
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

A WORKBENCH FOR PREDICTING THE PERFORMANCES OF
DISTRIBUTED OBJECT ARCHITECTURES

Sophie Dumas
Georges Gardarin

Laboratoire PRiSM - UniversitÈ de Versailles
45, avenue des Etats-Unis

78035 Versailles Cedex, FRANCE

e
e
d
r

re
d
or

 f

s

n
f
d

to
n
e
e

ce
o
n

le
al
e

fe

l,
n

r

ad

re
of

ts a
e
ject
iez
ed
 to
ion
are
are
s a
d
the

lish
ed
 By
ch
 the
e
al
ls:

bes

s
The
ed.
ure
by
ing
ABSTRACT

The development of a Distributed Information System
(DIS) can lead to critical bottlenecks because of th
underlying architecture, which is becoming more and mor
complex. Todays applications are both object-oriented an
based on a new type of three-tiered client/serve
architecture. In this context, the capabilities of a DIS can be
drastically reduced if the performances of the system a
not sufficient. Recognizing these trends, industry an
research are defining standards and technologies f
communicating between components of a DIS and for
database access mechanisms. The emerging candidates
these middleware technologies include the OMGs CORBA

specification and Microsoft's proprietary solution known a
DCOM. A key problem with such complex architectures is
the performance issue. This paper presents a simulatio
based workbench for predicting the performance o
applications relying on these architectures. The propose
tool is based on providing end users with mechanisms
specify the essential characteristics of the applicatio
he/she is conceiving and the ability to match the softwar
components with the operational environment (hardwar
and operating system).

1 INTRODUCTION

When considering a system as a Software Performan
Engineering product, one feasible option to be taken int
account is the use of simulation techniques especially whe
analytical models cannot be easily established by simp
inspection of the software structure and the operation
environment. The main advantage of the performanc
modeling and simulation approaches is its ability to
intervene into the earliest phases of the applicationís li
cycle. Moreover, application models can be refined
throughout the life cycle phases thus offering a good too
as far as performance evaluation is concerned, for optio
validation during the development phase and fo
515
or

-

supporting activities such as capacity planning and lo
testing during the operational phase.

As an effort to introduce the principles of the Softwa
Performance Engineering discipline into the universe
object-oriented distributed computing, this paper presen
simulation-based workbench for predicting th
performance of applications based on a distributed ob
architecture, (Bouzeghoub, Gardarin, and Valdur
1997), (Orfali, Harkey, and Edwards 1996). The propos
tool is based on providing end users with mechanisms
specify the essential characteristics of the applicat
he/she is conceiving and the ability to match the softw
components with the operational environment (hardw
and operating system). The workbench is conceived a
CASE tool for predicting the behaviour of secon
generation client/server systems that extends
functionality of SMART2, (Ifatec 1996).

The workbench interacts with end users to estab
the hardware and software configuration for a distribut
object architecture based application to be analysed.
simulating some target application, the workben
provides results related to the communication servers,
usage of CPU, network, disks and the statistics on th
execution of user applications. For this last logic
component, results are provided at different leve
transaction, program and overall application.

This paper is organised as follows: Section 2 descri
the concepts underlying the DCOM architecture and the
OLE-DB API. In section 3 the overall workbenchí
architecture, modules and functions are presented.
extension to distributed object architectures is explain
Section 4 presents the distributed object architect
modeling paradigm. Finally, section 5 concludes
summarizing the main points of this paper and introduc
some future work.

Dumas and Gardarin

v

ro

e-

tl

f

u
ed
ly

s

s
ss

t
tly
e

du
om
he

,

r

g

te
2 OVERVIEW OF A THREE-TIERED
ARCHITECTURE BASED ON DCOM AND
OLE-DB

A three-tiered architecture distributes object accesses o
a client, a processing server and a data server, that means
object methods may be processed on a site different f
the location site of the object. This section presents DCOM

and OLE-DB which are the two bricks to achieve thre
tiered architecture using Microsoftís technology. DCOM

provides the infrastructure that allow to transparen
invoke a remote interface and OLE-DB is the API used to
access a DBMS (ORACLE in our study case).

