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ABSTRACT state information to initialize on-line simulation runs are

often complex tasks. In this paper, we demonstrate the
In this paper, we address the complex task of initializing an benefits of using a simulation tool that is capable of
on-line simulation to a current system state collected from providing a model that is applicable to both the analysis
an operating physical system. The paper begins by and control of the system has on fulfilling the initialization
discussing the complications that arise when the systemrequirements for on-line simulation.
model employed by the controller and the planner are not In general, the state of any computer program is
the same. The benefits of using the same model for controldependent upon its data, including the values currently
and planning are then outlined. The paper then discusses assigned to its variables and data structures. Initializing a
new simulation paradigm that models controller program to a specific state necessarily requires one to
interactions and provides a single model that is capable of assign values to every variable. This requirement holds for
supporting planning and control functions. Next, issues simulations as well. In order to initialize a simulation to
arising from performing a distributed simulation of the the state of the physical system, one must initialize each
distributed control architecture that is being employed to variable and data structure such that the state of the
manage the system are addressed. The definition of theprogram represents the current state of the physical system.
state for the distributed system is then discussed and theln most simulation applications, this is a complex task
collection of the real-time state information from the because the variables employed to define the state of the
elements of this distributed system is outlined. Finally, the system and the state of the simulation model are different.
procedure for initializing the distributed on-line simulation In addition, if one employs commercial simulation

from the collected real-time state information is given. languages, many of the variables that must be initialized
are inaccessible to the user.
1 INTRODUCTION The task of gathering the state information from the

controller can also be difficult. In many cases, the internal
In most intelligent control applications associated with the data structures employed by the controller are also hidden
operation of complex discrete-event systems, the control from the user. Even if these data are accessible, the user
system must be able to employ the state information that is still must determine the relationship of the data to the
collected from the managed hardware in order to initialize current state of the system as it is being modeled. That is,
on-line simulations, see Davis (1992). These on-line complete data dictionaries for the variables being
simulations can be employed within the intelligent employed by the controller and the simulation model must
controller to project the future performance of the system be known. For most commercial controllers, this
for both planning and control purposes. For example, on- information is not available. In summary, when one
line simulations may be used to project the future employs commercial simulation and control tools, one
performance of the system while operating under one or seldom is capable of defining a congruent representation
more alternative plans. They also may be used in order tofor the system state which both the simulation model and
permit the controller to employ predictive control practices controller can employ. Hence, initializing the simulation
where the future consequences of a given control action ismodel to the current system state becomes extremely
assessed before it is implemented. This real-time difficult if not impossible to achieve.
collection of the state information from the physical system One obvious solution to this problem is to employ the
under operation and the subsequent use of this real-timesame state representation in both the simulation model and
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the controller. An even more obvious solution would be to developed in a manner that will support the simulation of
employ the same model for the system state transition distributed systems, a capability which will be discussed
functions in both the simulation and controller functions. later. The included objects contain the executive function,
Thus, the model that the controller employs to manage thethe scheduled and pending event lists, a list of available
system would be the same as the simulation model resources, and two pointers, one to the system model and
employed in the planning process. We believe that this one to the communication program (See Figure 1). The
capability can be achieved by considering the interactions collection of objects also contains the modeling elements
among the controllers as the primary basis for system which are used to construct the system model.

evolution rather than the flow of entities through a
stochastic queuing network, the approach which has been
adopted by most commercial simulation tools. Although
most simulators do not have the capability to model
controller interactions or control the system, the integration
of simulation and control has been gaining popularity in
recent years, see Peters, Smith, Curry, and LaJimodiere
(1996). Recently, our research team has developed a new
simulation tool that explicitty models the interactions
among the controllers in order to describe the state
transition mechanisms that govern the evolution of the
system, see Gonzalez and Davis (1997). The models
developed by this simulation tool can either be used to
project the performance of the system for planning
purposes or be employed by the controllers in managing
the response of the system. Since the state representation
is the same for both the planner and the controller, the task
of collecting real-time state information and then
employing the collected information to initialize any on-
line simulations is significantly simplified. However, there
are still significant challenges to be addressed, which we
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will discuss later in the paper. Figure 1: The Executive Object. Note: the Circles

