
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

AN OBJECT-ORIENTED ENVIRONMENT FOR FAST SIMULATION USING COMPILER TECHNIQUES

Yiqing Huang
Ravishankar K. Iyer

Center for Reliable and High Performance Computing
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1308 W. Main, Urbana, IL 61801, U.S.A.

a
i

te

m
d
r
ls
s
s
a
e

f
o

n

n
t

o
n
r

s
to

t-
er

t-
t-

or-
la-

s.
ed
the

s in
ce
nd
6.

em
of
the

rce
in

an
m
is
s.

ines

D

ls
ic
ABSTRACT

In this paper, an efficient simulation environment th
utilizes compiler techniques to speed up simulation
presented. The method is based on the utilization
flexible, process-oriented modeling and the event-orien
simulation, which provides minimum run-time system
overhead. A compiler is implemented to transfor
a process-oriented model to an event-oriented mo
to completely eliminate the context-switches that a
normally inherent in process-oriented simulation too
Three different systems are simulated using the propo
method and are compared with DEPEND, a proce
oriented dependability simulation tool. Results show th
the simulation time is reduced significantly. The techniqu
proposed are general and can apply to process-orien
simulation models to speed up the simulation.

1 INTRODUCTION

Process-oriented simulation has long been employed
computer system simulation (Franta 1977, Law and Kelt
1991). It offers modeling flexibility over event-oriented
simulation. However, context-switching often exists i
its run-time system, and the overhead may lead
serious performance degradation compared with eve
oriented simulation. This paper proposes compiler-assis
transformation techniques to eliminate context-switchin
overhead by transforming a process-oriented model into
event-oriented model. A simulation environment based
the techniques is implemented to evaluate the performa
of the method. The major contributions of the paper a
summarized in the following:

• Language constructs are designed to build proce
oriented models and to facilitate transformation
event-oriented models.
531
t
s
of
d

el
e
.
ed
s-
t
s

ted

or
n

to
t-

ed
g
an
n
ce
e

s-

• Transformation of process-oriented models into even
oriented models is automatic based on compil
techniques.

• Run-time support is implemented based on even
oriented simulation that completely avoids contex
switching overhead.

• The technique proposed is general, and the perf
mance improvement over machine-dependent simu
tion package is significant.

The remainder of the paper is organized as follow
Section 2 presents the motivation behind the propos
method and describes related work. Section 3 discusses
process-oriented modeling interface. Section 4 describe
detail the compiler-assisted transformation. Performan
results and analysis are given in Section 5. Conclusions a
future directions for this work are addressed in Section

2 MOTIVATION

In process-oriented simulation, the components of a syst
to be simulated are identified and modeled as a collection
simulation processes. Each simulation process describes
behavior of a component such as communication, resou
management, or error propagation. Coroutines (Ja
1991) or light-weight threads (Cooper 1988, Schwetm
1986) are usually incorporated in the run-time syste
to implement simulation processes. Context-switching
used to switch between coroutines or light-weight thread
Process-oriented simulation packages based on corout
or light-weight threads in the literature include CSIM
(Schwetman 1986), YACSIM (Jump 1993), and DEPEN
(Kumar 1993).

Event-oriented simulation (MacDougall 1987) mode
a system with explicit events identified from the dynam

Huang and Iyer

ex-
tion
ge,
imu
tion
nte
nt-
ot

elop
ula
b-
ted
of
ws

ng.
the
ads
g
tes
sse

se
ess
ion
pte

pro
rk,

ls:
del
ach
ces

y.
the
ter
ith

A
nted
e
e
ss,
-
ior
oys
g
he
y
nts,
el,
e
n

s
e

ore

e

+
ify

av-

in
th
e
in

.

ed
ws
t
in
ct
behavior of the system. Those events are implicitly
pressed in the process-oriented simulation using simula
constructs that model server queues, message exchan
semaphores. Event execution in the process-oriented s
lation requires activating a simulation process. Reactiva
and suspension of simulation processes are impleme
using context-switching. Events are explicit in the eve
oriented simulation, therefore, context-switching is n
necessary. However, more efforts are required to dev
an event-oriented model; therefore, event-oriented sim
tion is only appropriate for small to medium sized pro
lems. SMPL (MacDougall 1987) is an early event-orien
simulation package. SIMEX, developed at University
Minnesota, is another event-oriented package. It allo
functions to execute like threads without context-switchi
However, it is necessary for the user to manually break
modeling code into separate pieces to execute like thre

Utilizing the flexibility of process-oriented modelin
and the efficiency of event-oriented simulation motiva
the development of a simulation environment that posse
both characteristics. Each process is transformed to a
of event functions performing the same task as the proc
Thus, a mechanism to properly generate the event funct
is essential. In this paper, compiler techniques are ado
to perform the transformation.