2.1 DCOM Architecture (Distributed Component
Object Model)

DCOM (Dcom 1995) is the Microsoft counter part o
OMGís CORBA specification (Corba 1995). It is often
associated with OLE (Brockschmidt 1993) to achieve
Microsoftís distributed document management facility b
in this paper we are most interested in Distribut
Information Systems and will restrict our focus to sole
DCOM.

Client Process

Remote Machine

Local Server Process

Remote Server Process

Client
Application

In-Process Server

In-Process
Object

Local
Provider
Proxy

COM

Remote
Provider
Proxy

Stub

COM

COM

Stub

Local Server

Remote Server

Local
Provider

Remote
Provider

LRPC

RPC

Figure 1: DCOM Architecture

DCOM is designed to allow clients to tranparently
communicate with objects regardless of where tho
objects are running (Figure 1). Three kinds of servers are
distinguished: an in-process server loaded into the clientí
process space, a local server running in a separate proce
on the same computer as the client, and a remote server
running on a separate computer. From a clientís poin
view, if the object is in-process, the call reaches it direc
with no intervening system-infrastructure code. If th
object is out-of-process, then the call first reaches a proxy
object which generates the appropriate Remote Proce
Call (RPC) to the other process or the other computer. Fr
a serverís point of view, if the object is in-process, t
caller is the client itself. Otherwise, the caller is a stub
object that picks up the RPC from the proxy in the client
516
er

m

y

t

e

of
,

re

process and turns it into an interface call to the server
object. As far as both clients and servers know, they
always communicate directly with some other in-process
code.

2.2 OLE-DB (OLE Data Bases) API

OLE-DB is a method for accessing all kind of data via a
standard COM interface, regardless of where and how data
is stored. It is just an API which role consists in giving
applications a uniform access to data stored in DBMS and
non-DBMS applications (Ole-db 1996). This include storage
media such as relational databases, documents
spreadsheets, files, and electronic mail (Figure 2). Any
component that directly exposes functionality through an
OLE-DB interface over a native data format is an OLE-DB

data provider and a data consumer may be a custom
program written to one data provider or a generic consume
written to work with a variety of data providers.

Applications

OLE-DB

Query
Processor

Tabular
Data

File
System

Other
COM

Component

Spread-
sheet

OLE-DB / ODBC
Driver Manager

ODBC
Driver

ODBC
Driver

SQL
Server

Other
DBMS

Figure 2: OLE-DB Architecture

The specification introduces seven new object types in
supplement to OLE2: DataSource, DBSession, Command,
Rowset, Index, ErrorObject, and Transaction. The
minimum set of objects and interfaces providers must
support is called base-level interfaces (Figure 3).

Providers must support a Data Source Object (DSO)
which represents a connection to a data source. Then, usin
IDBCreateSession interface creates a DBSession object
through which it is possible to access data from a table,
create and execute queries, manage transactions, and crea
a table or an index. And at a minimum, all DBSession
objects must support an IOpenRowset interface through
which a data consumer generates a rowset, making
available data from a table.

A Workbench for Predicting the Performances of Distributed Object Architectures

 o

s

o
m

o

i

ct

are
 of
e

st
n
ur
to
an

unt

l
is
all

n
n
on
d

us
e
as
al
le
e a
ses
es,
be
o
 of

are
as

d

Data Source

DBSession

Rowset
IAccessor
IRowsetInfo
IColumnsInfo
IRowset

IDBInfo
IDBInitialize

IDBCreateSession

IOpenRowset

Figure 3: Base Level Interfaces

In our context, from a performance evaluation point
view, we are focusing on the rowset object (Figure 4)
which is the unifying abstraction that enables all OLE-DB

data providers to expose data in tabular form. A ba
rowset exposes three interfaces: an accessor (IAccessor)
providing bindings for application variables, an iterat
(IRowset) to iterate through the set of rows, and a sche
provider (IColumnsInfo) returning information about the
columns of the rowset. Handles are used with accessors t
manipulate the contents of the rows. When the row
fetched, the data is cached in the OLE-DB component. Note
that an analogy can be driven between the limited form
services provided by a rowset and a subset of the serv
offered by a BOA (Basic Object Adapter) over an obje
within the CORBA architecture.†

