite operation of CwaitSem

Cserver Simulates the request arrival / service activities of a server.

CreqServer Simulates the request of service of Cserver

CendServer Simulates the end of service of Cserver

in the event-oriented model. Transformation for processes constructs and the control flow of the process model, and
and simulation constructs of a process-oriented model is 4) Generate code for the event model.

implemented using containers and event functions. A Syntax tree construction and code generation are
container is a high-level object designed to contain the standard compiler techniques and will not be discussed here.
transformed code of a process, as shown in Figure 2. To conduct transformation, the compiler first recognizes
For each process, behavior is modeled using simulation simulation constructs and analyzes the control flow in the
constructs that express events implicitly. The event-oriented PROCESS body. It then generates event functions and
model requires these events to be explicit so that scheduling containers of those functions, as shown in Figure 2. The
can be performed by the event-oriented simulation engine. object boundary are unchanged from the original process
Transformation identifies events inside processes based onmodel. The communication between the two processes is
simulation constructs. For each simulation construct in preserved using the event functions in the container.

the process-oriented model, there are construct associated

activities. After the transformation, events are obtained and
simulation construct associated activities are transformed
into event associated activities. We design event functions Simulation constructs are categorized into two classes:
to contain the generated events and event associatedTYPEI and TYPEIl. TYPEI includeCschedule, Csend-
activities. For each event, an event function is generated Msg, CsetSem, Cserverand CendServer These simu-

to contain the event and the event associated activities. lation constructs are translated directly to library calls to
Each event function also contains scheduling information the simulation run-time library. TYPEIl includeSdelay,

for the event functions in the container. Each container CwaitSem, CrecvMsg and CreqServer. These simula-
contains a set of event functions, and events associatedtion constructs could potentially advance the simulation
with a process are kept in the same container. Based onclock or reschedule events. Therefore, the interpretation
the transformation, each container accomplishes the sameof TYPEI is different from the interpretation of TYPEI.
task as the original process.

4.2 Interpretation for Simulation Constructs

4.2.1 Simulation Constructs in the Sequential Block

4.1 Compiler . . .
A simulation construct can be in any part of the model pro-

To automate the transformation, a compiler is developed to gram. As shown in Figure 3, a set of sequential statements
perform the following four major functions: 1) Generate an contain TYPEI simulation constructs, TYPEIl simulation

abstract syntax tree, 2) Interpret simulation constructs, 3) constructs, and C++ statements. TYPEI simulation con-
Construct an event function flow graph based on simulation structs are directly translated to simulation engine library

533

Huang and lyer

OBJECT1

set/wait

}
PROCESS {
}

set/wait

PROCESS {
}

send/receive

PROCESS {
}

OBJECT2

OBJECT3

Transformation

[

Event
Function

Event Event
Function| | Function

Event

Function
Event Event
Function | | Function

send/receive

set/wait

OBJECT3

Container

Event
Function

Container

Event
Function

Event Event Event Event
Function | | Function Function | | Function

Figure 2: Model Transformation

calls. C++ statements are directly put into the event
function. A TYPEIl simulation construct generates an
event function, since the construct influences scheduling.

Process Container

eventFunc i

a=b+c a:=b+c

C++ statements C++ statements

Cschedule schedule

func = eventFunci+1 -.
return(CONTINUE)

P
eventFunci+1

func = eventFunci + 2 \
return(t))

Lj Cdelay(t)

a=b+c a=b+c Scheduler

Lk:

C++ statements C++ statements

TYPEI simulation construct library call to simulation engine librar

func = eventFunci+3 -7
return(CONTINUE)

- -
eventFunci +3

interpretation for

TYPEIl simulation construct
LI TYPEI simulation construct—={
A func = eventFunci+ 4

return(CONTINUE)

Figure 3: Simulation Constructs Interpretation in Sequential
Statements

Statements between two TYPEII simulation constructs are
transformed into an event function. The statements before
the first TYPEII simulation construct in the code segment
are also transformed into an event function, as are the
statements after the last TYPEIl simulation construct in
the code segment.

For example, as shown in Figure 3, the TYPEI
simulation construd€scheduleis translated to a simulation
library call schedulein the event function “eventFunc i".