3 PROCESS-ORIENTED MODELING

3.1 Hierarchical Process-oriented Modeling

To help users to construct process-oriented models, we
vide an object-oriented hierarchical modeling framewo
shown in Figure 1.

}

PROCESS {

CwaitSem();

}
. . .

. . .

object level

OBJECT1

PROCESS {

set/wait

Semaphore

}
. . .

PROCESS {

set/wait send/receive

 . . .

}

}

event level

PROCESS {

CsetSem();

PROCESS {
 CsendMsg();

process level

}

PROCESS {

 CrecvMsg();}
. . .

. . .

}
. . .

. . .

OBJECT2 OBJECT3

PROCESS {
PROCESS {

Figure 1: Process-oriented Interface Hierarchy

A process-oriented model is built using three leve
object level, process level, and event level. The mo
consists of a set of objects at the highest level. E
object contains a collection of processes. Each pro
532
or
-

d

-

.

s
t
.
s
d

-

s

employs simulation constructs to describe events implicitl
Each object can represent one physical component in
simulated system, e.g., a memory module in a compu
system. To describe various behavior associated w
each object, each object contains a set of processes.
process here is the same as a process in a process-orie
simulation language: represents activities occurring in th
simulated system. For example, in the M/M/1 queue, th
arrival of jobs to the server can be modeled as a proce
which describes the behavior of job arrivals. If a triple
modular redundant system is simulated, the voter behav
can be modeled as a process. Each process empl
simulation constructs to implicitly specify events occurrin
in the process. The simulation constructs constitute t
event level of the modeling hierarchy. They model dela
events, message exchange events, synchronization eve
and server-related events. The object level, process lev
and event level constitute the modeling hierarchy. Th
user employs this hierarchy to build simulation models i
the process-oriented view.

In Figure 1, a user model is constructed utilizing thi
hierarchical framework. The three levels are shown in th
figure. The model consists of three objects:OBJECT1,
OBJECT2, and OBJECT3. OBJECT1 and OBJECT2
synchronize through their processes using the semaph
related simulation construct set/wait.OBJECT1 and
OBJECT3 communicate through their processes using th
message exchange simulation construct send/receive.

3.2 Modeling Hierarchy Implementation

The modeling hierarchy is implemented using C++. C+
objects are used to implement the object level. To spec
processes in an object,PROCESSmember functions are
designed to extend C++ object to describe process beh
ior. The extended C++ objects, thePROCESS member
function, and the simulation constructs are described
Table 1. The names of simulation constructs start wi
C. Cdelay can delay execution of a process for som
simulated time or delay process execution until certa
conditions are satisfied.CsendMsg and CrecvMsg are
used to simulate process communication.CsetSemand
CwaitSem synchronize processes.Cserver, CreqServer,
andCendServersimulate the behavior of computer servers
Each simulation construct represents certain event.

4 MODEL TRANSFORMATION

Model transformation is conducted on the process-orient
models described in the previous section. Figure 2 sho
a high-level picture of the transformation. The left par
of Figure 2 is the process-oriented model. Each object
the process-oriented model is transformed into an obje

An Object-Oriented Environment for Fast Simulation Using Compiler Techniques

ts

in

s

ves

ge.
Table 1: Extended C++ Objects,PROCESSMember Function, and Simulation Constructs

Name Description

Extended C++ object Models the simulated system. They usually correspond to active componen
of a physical system.