Accessor Binding

Handles

Cache
Translation

Data Source

IRowset

IColumnsInfo

IAccessor

IUnknown

Figure 4: Rowset Object
51
f

ic

r
a

is

of
ces

3 A DISTRIBUTED OBJECT ARCHITECTURE
WORKBENCH

The three major approaches for performance evaluation
analytical cost evaluation, simulation, and measurement
prototype systems. Although helpful, each of thes
techniques is in itself insufficient to predict the
performance of a given configuration and select the be
arrangement of components. Coupling them in a
integrated tool seems to be a promising idea. Thus, o
workbench has been first defined and implemented
couple a simulation tool based on queuing networks,
analytical cost model for SQL queries, and a real DBMS

optimizer. Then, it has been extended to take into acco
the distribution of components around CORBA and DCOM.

This section presents first of all the underlying
modeling method of the workbench and its functiona
architecture. Then, it focuses on the extension of th
workbench to distributed object architectures and shows
the interactions between the existing models.

3.1 Underlying Modeling Method

The main advantage of the modeling and simulatio
approach is the possibility to intervene very early withi
the life cycle of an application, as early as the concepti
phase. Moreover, application models can be refine
throughout the phases of the application life cycle, th
offering a good mean for option validation during th
development phase and for supporting activities such
capacity planning and load testing during operation
phase. Therefore, depending on the application life cyc
phase considered, an end-user of the workbench could b
designer/developper in conception and development pha
or a manager in operational phase. Having these premis
the first aim is the one of proposing a method that can
applied in every phase of the software life cycle. T
achieve this objective, the proposed method is composed
five steps (Figure 5).

In the component definition step, the user can define
the essential characteristics of the hardware and softw
platforms where his/her applications run. Components
processors, controllers and devices, the LAN (Ethernet), IP-
routers, versions of DCOM servers, and OLE-DB API are
defined. The workbench includes some predefine
components for servers (Uniprocessor, SMP -Symmetric
Multiprocessing-, Clusters, MPP -Massively Parallel
Processing-), disk and drivers (models based on the SCSI or
SCSI2 technologies), workstations, and terminals.
7

Dumas and Gardarin

on

a

e
n

t
ng

s

n
t

 t

h
c
e

tc
t

ei
w
s
d
e
na

on

.

o
s
e
er
a

e.
is

r

a

ls

or

d

ta
ta
his
e
ct

t
to

till
or
to
re
 a
Component

Configuration Application

Scenario

Results

Step 1

Step 2 Step 3

Step 5

Step 4

Figure 5: The Prediction Method proposed for the
Workbench

Architecture includes hardware and system descripti
and is called configuration. The user puts together the
hardware and software components to define the fin
operating environment where his/her DCOM/OLE-DB

application will be executed.
Application is the step devoted to the softwar

specification and is based on the data description a
transaction models. Transactions are specified through
graph-like formalism called DCOM/OLE-DB Transaction
Graphs. Architecture and application modeling are
independent, thus the user can begin by each one a
convenience. Furthermore, this workbench is interesti
because the user can evaluate the same applications
different architectures without any change on it
application model.

A scenario is a merge between a configuration and a
application and during this step, the user specifies the en
load of the transactions and locates the data required by
application.

When the user believes his/her scenario is fine, he/s
is ready to run a simulation and get some performan
results. Results are grouped in performance objects (serv
machines, software servers, transactions, programs, e
They give average values or total values for the comple
simulation. However, most of them are presented with th
confidence interval or standard deviation, to check ho
relevant is the execution of the simulation. Thi
information can be displayed in different ways an
analysed to determine bottlenecks and perform furth
capacity planning studies for the systems and operatio
environment.