534

Cdelay on line Lj results in an event function “eventFunc
i + 1”. Simulation time delay is returned from the event
function to advance the simulation time clock. The event
function “eventFun i + 2" executes after the simulation
time delay.

Two statements are added for each event function
in addition to the translation for each statement of the
original process. One statement sets up the invocation of
the event function to execute next, and the other returns
the control to the scheduler after the execution of the
current event function. For example, the statement “func
= eventFug i + 1” in the eventfunction “eventFunc + i”
sets up the event function “eventkum + 1” to execute
next. The statement, “return(CONTINUE)” returns control
to the scheduler after the execution of “eventFunc i".
This execution flow is based on the execution flow of the
original process semantics.

Figure 4 shows the translation @waitSem Crecv-
Msg, and CregServer. Their translation is different from
that of Cdelay in that a “if” statement is generated. The
conditional part of the “if” statement contains a call to
the simulation engine library.

4.2.2 Simulation Construct inside the Conditional
Block

If a TYPEIl construct is in the body of a conditional
block, such as a “while” statement, two event functions
are generated in addition to the event functions generated
as described in Section 4.2.1. This is done to retain the
actions under true or false conditions.

If a TYPEIl simulation construct is in the body of a
control block, two event functions need to be generated
(i.e., “eventFug i + 1" and “eventFurt i + k” in Figure 5)
to retain the control flow of the control flow statement
(i.e., the “while” statement in Figure 5). “EventFunc i
+ 1" interprets the “while” statement condition and the

An Object-Oriented Environment for Fast Simulation Using Compiler Techniques

eventFunci

if semaphore free {
func = eventFunci+1
return(CONTINUE)

}

else {
func = eventFunc i
return(SUSPEND)

}

eventFunci

if message received {
func = eventFunci+ 1
return(CONTINUE)

}

else {
func = eventFunc i
return(SUSPEND)

}

eventFunci

if server free {
func = eventFunci+ 1
return(CONTINUE)

CwaitSem

CrecvMsg

CreqServer
}
else {
func = eventFunc i
return(SUSPEND)
}

Figure 4. CwaitSem, CrecvMsg, CreqServerinterpreta-
tion

tasks that need to be performed based on the condition.

“EventFurc i + k” terminates the “while” statement body
and jumps back to “eventFan + 1"

A similar transformation applies to the “if-else” block
if there are TYPEII simulation constructs in its conditional

statements. In this case, an event function is generated to

start the “if-else” block.

5 EXPERIMENTAL RESULTS

Three examples are used to demonstrate the compiler-
assisted model transformation and event-oriented simula-
tion. The first model is an M/M/1 queue. The second one
is for voting behavior of a triple-module redundant(TMR)
architecture. The third one is for CSMA/CD (Carrier
sense multiple access with collision detection) protocol
over fast ethernet. All three examples are simulated using
the proposed compiler-assisted event-oriented simulation
environment and DEPEND, a process-oriented simulation
package.

5.1 M/M/1 Queue

M/M/1 queue is a single-queue, single-server model with
exponential interarrival and service time. As shown in
Figure 6, the model is described using two objects: one
for the job arrivals and the other for the service of the
server. The resulting event model after transformation is

535

Event Model

eventFunc i

Process Model

C++ statements Or
library call to simulation engine library

C++ statements Or
typel simulation construct

func = eventFunci+1 ~
return(CONTINUE)

v
- 0
while expr P N
? eventFunci+1 —----\---

{

if expr {
func = eventFunci+2- - -
}
else {
;func = eventFunci+k+1

Cdelay(t)

C++ statements O
typel simulation consruct

return(CONTINUE)

eventFunci +2

eventFunci+m

Scheduler

)
i
|
|
|
!
expr falsel

\
\

R
eventFunci+k+1

C++ statements
library call to simulation enginAbrary
func = eventFunci+k+2

return(CONTINUE)

Figure 5: Simulation Constructs Interpretation in Condi-
tional Block

shown in Figure 7 and Figure 8. For comparison, M/M/1
gueue is also modeled using DEPEND.