PROCESSmember function Models simulation process behavior.
Cschedule Schedules object invocation based on specific time or occurrence of certa

events.
Cdelay Models the simulation time elapse or rescheduling of a simulation proces

when certain condition are satisfied.
CsendMsg Simulates message sending. It specifies the destination process which recei

the sent message.
CrecvMsg Simulates message receiving. It specifies the source process of the messa

The receiving process is suspended until the message arrives.
CwaitSem Simulates synchronization. Simulation processes can wait on semaphore.
CsetSem Opposite operation of CwaitSem
Cserver Simulates the request arrival / service activities of a server.
CreqServer Simulates the request of service of Cserver
CendServer Simulates the end of service of Cserver
e

A
e
2
o
e
in
e

in
t

n
e
n
t
e
e
n

e
te
o
m

t
n
3
o

in the event-oriented model. Transformation for process
and simulation constructs of a process-oriented model
implemented using containers and event functions.
container is a high-level object designed to contain th
transformed code of a process, as shown in Figure
For each process, behavior is modeled using simulati
constructs that express events implicitly. The event-orient
model requires these events to be explicit so that schedul
can be performed by the event-oriented simulation engin
Transformation identifies events inside processes based
simulation constructs. For each simulation construct
the process-oriented model, there are construct associa
activities. After the transformation, events are obtained a
simulation construct associated activities are transform
into event associated activities. We design event functio
to contain the generated events and event associa
activities. For each event, an event function is generat
to contain the event and the event associated activiti
Each event function also contains scheduling informatio
for the event functions in the container. Each contain
contains a set of event functions, and events associa
with a process are kept in the same container. Based
the transformation, each container accomplishes the sa
task as the original process.

4.1 Compiler

To automate the transformation, a compiler is developed
perform the following four major functions: 1) Generate a
abstract syntax tree, 2) Interpret simulation constructs,
Construct an event function flow graph based on simulati
533
s
is

.
n
d
g
.

on

ed
d
d
s
ed
d
s.

r
d
n
e

o

)
n

constructs and the control flow of the process model, and
4) Generate code for the event model.

Syntax tree construction and code generation are
standard compiler techniques and will not be discussed here.
To conduct transformation, the compiler first recognizes
simulation constructs and analyzes the control flow in the
PROCESS body. It then generates event functions and
containers of those functions, as shown in Figure 2. The
object boundary are unchanged from the original process
model. The communication between the two processes is
preserved using the event functions in the container.

4.2 Interpretation for Simulation Constructs

Simulation constructs are categorized into two classes:
TYPEI and TYPEII. TYPEI includesCschedule, Csend-
Msg, CsetSem, Cserver, and CendServer. These simu-
lation constructs are translated directly to library calls to
the simulation run-time library. TYPEII includesCdelay,
CwaitSem, CrecvMsg, and CreqServer. These simula-
tion constructs could potentially advance the simulation
clock or reschedule events. Therefore, the interpretation
of TYPEII is different from the interpretation of TYPEI.

4.2.1 Simulation Constructs in the Sequential Block

A simulation construct can be in any part of the model pro-
gram. As shown in Figure 3, a set of sequential statements
contain TYPEI simulation constructs, TYPEII simulation
constructs, and C++ statements. TYPEI simulation con-
structs are directly translated to simulation engine library

Huang and Iyer
OBJECT1
Event

Function

Event
Function

Event

Function

Container

Event

Function

Event
Function

Event

Function

Container

Event

Function

Event
Function

Event

Function

Container

. . .

Event

Function

Event
Function

Event

Function

Container

. . .

PROCESS {

}
. . .

Transformation . . .

Semaphore

set/wait

OBJECT3OBJECT2

}
. . .

}
. . .

}
. . .

. . .

. . .

. . .

OBJECT2

OBJECT3

OBJECT1

PROCESS {

PROCESS {

PROCESS {

. . .

send/receive

set/wait

Semaphore

set/wait

set/wait

send/receive

Figure 2: Model Transformation
nt
n
g

ia

re
r

nt
h
in

I

f

calls. C++ statements are directly put into the eve
function. A TYPEII simulation construct generates a
event function, since the construct influences schedulin

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Scheduler

...

eventFunc i

eventFunc i + 1

eventFunc i + 2

eventFunc i + 3

Lk:

Ll

Lj

Li:
a := b + c

C++ statements

Cschedule

Cdelay(t)

a := b + c

C++ statements

TYPEII simulation construct

TYPEI simulation construct

a := b + c

C++ statements

schedule

func = eventFunc i + 1

return(CONTINUE)

func = eventFunc i + 2

return(t)

a := b + c

C++ statements

library call to simulation engine library

func = eventFunc i + 3

return(CONTINUE)

interpretation for
TYPEII simulation construct

func = eventFunc i + 4

return(CONTINUE)

Process Container

Figure 3: Simulation Constructs Interpretation in Sequent
Statements

Statements between two TYPEII simulation constructs a
transformed into an event function. The statements befo
the first TYPEII simulation construct in the code segme
are also transformed into an event function, as are t
statements after the last TYPEII simulation construct
the code segment.