Our tool has two modes of operation: a control mode and Represent the Data Structure Objects, the Square
simulation mode. These two modes of operation differ onl Represents the Executive Function, and the Flat

in the way they handle the advancement of time and in tl Rectanales Represent Pointer Variables.

order in which they execute events. In order to provide the

simulation tool with this dual capability, a new data A problem arises when one simply copies the data

structure called thpending event listvas added. This list ~ from the controller to the simulator in order to initialize the
contains the events that are waiting for a response from thesimulation to the state of the controller. Since the controller
hardware before they can be executed. uses both the pending and the scheduled event lists while
A simulation or control program consists of two basic the simulator only uses the scheduled event list (the
components: the simulation tool which manages the simulation does not interact directly with the equipment),
execution of events and the model which describes which one must make some accommodations for the events that
events can occur. Our simulation tool, like most are contained within the controller's pending event list.
simulation tools, consists of three basic parts: Since the simulation does not receive messages from the
hardware, there is no direct means for determining when
. The executive function, which manages the execution these events will occur. Rather, the initialization process
of events under the constraints of the employed system must estimate when these pending events will occur and

model. then transfer the events from the pending event list to the
« The data structures, which include the scheduled eventScheduled event list. The scheduled event time for each
list, the pending event, and the resource list. pending event is calculated by sampling a random deviate

The set of modeling elements that is used to construct ffom a previously specified distribution of the duration
the system model. time for each pending event type contained within the

simulation model. Once a random duration is sampled for

Our tool encapsulates the system model represented bythe particular pending event, this duration minus the
a collection of C++ objects into a comprehensive amountoftime the event has already been waiting provides

simulation executive object. This encapsulation has beenthe time in the future when the event will occur. If the
event time is computed to have occurred before the current
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time, then the event is scheduled to occur now. The
controller may also help the simulator in this matter by

computing an estimated time for every new event that is
inserted into the pending event list and storing it into the
event as an attribute. If this approach is adopted, the
pending event can be immediately transferred to the
scheduled event list and scheduled to occur at the time
predicted by the controller.

2 DISTRIBUTED SYSTEMS

One of the focuses of our research has been the
development of distributed simulation capabilities that can
more faithfully emulate the distributed control environment

that occurs in the management of real-world systems. To

this end, we have developed an even more comprehensive

modeling paradigm called the Hierarchical Object-Oriented
Programmable Logic Simulator (HOOPLS), which
simulates the distributed control architecture by modeling
the interactions among the controllers, see Davis, Macro,
and Setterdahl (1997) and Davis, Setterdahl, Macro,
Izokaitis, and Bauman (1993).

The HOOPLS paradigm is based upon the belief that
interactions among the controllers must be considered by
the simulation model in order to accurately model a system
with a distributed control architecture. The single most
important  characteristic  of the HOOPLS-based
methodology, and what separates it from other object-
oriented simulation approaches, is its attention to modeling
the flow of messages among the controllers included
within the distributed control architecture.

This paradigm is implemented by including all of the
controllers into a single simulation program. The
independence of the controllers is maintained by
encapsulating each controller into an object. The included
controllers execute independently of each other by having
a supervisory function simulate the communication
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Figure 2: The overall system. On the left is the
controller with the message server. On the right is the
on-line HOOPLS simulation. The agent connecting the

two tells the server to get the system state, then gives this
state to the simulator in order to initialize a simulation
run with the system state.

consisting of an instantiation of our software tool (see
Figure 3). The distributed system was then simulated

under the HOOPLS methodology. The state of the
distributed controllers was then successfully gathered and
used to initialize several on-line simulation runs which

were used for planning purposes.