Cserver* server;
class SERVI CE {
PROCESS voi d task() {
server->CreqServer();
Cdel ay(expnt!l (interService));
server->CendServer();
Iy
H
SERVI CE servi ce[NUM ;

class ARRIVAL {
PROCESS voi d task() {
i =1;
while (i < NUM {
Cdel ay(expntl (interArrival));

Cschedul e(service[i], ‘'SERVICE :task'’,

current Si nili ne) ;
i=i o+ 1

Figure 6: M/M/1 Queue Process-oriented Model

In Figure 9, the X-axis represents the number of jobs
arrived, and the Y-axis represents the simulation time.
Figure 9 shows clearly that simulation time increases
linearly with the increase in the total number of jobs.
Overall, DEPEND takes longer than the proposed tool.
In fact, DEPEND took 1.72 seconds to simulate 2000
jobs, while the proposed tool took 0.72 seconds. When
the number of jobs is increased to 4000, DEPEND took
3.4 seconds and the proposed tool took 1.36 seconds.
Thus, the simulation time difference between DEPEND
and the proposed tool increases as the number of jobs
increases. This phenomenon is observed on both SUN4
and Ultra-sparc workstations.

Huang and lyer

si mBerver* server;

class SERVI CE {
public:

class taskER :
public:

t askER(SERVI CE* ptr)

{ erptr = ptr;

public SinEventRoutines {

func = (ER_FUNC) &t askER :taskl; }

private:
SERVI CE* erptr;
doubl e task1();
doubl e task2();
doubl e task3();
b
H
/* Definitions for Chject: SERVICE */
doubl e SERVI CE: : taskER :task1() {
if (server->request((SinEventRoutines*) this)) {
func = (ER_FUNC) &SERVI CE::taskER :task2;
r et ur n(CONTI NUE) ;

}
else {
func = (ER_FUNC) &SERVI CE::taskER :taskl;
ret ur n(SUSPEND) ;
}
}

func = (ER_FUNC) &SERVI CE::taskER: :task3;
return(expnt! (interService));

doubl e SERVI CE: : t askER : t ask3() {
server->finish();
return(EXIT);

SERVI CE service[NUM ;

Figure 7: Translated Code for SERVICE Object

class ARRI VAL {
public:
class taskER :
public:

public SinEventRoutines {

t askER(ARRI VAL* ptr)
{ erptr=3Dptr; func =3D (ER_FUNC) &taskER ::
private:

ARRI VAL* erptr;
doubl e taskl();
doubl e task2();
doubl e task3();
doubl e task4();

} *task_Record;

taskl; }

I

/* Definitions for Object: ARRIVAL */

doubl e ARRIVAL: : taskER :task1() {
i =3D 1;
func =3D (ER_FUNC) &ARRI VAL: :taskER :task2;
ret ur n(CONTI NUE) ;

doubl e ARRIVAL: : taskER :task2() {
it (i< NM {
func =3D (ER_FUNC) &ARRI VAL::taskER: :task3;
r et ur n(CONTI NUE) ;

}
el se return(EXIT);
}

R e R T
doubl e ARRIVAL: : taskER :task3() {
func =3D (ER_FUNC) &ARRI VAL: :taskER :task4;
return(expntl (interArrival));
}

J e e e e e e o
doubl e ARRIVAL: : taskER: :task4() {
schedul e(new SERVI CE: : t askER(service[i]), currentSinTine);
i =3Di + 1;
func =3D (ER_FUNC) &ARRI VAL::taskER :task2;
ret ur n(CONTI NUE) ;
}

Figure 8: Translated Code for ARRIVAL Object

536

9
8 DEPEND on SUN4 ——
The Proposed tool on SUN4 -+--
7 DEPEND on Ultra-sparc -8-- i

|” The Proposed tool on Ultra-sparc -

g s |
&
(3]
E 5 7
e
c
S 4 |
k=
5 -
£ 3]
(7]
2 -
: - q
g B) GG 3
77777 ”QH-“”?” ? * >‘< >\< L L

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Job Arrivals

Figure 9: Simulation Time of M/M/1 Queue Example

5.2 TMR Architecture

The second model is constructed to simulate instruction
execution and voting in a triple-modular redundant (TMR)
architecture. Its timing diagram is shown in Figure 10.
Three identical CPU module®{, P2, andP3) execute the