For example, as shown in Figure 3, the TYPE
simulation constructCscheduleis translated to a simulation
library call schedulein the event function “eventFunc i”.
534
.

l

e

e

Cdelay on line Lj results in an event function “eventFunc
i + 1”. Simulation time delay is returned from the event
function to advance the simulation time clock. The event
function “eventFunc i + 2” executes after the simulation
time delay.

Two statements are added for each event function
in addition to the translation for each statement of the
original process. One statement sets up the invocation o
the event function to execute next, and the other returns
the control to the scheduler after the execution of the
current event function. For example, the statement “func
= eventFunc i + 1” in the eventfunction “eventFunc + i”
sets up the event function “eventFunc i + 1” to execute
next. The statement, “return(CONTINUE)” returns control
to the scheduler after the execution of “eventFunc i”.
This execution flow is based on the execution flow of the
original process semantics.

Figure 4 shows the translation ofCwaitSem, Crecv-
Msg, andCreqServer. Their translation is different from
that of Cdelay in that a “if” statement is generated. The
conditional part of the “if” statement contains a call to
the simulation engine library.

4.2.2 Simulation Construct inside the Conditional
Block

If a TYPEII construct is in the body of a conditional
block, such as a “while” statement, two event functions
are generated in addition to the event functions generated
as described in Section 4.2.1. This is done to retain the
actions under true or false conditions.

If a TYPEII simulation construct is in the body of a
control block, two event functions need to be generated
(i.e., “eventFunc i + 1” and “eventFunc i + k” in Figure 5)
to retain the control flow of the control flow statement
(i.e., the “while” statement in Figure 5). “EventFunc i
+ 1” interprets the “while” statement condition and the

An Object-Oriented Environment for Fast Simulation Using Compiler Techniques

s
.

s

l.

n
k
s.

bs
4

 func = eventFunc i + 1
 return(CONTINUE)
}
else {
 func = eventFunc i
 return(SUSPEND)
}

if server free {

 func = eventFunc i + 1
 return(CONTINUE)
}
else {
 func = eventFunc i
 return(SUSPEND)
}

if message received {

 func = eventFunc i + 1
 return(CONTINUE)
}
else {
 func = eventFunc i
 return(SUSPEND)
}

eventFunc i

CwaitSem

eventFunc i

eventFunc i

CreqServer

if semaphore free {

CrecvMsg

Figure 4: CwaitSem, CrecvMsg, CreqServerInterpreta-
tion

tasks that need to be performed based on the conditio
“EventFunc i + k” terminates the “while” statement body
and jumps back to “eventFunc i + 1”.

A similar transformation applies to the “if-else” block
if there are TYPEII simulation constructs in its conditional
statements. In this case, an event function is generated
start the “if-else” block.

5 EXPERIMENTAL RESULTS

Three examples are used to demonstrate the compile
assisted model transformation and event-oriented simula
tion. The first model is an M/M/1 queue. The second one
is for voting behavior of a triple-module redundant(TMR)
architecture. The third one is for CSMA/CD (Carrier
sense multiple access with collision detection) protoco
over fast ethernet. All three examples are simulated usin
the proposed compiler-assisted event-oriented simulatio
environment and DEPEND, a process-oriented simulatio
package.

5.1 M/M/1 Queue

M/M/1 queue is a single-queue, single-server model with
exponential interarrival and service time. As shown in
Figure 6, the model is described using two objects: one
for the job arrivals and the other for the service of the
server. The resulting event model after transformation is
535
n.

to

r-
-

l
g
n
n

eventFunc i + m

func = eventFunc i + 3
return(t)

func = eventFunc i + 1
return(CONTINUE)

eventFunc i + k

Cdelay(t)

. . .

. . .

. . .
typeI simulation construct
C++ statements Or

while expr {

}

C++ statements Or
typeI simulation construct
. . .

Scheduler

return(CONTINUE)
func = eventFunc i + 1
. . .
library call to simulation engine library
C++ statements Or

eventFunc i

. . .