In the control of distributed systems, the control
objects communicate with each other. The pending event
list is used in the same manner that it was used for single
systems. At each controller, the pending event list holds the

network that passes messages among the controllers angyenis that are waiting for a response from an external

manage the order in which the messages get transmitted
see Gonzalez and Davis (1997). In its emulation of the
communication network, the supervisory function receives
all of the control messages that are transmitted by the
control object and places them into a message queue wher

agent (which can be either another controller or a

controlled piece of equipment). When simulating the
distributed system using the HOOPLS methodology, the
control objects continue to communicate with each other.

§n fact, when we simulate the system using the developed

they are ordered based upon their simulated delivery times. yictibuted simulation capabilities, the software tool is

The supervisor then sends each message to its recipienhctuamy running in control mode.

control object at its scheduled delivery time (see Figure 2).
The primary reason for developing the HOOPLS
methodology was to more accurately model systems that
have a distributed control architecture. In order to test the
ability of a single model to support both planning and
control, we constructed a physical emulator of a flexible
manufacturing system, see Gonzalez and Davis (1997).
The control architecture for the physical emulator is
distributed across 25 independent controllers, each
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The only difference
between simulation and control mode is in the way the
clock is incremented and in the way events are scheduled
to be executed. For simulation of distributed systems,
the time is advanced by the supervisory function and not
independently by each control object as is the case when
the simulation tool operates in the control mode. In
addition, the models communicate with each other as they
do when they are physically controlling the system.
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Figure 3: The Implemented Control Hierarchy for the Physical FMS Emulator. The Submodels That are Presented Betw:
the 2 Horizontal Lines are the Actual Controllers Used Both to Control and Simulate the System. The Rest of the Model
Were Created to Provide a Complete Model for Simulation Only; They Are Not Used in Control Mode.

distributed systems, the time is advanced by the data structures from their controller models since these
supervisory function and not independently by each control models do not exist. Fortunately, these models represent
object as is the case when the simulation tool operates inthe most basic task-implementing elements of the system at
the control mode. In addition, the models communicate the lowest level of the control architecture. They generally
with each other as they do when they are physically consist of one simple queue and a process. Initializing
controlling the system. their models is usually a matter of inserting an entity into
In initializing the distributed model for an on-line their queue and possibly an event into their event list. In
simulation, the events in the pending event list can remain our implementation, generating a state representation for
there as opposed to moving them to the scheduled eventhese equipment models proved to be a straightforward
list as is done for the simulation of single thread systems task.
(i.e. a non-distributed simulation). This avoids the task of
having to move the pending events into the scheduled 3 THE DEFINITION OF THE STATE
event list and makes the initialization task one of simply
copying the variables and data structures of the controller's The state of the system provides a complete description for
program into the simulation's program. However, since all the variables that change as the system evolves in time.
some of the controller objects must communicate with the Some variables are initialized at the beginning of the
physical hardware, for the purpose of simulation, objects simulation run and then remain constant. For example, the
representing the physical machines must be added to thetotal number of Automatic Guided Vehicles (AGVs) within
collection of models. These equipment objects are the a given submodel is typically constant. Thus, these
submodels that are shown below the bottom horizontal line variables are not considered to be a part of the state
in Figure 3. These latter models exist for simulation because they do not change with time. The following
purposes only. During control mode implementations of grammar has been developed in order to define the state for
the model, these models would be replaced by the actualany model or system of models developed using our
machines. The inclusion of these equipment models simulation tool where the control model and the simulation
complicates the task of defining the state of the overall model are the same.
system. For these equipment objects, one can not copy the
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system state : ffsg ... (msg) ; the messages
( (hame objstate... (hameobjstatg ) ; the control object’s states
(time) ; the system time
msg fromaddr ; the source address
toaddr ; the destination address
msg ; the message
operandl ; the operand
sn ; the serial number of the destination entity