3.2 Functional Architecture

The workbench is conceived as a Java applicati
interacting with the Oracle 7.3.3 DBMS and with QNAP2V9,
518
l

d
a

its

on

ry
he

e
e
r
.).
e
r

r
l

an interpreter of QNAP2 (a modeling language with basic
type extensions and simulation capabilities) (Simulog 1991)

In the architecture of this workbench (Figure 6), the
client sends a document containing the application t
simulate to the server. In order to verify some constraint
and consistency rules, the document is verified on th
client side before sending it to the server. When the serv
receives an application to simulate, it returns to the client
Unique Simulation Number (USN) which will be used later
to ask for simulation results. Indeed, simulation is
asynchronous and that is a strong point of this workbench
because sometimes a simulation can take a very long tim
The communication between the client and the server
done via Java RMI (Remote Method Invocation). When the
server receives a document, it generates input files fo
qnap: *.qnp files containing the translation of Java objects
in QNAP2 macros and *.map files containing the map of a
configuration (how to reach an Oracle instance from
workstation, networks and routers to go through). If the
client has SQL queries in its application, the server connects
to Oracle to get the execution plan of the query and
generates a .qry file containing the evaluated queries. All
these files are given to the simulation engine which
generates the results of the simulation using the mode
defined in the library. Then, the results are sent back to the
client using the USN.

This workbench is original in the sense that it
integrates within a simulation engine real system
components, such as the DBMS query optimizer, and
analytical cost models used by the cost evaluator. Its maj
work is to complete the Query Execution Plan (QEP)
brought by the DBMS optimizer by adding several statistics
concerning its analytical cost. Thus, each entry of a value
QEP (VQEP) is an entry of the original QEP plus the
estimated CPU time consumption, the logical I/O
requirements, the lock requirements, the estimated da
transfer cost between client and server, the volume of da
to sort, and the accessed objects (tables, indexes). T
VQEP is then passed to the simulation engine. Note that th
classical analytical cost models can be extended to obje
operations (Gardarin 1996).

3.3 Extension to Distributed Object Architectures

Modeling the performances of a distributed objec
architecture may have several goals. One may want
choose among DCOM and CORBA for example, or to choose
among different CORBA implementations (Gokhale,
Schmidt, Harrison, and Parulkar 1997). Although there
may be early stages of a project where such a choice is s
open, more than often performance analysis is targeted f
a given middleware and is used to predict performances,
reduce bottlenecks, and to adjust the underlying hardwa
support. Our goal is to better understand the behavior of
complex Distributed Information System on a given

A Workbench for Predicting the Performances of Distributed Object Architectures
SWAP
Client

Swap User
Files

SWAP
Server

Oracle

*.swap

Cost Evaluator

*.qry

Evaluated
Queries

.map.qnp

QNAP2 V9

*.rst

*.trc
QNAP
trace

JAVA RMI

Swap
Library

Result
Files

Client site Server site

Figure 6: Functional Architecture of the Workbench
en
e

loca
 ar

 n
ces

eric

er
sed
els

hod
97
p o
ch
wit

of
n
the
er
ur

g

.

he
e

platform, with a given architecture, and for a giv
application. To limit complexity, it is better to highlight th
common aspects of CORBA and DCOM: both architectures
offer the choice between an in-process server mode, a
server mode, and a remote server mode. Servers
launched through a daemon in CORBA/ORBIX (Orbix 1996)
and through a Server Control Manager in DCOM, but after
the servers have been started this difference plays
further role. Hence, to take into account the performan
of a distributed object architecture (either DCOM or
CORBA), the workbench has been extended with a gen
model for both CORBA and DCOM†.