Event Model

eventFunc i + 1

if expr {
 func = eventFunc i + 2
}
else {

func = eventFunc i + k + 1
}

return(CONTINUE)

eventFunc i + 2
expr true

. . .

eventFunc i + 3

. . .

eventFunc i + k + 1

C++ statements
library call to simulation engine library
. . .
func = eventFunc i + k + 2
return(CONTINUE)

expr false

Process Model

Figure 5: Simulation Constructs Interpretation in Condi-
tional Block

shown in Figure 7 and Figure 8. For comparison, M/M/1
queue is also modeled using DEPEND.

Cserver* server;

class SERVICE {
PROCESS void task() {

server->CreqServer();
Cdelay(expntl(interService));
server->CendServer();

};
};

SERVICE service[NUM];

class ARRIVAL {
PROCESS void task() {

i = 1;
while (i < NUM) {

Cdelay(expntl(interArrival));
Cschedule(service[i], ‘‘SERVICE::task’’, currentSimTime);
i = i + 1;

};
};

};

Figure 6: M/M/1 Queue Process-oriented Model

In Figure 9, the X-axis represents the number of job
arrived, and the Y-axis represents the simulation time
Figure 9 shows clearly that simulation time increase
linearly with the increase in the total number of jobs.
Overall, DEPEND takes longer than the proposed too
In fact, DEPEND took 1.72 seconds to simulate 2000
jobs, while the proposed tool took 0.72 seconds. Whe
the number of jobs is increased to 4000, DEPEND too
3.4 seconds and the proposed tool took 1.36 second
Thus, the simulation time difference between DEPEND
and the proposed tool increases as the number of jo
increases. This phenomenon is observed on both SUN
and Ultra-sparc workstations.

Huang and Iyer

n
)
.

d

n

e

n.
ving
n.

rc
n

D

simServer* server;

class SERVICE {
public:

class taskER : public SimEventRoutines {
public:

taskER(SERVICE* ptr)
{ erptr = ptr; func = (ER_FUNC) &taskER::task1; }

private:
SERVICE* erptr;
double task1();
double task2();
double task3();

};
};

/* Definitions for Object: SERVICE */

double SERVICE::taskER::task1() {
if (server->request((SimEventRoutines*) this)) {

func = (ER_FUNC) &SERVICE::taskER::task2;
return(CONTINUE);

}
else {

func = (ER_FUNC) &SERVICE::taskER::task1;
return(SUSPEND);

}
}

//--
double SERVICE::taskER::task2() {

func = (ER_FUNC) &SERVICE::taskER::task3;
return(expntl(interService));

}

//--
double SERVICE::taskER::task3() {

server->finish();
return(EXIT);

}

SERVICE service[NUM];

Figure 7: Translated Code for SERVICE Object

class ARRIVAL {
public:

class taskER : public SimEventRoutines {
public:

taskER(ARRIVAL* ptr)
{ erptr=3Dptr; func =3D (ER_FUNC) &taskER :: task1; }

private:
ARRIVAL* erptr;
double task1();
double task2();
double task3();
double task4();

} *task_Record;
};

/* Definitions for Object: ARRIVAL */
double ARRIVAL::taskER::task1() {

i =3D 1;
func =3D (ER_FUNC) &ARRIVAL::taskER::task2;
return(CONTINUE);

}

//--
double ARRIVAL::taskER::task2() {

if (i < NUM) {
func =3D (ER_FUNC) &ARRIVAL::taskER::task3;
return(CONTINUE);

}
else return(EXIT);

}

//--
double ARRIVAL::taskER::task3() {

func =3D (ER_FUNC) &ARRIVAL::taskER::task4;
return(expntl(interArrival));

}

//--
double ARRIVAL::taskER::task4() {

schedule(new SERVICE::taskER(service[i]), currentSimTime);
i =3D i + 1;
func =3D (ER_FUNC) &ARRIVAL::taskER::task2;
return(CONTINUE);

}

Figure 8: Translated Code for ARRIVAL Object
536
0

1

2

3

4

5

6

7

8

9

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
im

ul
at

io
n

T
im

e(
se

c)

Job Arrivals

DEPEND on SUN4
The Proposed tool on SUN4

DEPEND on Ultra-sparc
The Proposed tool on Ultra-sparc

Figure 9: Simulation Time of M/M/1 Queue Example

5.2 TMR Architecture

The second model is constructed to simulate instructio
execution and voting in a triple-modular redundant (TMR
architecture. Its timing diagram is shown in Figure 10
Three identical CPU modules (P1, P2, andP3) execute the

processor2
executing executingwaiting

processor1
executing executingwaiting

The processors finish executions, send results

to the voter, and the voter starts its voting process

 T (time)

processor3
executing executingwaiting

voter
waiting waiting

comparing
and voting

The voter finishes voting and

set processor’s status

Figure 10: TMR Timing Diagram

same instruction stream synchronously. Voting is performe
after finishing each instruction execution. Every CPU
submits its result to the voter (VOTER), and suspends
itself during the voting. The CPUs resume instructio
execution afterVOTER finishes voting. To simplify the
simulation, only the elapse of instruction execution tim
is simulated.