Thevoter finishesvoting and
et processor's status

! 1 comparing | i
- | ! -
voter - _waiting _ _ _ ‘ and voting : _waiting_ _ _ L
I | I I
i executing 1 waiting i executing i
processor] ————1 - - - - - - -~ —_— =
i
I i I I
| executing ' waiting | executing |
processor2 —-————-- —_—— =
I \ I I
I 1 I _ I
! i iti | executing !
executing ! waiting
procr3: —— e =
I I

T (time)
The processor s finish executions, send results
tothevoter, and the voter startsitsvoting process

Figure 10: TMR Timing Diagram

same instruction stream synchronously. Voting is performed
after finishing each instruction execution. Every CPU
submits its result to the votelVOTER), and suspends
itself during the voting. The CPUs resume instruction
execution afte’?vOTER finishes voting. To simplify the
simulation, only the elapse of instruction execution time
is simulated.

There are communications betwe®@TER and the
three CPUs to synchronize the voting and execution.
The model uses semaphore and message sending/receiving
simulation constructs to model necessary communication.
A DEPEND model is also built and simulated. The
simulation times consumed using SUN4 and Ultra-sparc
are shown in Table 2. As shown in the table, the simulation
time improvements of the proposed tool over DEPEND
are 3.5 times on SUN4 and 4.5 times on Ultra-sparc.

An Object-Oriented Environment for Fast Simulation Using Compiler Techniques

No

Table 2: TMR Architecture Simulation Time (sec)

| Simulation Package SUN4 | Ultra-sparc|

DEPEND 25.11 4.55
The Proposed Tool| 7.63 1.01

5.3 CSMA/CD Protocol

The system considered here consists of a group of machines
interconnected using a 100Mbps high-speed ethernet. The | |wasorr-

data communication among the machines is based on the T om L)
CSMA/CD protocol. According to the CSMA/CD protocol

(Halsall 1992), a packet frame can be sent out when the

enetSt == coll_prop || enetSt == coll_busy

No
send packet
et enet not free

carrier sense signal is on and the transmission medium is —Zfdsf;nﬁﬁzupzka(daay) Y e == xfer_piop
free. If more than one source sends frames to the medium TS e

at the same time, a collision occurs and each source must e
wait for a period of time based on a binary exponential et enet free
distribution before a retry. Thus, more collisions mean ::j‘&;"”
longer waits. The flow of the CSMA/CD protocol is shown et -

in Figure 11. The frame size is fixed, and the message
size is determined randomly using a uniform distribution.
Message interarrival time is assumed to be exponentially
distributed.

Three objects are used to model the protocol: one
ethernet object, one sending/receiving object, and one
initial simulation object. The ethernet object describes
the state of the ethernet. The sending/receiving object
models the sending and receiving processes based on
the CSMAJ/CD protocol. The initial simulation object
initiates the simulation and all the simulation parameters.
Simulation is performed to evaluate message delay from
the time a message is sent to the time it is received.

Figure 11: CSMA/CD Protocol Model

time, and an event-driven simulation engine. Three
simulation models were simulated within the proposed
environment as well as in DEPEND and the results
compared.

The proposed simulation environment offers several
advantages over the current process-oriented simulation
packages beyond speedup. First, no architecture-dependent
context-switching or thread support is necessary, so porta-
Figure 12 shows the simulation time results using the bility becomes less qf a problem. Second, _the compiler

performs transformation from a process-oriented model

proposed tool and DEPEND. _In Figure 12, the X-axis . into an event-oriented model that runs on the underlying
represents the number of sending processes and the Y-axis

represents the simulation time. Figure 12 shows clearly eyent—o_nented S'.m“"?‘“o” engine. If the extended C++
that the simulation time increases nonlinearly as the number s!mulat!on modeling mterche requires more process-level
; . simulation constructs or if it switches to a different set of
of sending processes increases. Furthermore, DEPEND h derlvina event-oriented simulation engine
took much longer than the proposed tool. The simulation const_ructs, the un) ying . g
time difference between using DEPEND and the proposed remains fche same; only the trahsforrr_latlon scheme needs
model also increases as the number of sending processesto be adju.sp.ad based on the smulaupn constructs. This
increases loffer's erX|b|I|t.y when more fgnctlonaht_y pf t.he model-

' ing interface is necessary. Finally, optimization to allow
more aggressive scheduling of compiler generated event
6 CONCLUSION functions is possible within the compiler environment.