A model for OLE-DB has also been developed in ord
to model the complete behaviour of an application ba
on a three-tiered architecture. To develop these mod
we have used a conceptual simulation modeling met
based on queuing networks (Savino, and Puigjaner 19
This method allows to represent a system as a grou
hierarchically interacting simulation models, where ea
one acts as an agent providing services to the others
no internal knowledge about them.
r

519
l
e

o

,

).
f

h

3.4 Performance Model Hierarchy

The workbench is based on generating a hierarchy
performance models that interact during the simulatio
process. Some of the models have a static nature, i.e.
behaviour of the components is independent from the us
inputs and some others depend totally (either in behavio
as in workload characterisation) on the user inputs.

Figure 7 shows the hierarchy of performance models
handled in the workbench. The hardware level includes
models for the basic hardware component providin
processing capabilities. Models for SMP systems, clustering
systems, I/O drivers and disks are provided by this layer
The network layer includes the models for the basic
hardware components providing internetworking
capabilities. Models for WANs and Ethernet-based LANs are
provided by this layer. The middleware layer proposes the
needed models for the components aimed at providing t
characteristics of a distributed object architecture. Th
DCOM server performance model belong to this layer. A
model of the CORBA/ORBIX architecture is also defined at
this layer. The object presentation layer proposes the
model of the OLE-DB API. The application layer defines the
abstraction of workstation set and terminal set fo

Dumas and Gardarin

Generic Middleware Model

Client / Server Layer

Middleware Layer

Network Layer

Hardware Layer
SMP Driv.

DisksDisks

I/OCPU

SMP

Clust.

CPU

WAN Ethernet Router

CPU,I/O CPU,I/O CPU,I/O
Packet

Packet Packet

Loc.
Serv.

Rem.
Serv.

In-Pr.
Serv.

Packet

Trans.

Object Presentation Layer

Row.

CPU, I/O

Query

ApplicationTrans.
Graph

RDBMS

QueryTrans.

Trans.

CPU

Figure 7: Complete Simulation System
b
n

o

s
h
e
n
 o
s

th

e

rite
of
 by

ng
the
 of
the

e to
pe
er

e
ct

 the
heir

e

e

associating a DCOM/OLE-DB application with the workload
that they generate. This is a hybrid layer conformed
static performance levels (terminals and workstations) a
dynamic performance levels corresponding to th
application under study. The main dynamic abstracti
introduced by this layer is the DCOM/OLE-DB Transaction
Script.

4 DISTRIBUTED OBJECT ARCHITECTURES
MODELING PARADIGM

This section presents the modeling paradigm of a u
application based on distributed object architectures. T
impact of this user application structure on th
performance models is studied in a hierarchical a
bottom-up fashion. The study goes from the lowest level
interaction between application and environment (the ba
operations) to the highest level of interaction, i.e. th
relationship between the application as a whole and
operational environment on which it runs.

4.1 Abstracting the Operations

At the lowest level, the users are provided with th
following operations to model a DCOM/OLE-DB application
as follows.
520
y
d

e
n

er
e

d
f
ic
e
e

e

CPU operation: this operation summarises all th
operations can be performed in a DCOM/OLE-DB program
using the facilities provided by the language used to w
it. The affecting performance parameter of this type
operation is the number of instructions to be performed
the CPU on which the application runs.

I /O operation: this operation summarises the I/O
operations explicitly issued by the user. The affecti
performance parameters of this type of operation are
requested operation (read or write), the size (in bytes)
the stream to be read or written and the identifier of
disk where the operation must be executed.

Thinking Time operation: it represents operations
that requests an input from the user and hence a tim
wait for. The affecting performance parameter of this ty
of operation is the time (in seconds) to wait for a us
input.

Invocation operation: this operation represents th
invocation of a method through a distributed obje
architecture, either DCOM or CORBA. The affecting
performance parameters are the execution context of
server, the called method name with its parameters, t
number, their size, and their type.

Rowset operations: these operations can be th
creation of a rowset, the insertion of rows into the rowset,
the deletion of rows from the rowset, the retrieval of rows
or the update of the rowset. Another operation is th

A Workbench for Predicting the Performances of Distributed Object Architectures

h
in
p

 b

e
ld
t

p
ir

d
n

a

a
s
e

e

k

m

d

h
a

 a

a

 a

y
nd
nd

,

al
 the
commit operation to validate the changes produced on t
rows of a rowset. For a commit operation, the ma
affecting performance parameters are the rowset ty
(sequential or scrollable), the size of its cache and the SQL

query. A more precise description of the parameters can
found in (Dumas 1997).