(strlstr2..) ; the operand that is a queue

objstate: ((Eend... end).. (enh... €nd)) ; the states of the QUESEIZE elements
((Eend... end).. (enh... end)) ; the states of the PENDING elements
((Eend... €nd).. (enh... end)) ; the states of the DELAY elements
((evdh... evd) ; the state of the scheduled event list
((evdh... evd)) ; the state of the pending event list
( (resulty ; the state of the list of available resources
(resmay ; the state of the list of total resources
(resalte) ; the state of the list of alterations to be made
(needaltey ) ; the state of the alterations request flag
(time) ; the time of the control object
(mode) ; state information used by the model
ent: sn ; the serial number of the entity
attrl attr2 ... attr10 : the 10 attributes
strattrl strattr2... strattrl0 ; the 10 string attributes
timein ; the time in attribute
paraml param2 ... paraml10 ; the 10 parameters
(pplpp2..) ; the process plan queue
(retaddrlretaddr2...) ; the return address queue
pri ; the entity’s priority
evt type ; the event type
whichone ; the modeling element number
eventtime : the time the event is to occur

keyl key2 key3 ; the keys for matching pending events
sn : the event serial number

Figure 4: The State of the System

The state of the overall system, which includes all of tell the parser which data are associated with the queue,
the sub-models in a distributed system, consists of the because the queue can contain any number of items. In
following three items. The messages that were in the interpreting the system state, the parser employs a finite-
network at the time the control objects generated their statestate machine. The parentheses in the system state
data, the state of each of the control objects in the control description are used to guide the parser through the state
architecture, and the current time. The rationale for information.
including the messages as part of the state will be In our tool there are three modeling elements that have
discussed later. Each control object state is preceded bythe capacity to store entities. The QUESEIZE element
the object’'s name. This allows the process for building the models the entities that are waiting for resources to become
system state to gather the state for each controller in anyavailable. The DELAY element models entities that are
order. being processed and are waiting for a scheduled

The state of the data structures (msg, ent, and evt) iscompletion event to occur. The PENDING element holds
simply the data contained in the structures. The label msgentities that are waiting for a message from an external
is for the structure that contains the messages, ent foragent to arrive. Thus, the QUESEIZE, PENDING and
entity, and evt for event. Note that if the data structure DELAY elements must have a queue to hold the entities.
contains a queue, then the data for the items in the queueThese are also the only data structures associated with the
are enclosed by parentheses. The parentheses are used tnodeling elements that need to be included in the state
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definition. The rest of the data are either statistical messages are at the time the state is measured, the best
variables, which are reinitialized before each on-line agent to gather the state is the message server. In the
simulation run, or variables who's value remain constant control architecture, all of the messages going from one
throughout the simulation. Because the queue is the onlycontrol object to another are routed through this message
data that is relevant in the state, the state of these modelingserver (see Figure 2). The message server is the agent that
elements can be defined by the list of the state variables forroutes all of the messages and keeps a log of all messages
each entity that is in its queue. In general, there may bethat are currently being transmitted. It is also responsible
any number of a given type of modeling element in the for collecting the state data from each control object, along
model. For example, the model may include three with the anticipated messages, and then generating the
QUESEIZE, four DELAY and one PENDING element. complete system state.
The first line of the control object's state definition Since the controller must continue controlling the
specifies its QUESEIZE elements. Following this line, the system while it gathers the state information, it is necessary
first set of parentheses is for the QUESEIZE1 element, the to minimize the disruption that gathering the state has upon
second is for the QUESEIZE2 element, and so on. Within the controller. It is also essential that the controllers be
each set of parentheses is a list of the entities that are in theable to continue communicating with each other while the
associated element’s queue, as specified in the first line for state is being gathered. For this reason, one cannot simply
each control object. The state data for the PENDING and tell all of the controllers to stop sending messages and wait
DELAY elements are organized in a similar fashion. until all of the messages in the network arrive at their
The scheduled event-list and pending event list contain destination before starting the state gathering process. This
only the list of events as their object’s data. Therefore, the method of emptying the network before gathering the state
state for these lists includes each event that is currentlyis intuitively desirable, but no controller can be suspended
contained in the list. The resource states are implementedfor the amount of time it takes to clear the network. The
as tables of integers. Each resource has two integersnetwork must continue to transmit messages and the
associated with it. The first is the number of available controllers must continue to operate while the state is being
resources of that type and the second is the total number ofgathered. Thus, the agent that gathers the state must do
resources of that type in the system. some bookkeeping in order to determine which messages
Some of the queues that are stored in the stateshould be included as part of the state and which should
representation have a particular order based upon annot.
employed priority scheme. Even though the order of each Our controllers were distributed across several UNIX
gueue is always maintained in the state, these associatedvorkstations. Since the UNIX sockets preserve the order in
priorities must be saved separately. In the case of the eventvhich messages travel from one point to the next, the
and the pending event list, the priority can be obtained message server can use this fact to determine which
from the events themselves. The queue associated with anessages must be included in the current state definition.
DELAY modeling element uses the time that the delay In order to gather the system state, the message server
event will occur for the order of the entities in the queue, sends a message to each of the control objects requesting