There are communications betweenVOTER and the
three CPUs to synchronize the voting and executio
The model uses semaphore and message sending/recei
simulation constructs to model necessary communicatio
A DEPEND model is also built and simulated. The
simulation times consumed using SUN4 and Ultra-spa
are shown in Table 2. As shown in the table, the simulatio
time improvements of the proposed tool over DEPEN
are 3.5 times on SUN4 and 4.5 times on Ultra-sparc.

An Object-Oriented Environment for Fast Simulation Using Compiler Techniques

e
h
th

he
i
m

us
l

n

ge
.
lly

e
ne
s
c
o

s.
m

e
s
x
ly
e
D

n
ed
s

nt
h
s
r

nt
-

l
n

ent
a-
r
l

g

l

e
ds
is

nt

-

e

d

Table 2: TMR Architecture Simulation Time (sec)

Simulation Package SUN4 Ultra-sparc

DEPEND 25.11 4.55
The Proposed Tool 7.63 1.01

5.3 CSMA/CD Protocol

The system considered here consists of a group of machin
interconnected using a 100Mbps high-speed ethernet. T
data communication among the machines is based on
CSMA/CD protocol. According to the CSMA/CD protocol
(Halsall 1992), a packet frame can be sent out when t
carrier sense signal is on and the transmission medium
free. If more than one source sends frames to the mediu
at the same time, a collision occurs and each source m
wait for a period of time based on a binary exponentia
distribution before a retry. Thus, more collisions mea
longer waits. The flow of the CSMA/CD protocol is shown
in Figure 11. The frame size is fixed, and the messa
size is determined randomly using a uniform distribution
Message interarrival time is assumed to be exponentia
distributed.

Three objects are used to model the protocol: on
ethernet object, one sending/receiving object, and o
initial simulation object. The ethernet object describe
the state of the ethernet. The sending/receiving obje
models the sending and receiving processes based
the CSMA/CD protocol. The initial simulation object
initiates the simulation and all the simulation parameter
Simulation is performed to evaluate message delay fro
the time a message is sent to the time it is received.

Figure 12 shows the simulation time results using th
proposed tool and DEPEND. In Figure 12, the X-axi
represents the number of sending processes and the Y-a
represents the simulation time. Figure 12 shows clear
that the simulation time increases nonlinearly as the numb
of sending processes increases. Furthermore, DEPEN
took much longer than the proposed tool. The simulatio
time difference between using DEPEND and the propos
model also increases as the number of sending proces
increases.

6 CONCLUSION

In this paper, an object-oriented simulation environme
is proposed to speed up process-oriented simulation. T
simulation environment includes an extended C++ proces
oriented modeling interface, an object-oriented compile
that transforms a process-oriented model into an eve
oriented model that requires no context-switching at run
537
s
e
e

s

t

t
n

is

r

es

e
-

-

delay SLOT_T *

min(retryNum,

 BACKOFF_LT)

delay SLOT_T *

min(retryNum,

 BACKOFF_LT)

Msg_size > 0

enet free

delay time iGap

enetSt!=xfer_busy && enetSt!=coll_busy

Yes

Yes

Yes

enetSt == idle

Yes

enetSt = xfer_prop

No enetSt = coll_prop

delay time iGap

enetSt == coll_prop || enetSt == coll_busy

No

send packet

 set enet not free

enetSt == xfer_prop

No

enetSt = coll_busy

delay time iGap

set enet free

enetSt = idle

exit
No

No

Yes

Yes

enetSt = idle

set enet free

enetSt = xfer_busy

send remaining packet(delay)

Figure 11: CSMA/CD Protocol Model

time, and an event-driven simulation engine. Three
simulation models were simulated within the proposed
environment as well as in DEPEND and the results
compared.