This set of operations could be extended to oth
operations without any problem. For example, we cou
add operations concerning the services offered by bo
DCOM and CORBA (naming, events, persistency).

4.2 Transactions

The next step after conceptualise basic operations is to
together a sequence of operations. In this sense, the f
concept a user has to model in a DCOM/OLE-DB application
is the transaction concept. A transaction can be considere
as a list of operations to be performed sequentially duri
the execution of an application. A DCOM/OLE-DB

transaction can therefore be abstractly depicted as:

• Ti, a unique identifier that terms the transaction as
object.

• Seqi, a sequence of operation instances, that is
operation type with values for each of its parameter
Then, each element on the sequence will be compos
by:
- nbi (1<= nb <= n), the order of the operation in the

sequence (unique for each element of the sequenc
- insti, the operation instance itself.

4.3 Transaction Graphs

In order to get an abstract model of a program we have
represent in a suitable way all the execution paths
program can have. In compiling theory, the traditiona
objects used to represent this situation are the graphs. We
are not only interested in represent the paths (static
information) but also its approximate behaviour (dynamic
information). The mechanism used to represent th
program behaviour is based on probabilities. From one
block B1 the program execution can continue in the bloc
B2 with probability p if and only if the p*100% of times
(the frequency view of a probability measure) the progra
passes through the block B1 continues executing the block
B2.

Following the previous reasoning, a DCOM/OLE-DB

application can be represented as a graph G whose no
include DCOM/OLE-DB transactions identifiers. Since the
same transaction can appear in different execution pat
the transaction identifier associated to a node is only
attribute and not the node identifier by itself, that is a nod
in a transaction graph G is a pair (i,t), where i is a unique
identifier for the node in G an t is a transaction identifier.
521
e

e

e

r

h

ut
st

g

n

n
.
d

).

to
a
l

e

es

s,
n
e

Arcs in G are weighted with probabilities, i.e. and arc is
pair (i,j,p) where i and j are node identifiers and p is a
probability.

Finally, the family
 of graphs that can represent
DCOM/OLE-DB transaction have the following restrictions:

• The empty program must be represented as
transaction graph G with two nodes (0,_) and (∞,_)
and one arc (0, ∞, 1). This means that an empt
program has an initial point and an ending point a
only one execution path from the beginning to the e
of the program without execution of DCOM/OLE-DB

transactions.

• In any transaction graph G belonging to the
 family,
for each node n that is the tail of at least one arc in G
the sum of weights of the arcs leaving from n must be
1.

• The only node with no exiting arcs is the (∞,_) one.

The following figure shows an example of DCOM/OLE-
DB transaction graph. In this figure, the initial and termin
nodes are shadowed. The program may execute only
transaction t1, only the transaction t3 or several (one or
more) executions of the transaction sequence t2 - t4 - t1
followed by the sequence t2 - t4 and many (at least one) t2

executions; or only the transaction sequence t2 - t4 and
many (at least one) t2 executions.

Finally, as a DCOM/OLE-DB application is a set of
DCOM/OLE-DB programs, represented as DCOM/OLE-DB

transaction graphs, the top level model for DCOM/OLE-DB

views a DCOM/OLE-DB application as a set of DCOM/OLE-DB

transaction graphs.

0
_

2
t2

3
t3

1
t1

4
t4

5
t1

6
t2

oo
_

0.3

0.4

0.3

1

0.5

0.5

0.50.3

0.5

1

1

0.7

Figure 8: Example of a Valid Transaction Graph

Dumas and Gardarin

nt
of
se

s.
n

or
 a

ge
d
in
 o

in
em
 o

c

we

e
a
 a

ne
.