and this event time must be stored along with the entity. its state. For each communication link, all of the messages
that arrive after the state request message is sent and before
4 THE GATHERING OF THE STATE the state itself is received are messages that will not be

accounted for in the individual object sub-states and
The gathering of the state is a delicate operation that therefore must be included as part of the overall system
requires some thought. Any message that is in the networkstate. Because all of the control objects process messages
at the time the state is generated must be accounted for byn the order that they are received, the controller knows
including it as part of the state. If these messages are notwhich messages were sent before the request to submit
correctly placed into the state description, then the state occurred. As mentioned above, the messages that are
following situation can occur. One controller's state received between the time the state request message is sent
description reflects the object as waiting for a message and the state itself is received must be made pa of the
from a sending object. However, the sending object’s state system state. However these messages can be sent to their
description reflects the message as already being sent anddestination as soon as a copy is written to the system state
thus, does not send the message. This situation can put theven though the state of the destination object has not yet
simulation into a deadlock state. Hence, the messages thabeen received. Since UNIX preserves the order in which
are part of the state must be put into the message relaymessages are received, the destination object will not
before starting the on-line simulation. This initialization process this message until after it has gathered its state.
task correctly identifies the messages that were in the There is never a need to hold a message. This method of
network at the time the state was gathered. Becausecollecting the state information causes only a minor
gathering the system state requires knowing where disruption for each controller. That is, the controller is
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only interrupted for the length of time it takes it to gather W. J. Davis, D. Setterdahl, J. Macro, V. Izokaitis, and B.
its state and does not need to pause while all messages Bauman, “Recent advances in the modeling,

reach their destinations. Furthermore, a given controller scheduling and control of flexible automation,”
does not wait for other controllers to finish gathering their Proceedings of the 1993 Winter Simulation
state before continuing with its operation. Conferencepp. 143-155.

Once the message server has received the state for. G. Gonzalez, and W.J. Davis, "A simulation-based
every object, the overall state description is generated and controller for distributed discrete-event systems with
sent to the HOOPLS simulation executive function, where application to flexible manufacturingProceedings of
it is decomposed into the messages and the state the 1997 Winter Simulation Conferenpg. 845-853.
description for each simulated object. To initialize the F. G. Gonzalez, and W. J. Davis, "A simulation-based
simulation, the HOOPLS function first creates a message controller for a flexible manufacturing cell,"
object for each message in the state description and inserts  Proceedings of the 1997 International Conference on

it into the message relay. Then, each object within the Systems, Man and Cybernetics

simulation contains a function which allows it to initialize B. A. Peters, J. S. Smith, J. Curry and C. LaJimodiere,
itself to the given state. The HOOPLS function calls each “Advanced tutorial - simulation based scheduling and
simulation object and passes it the portion of the system control,” Proceedings of the 1996 Winter Simulation

state that corresponds to that object. Conference Eds. J.M. Charnes, D.J. Morrice, D.T.

Brunner and J.J. Swain, pj©¥4-198.
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