There are certain limitations in the current implementa-
In this paper, an object-oriented simulation environment tion of the simulation environment. Currently, the extended
is proposed to speed up process-oriented simulation. The C++ simulation modeling interface provides preliminary
simulation environment includes an extended C++ process- simulation constructs to describe simulation models. The
oriented modeling interface, an object-oriented compiler PROCESS member function is the only function that
that transforms a process-oriented model into an event- can be used to specify simulation actions via simulation
oriented model that requires no context-switching at run- constructs, since only this member function is transformed

537

Huang and lyer

14

12 + DEPEND on SUN4 ——
The Proposed tool on SUN4 —+---
DEPEND on Ultra-sparc -&--

I The Proposed tool on Ultra-sparc -x

=
o

Simulation Time(sec)
[oe]
T
Il

T . o
P SN BERSREE = | .
0 Qoo ezee- BT i 5 ° B x
0 50 100 150 200 250 300 350 400

Number of Sending Processes

Figure 12: Simulation Time of CSMA/CD Protocol

by the compiler. Two directions for future research are
possible. One is to improve the transformation techniques
of the compiler to allow better modeling interface, and
the other is to develop compiler optimization techniques
for the generated event functions. These will help put
the simulation environment into practical use, and offer
more performance improvement over the context-switching
based process-oriented simulation.

ACKNOWLEDGMENTS

Law, A. M., and W. D. Kelton. 1991Simulation Modeling
and Analysis New York: McGraw-Hill.

MacDougall, M. H. 1987 Simulating Computer Systems,
Techniques and Tool§he MIT Press.

Schwetman, Herb. 1986. Csim: A c-based, process-oriented
simulation languageProceedings of the 1986 Winter
Simulation Conferenge387—-396.

University of Minnesota. SIMEX.

AUTHOR BIOGRAPHIES

YIQING HUANG is a Ph.D candidate in the Computer
Science Department and conducts research at the Center
for Reliable and High Performance Computing at the
University of Illinois at Urbana-Champaign. She received a
B.S. degree in Computer Science from Tsinghua University,
China and an M.S. degree in Computer Science from State
University of New York at Stony Brook.

RAVISHANKAR K. IYER holds a joint appointment
as Professor in the Departments of Electrical and Com-
puter Engineering, Computer Science, and the Coordinated
Science Laboratory at the University of Illinois at Urbana-
Champaign. He is also Co-Director of the Center for
Reliable and High-Performance Computing. Professor
lyer's research interests are in the area of reliable comput-
ing, measurement and evaluation, and automated design.
Prof. lyer is an IEEE Computer Society Distinguished

This research was supported in part by the U.S. Defense Visitor, an Associate Fellow of the American Institute for

Advanced Research Projects Agency (DARPA) under
contract DABT63-94-C-0045. The content of this paper
does not necessarily reflect the position or policy of the
US government, and no official endorsement should be
inferred.

REFERENCES

Cooper, Eric C., and Richard P. Draves. 1988. C Threads.
Technical Report CMU-CS-88-154, Department of
Computer Science, Carnegie Mellon University.

Franta, W. R. 1977The Process View of SimulatioNorth
Holland, New York.

Goswami, K. K. 1993. Design for dependability: A
simulation-based approach. Ph.D. thesis, Computer
Science Department, University of lllinois, Urbana-
Champaign, IL.

Jain, R. 1991The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Mea-
surement, Simulation and Modelinlew York: John
Wiley and Sons.

Jump, J. Robert. 1993. YACSIM Reference Manual.
RICE University, Electrical and Computer Engineering
Department.

538

Aeronautics and Astronautics (AlIAA), and a Fellow of the
IEEE. In 1991, he received the Senior Humboldt Foundation
Award for excellence in research and teaching. In 1993, he
received the AIAA Information Systems Award and Medal
for “fundamental and pioneering contributions towards the
design, evaluation, and validation of dependable aerospace
computing systems.”

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