97
,

er

n

4),

ar.
or
,

d

e

.
t
r

d

ng

e
ch

n

nt-
i-
5 CONCLUSION AND FURTHER ACTIVITIES

This paper has presented the architecture and fundame
of a workbench for predicting the behaviour
applications. The main results obtained with the propo
workbench are:

• A method for predicting the behaviour of application
The notion of having different phases (compone
definition, configuration, application and scenario) f
defining multiple-level systems provides the user with
separated-of-concerns method for specifying lar
scale systems. In addition, the method can be use
every stage of a Software Performance Engineer
methodology. It assists designers in making choices
critical issues during the whole lifetime of a project.

• Integration of several approaches such as queu
networks, analytical cost modeling, and real syst
components, for finely evaluating the performances
an application.

• The extension of the workbench to distributed obje
architectures, namely DCOM and CORBA. And in order
to have a three-tiered architecture environment,
have also integrated the OLE-DB API.

Some models of benchmarking application have be
developed to tune the models. Further experiences
ongoing. The ultimate goal of the project is to provide
library of reusable components with a runtime
environment. The library will ease the development of fi
performance models for Distributed Information Systems

REFERENCES

Bouzeghoub, M., G. Gardarin, and P. Valduriez. 19
Object Technology. Software Engineering series
Thomson Press, Boston.

Brockschmidt, K. 1993. Inside OLE. Microsoft Press,
Redmond, Washington.

Corba, 1995. The Common Object Request Brok
Architecture: Architecture and Specification. OMG.
Revision 2.0.

Dcom, 1995. The Component Object Model Specificatio.
Microsoft Corporation. Draft Version 0.9.

Dumas, S., 1997. DCOM and OLE-DB model specifications.
ESPRIT Technical Report, HELIOS project (EP 2235
HELIOS/IFA/WP2T2/12.1.97, IFATEC, France.

Gardarin, G., and O. Gardarin. 1996. Le Client-Serveur.
Eyrolles. Paris, 1996.

Gokhale, A., D. C. Schmidt, T. H. Harrison, and G. Parulk
1997. A High-performance Endsystem Architecture f
Real-time CORBA. IEEE Communications Magazine
Vol. 14, No 2.
522
als

d

t

-
in
g
n

g

f

t

n
re

.

Ifatec, 1996. SMART Userís Guide. Release 3.0 Beta.
Montigny-Le-Bretonneux, France.

Ole-db, 1996. Microsoft Corporation.
Orbix, 1996. IONA Technologies. The ORBIX Architecture.

Dublin, Irland.
Orfali, R., D. Harkey, and J. Edwards. 1996. The Essential

Distributed Objects Survival guide. J. Wiley & Sons,
New York.

Savino, N., and R. Puigjaner. 1998. An Object-Oriente
Approach for the Design of Hierarchical Queuing
Network Simulation Models with QNAP2. Object-
Oriented Simulation Conference, San Diego, California.

Simulog, 1991. QNAP2 Reference Manual. Rocquencourt,
France.

TPC (Transaction Processing Council), 1996. TPC
Benchmark C Standard Specification. Revision 3.2.

AUTHOR BIOGRAPHIES

SOPHIE DUMAS is an engineer at IFATEC, a company
specialized in technologies around DBMS, Datawarehous
and Internet/Intranet. She is currently working toward a
PHD in Computer Science at the University of Versailles
Her research interests include distributed objec
architectures and performance evaluation of compute
systems.

GEORGES GARDARIN got his PHD in 1978 from
University of Paris VI. From 1980 to 1990, he was
professor at Paris VI University, teaching databases an
distributed systems. He was also chief scientist at INRIA
where he headed the Sabre project, which was developi
an object-relational parallel DBMS. From 1990, he joined
the new University of Versailles where he is heading th
PRiSM research laboratory, the computer science resear
laboratory specialized in Parallelism, Networking, DBMSs
and Performance Modeling. Georges Gardarin has writte
more than 80 papers in international journal and
conferences, and several books on databases and clie
server. He is currently working on federated and sem
structured databases.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