The proposed simulation environment offers severa
advantages over the current process-oriented simulatio
packages beyond speedup. First, no architecture-depend
context-switching or thread support is necessary, so port
bility becomes less of a problem. Second, the compile
performs transformation from a process-oriented mode
into an event-oriented model that runs on the underlyin
event-oriented simulation engine. If the extended C++
simulation modeling interface requires more process-leve
simulation constructs or if it switches to a different set of
constructs, the underlying event-oriented simulation engin
remains the same; only the transformation scheme nee
to be adjusted based on the simulation constructs. Th
offers flexibility when more functionality of the model-
ing interface is necessary. Finally, optimization to allow
more aggressive scheduling of compiler generated eve
functions is possible within the compiler environment.

There are certain limitations in the current implementa
tion of the simulation environment. Currently, the extended
C++ simulation modeling interface provides preliminary
simulation constructs to describe simulation models. Th
PROCESS member function is the only function that
can be used to specify simulation actions via simulation
constructs, since only this member function is transforme

and Iyer

re
e
d
es
u
er
ng

ns
e
er
e

b

ds
f

ter
-

e
a-

l.
g

,

ted
r

r
nter

he
a

ity,
tate

m-
ted

a-
or
or
ut-

gn.
d
r
e
ion
he

al
he
ace
Huang

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

S
im

ul
at

io
n

T
im

e(
se

c)

Number of Sending Processes

DEPEND on SUN4
The Proposed tool on SUN4

DEPEND on Ultra-sparc
The Proposed tool on Ultra-sparc

Figure 12: Simulation Time of CSMA/CD Protocol

by the compiler. Two directions for future research a
possible. One is to improve the transformation techniqu
of the compiler to allow better modeling interface, an
the other is to develop compiler optimization techniqu
for the generated event functions. These will help p
the simulation environment into practical use, and off
more performance improvement over the context-switchi
based process-oriented simulation.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Defe
Advanced Research Projects Agency (DARPA) und
contract DABT63-94-C-0045. The content of this pap
does not necessarily reflect the position or policy of th
US government, and no official endorsement should
inferred.

REFERENCES

Cooper, Eric C., and Richard P. Draves. 1988. C Threa
Technical Report CMU-CS-88-154, Department o
Computer Science, Carnegie Mellon University.

Franta, W. R. 1977.The Process View of Simulation. North
Holland, New York.

Goswami, K. K. 1993. Design for dependability: A
simulation-based approach. Ph.D. thesis, Compu
Science Department, University of Illinois, Urbana
Champaign, IL.

Jain, R. 1991.The Art of Computer Systems Performanc
Analysis: Techniques for Experimental Design, Me
surement, Simulation and Modeling. New York: John
Wiley and Sons.

Jump, J. Robert. 1993. YACSIM Reference Manua
RICE University, Electrical and Computer Engineerin
Department.
538
s

t

e
r

e

.

Law, A. M., and W. D. Kelton. 1991.Simulation Modeling
and Analysis. New York: McGraw-Hill.

MacDougall, M. H. 1987.Simulating Computer Systems
Techniques and Tools. The MIT Press.

Schwetman, Herb. 1986. Csim: A c-based, process-orien
simulation language.Proceedings of the 1986 Winte
Simulation Conference, 387–396.

University of Minnesota. SIMEX.

AUTHOR BIOGRAPHIES

YIQING HUANG is a Ph.D candidate in the Compute
Science Department and conducts research at the Ce
for Reliable and High Performance Computing at t
University of Illinois at Urbana-Champaign. She received
B.S. degree in Computer Science from Tsinghua Univers
China and an M.S. degree in Computer Science from S
University of New York at Stony Brook.

RAVISHANKAR K. IYER holds a joint appointment
as Professor in the Departments of Electrical and Co
puter Engineering, Computer Science, and the Coordina
Science Laboratory at the University of Illinois at Urban
Champaign. He is also Co-Director of the Center f
Reliable and High-Performance Computing. Profess
Iyer’s research interests are in the area of reliable comp
ing, measurement and evaluation, and automated desi

Prof. Iyer is an IEEE Computer Society Distinguishe
Visitor, an Associate Fellow of the American Institute fo
Aeronautics and Astronautics (AIAA), and a Fellow of th
IEEE. In 1991, he received the Senior Humboldt Foundat
Award for excellence in research and teaching. In 1993,
received the AIAA Information Systems Award and Med
for “fundamental and pioneering contributions towards t
design, evaluation, and validation of dependable aerosp
computing systems.”

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

