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ABSTRACT

In this paper, we address the complex task of initializing
on-line simulation to a current system state collected fr
an operating physical system.  The paper begins 
discussing the complications that arise when the sys
model employed by the controller and the planner are 
the same.  The benefits of using the same model for con
and planning are then outlined.  The paper then discuss
new simulation paradigm that models controll
interactions and provides a single model that is capable
supporting planning and control functions.  Next, issu
arising from performing a distributed simulation of th
distributed control architecture that is being employed
manage the system are addressed. The definition of
state for the distributed system is then discussed and
collection of the real-time state information from th
elements of this distributed system is outlined.  Finally, t
procedure for initializing the distributed on-line simulatio
from the collected real-time state information is given.

1 INTRODUCTION

In most intelligent control applications associated with t
operation of complex discrete-event systems, the con
system must be able to employ the state information tha
collected from the managed hardware in order to initial
on-line simulations, see Davis (1992). These on-li
simulations can be employed within the intellige
controller to project the future performance of the syst
for both planning and control purposes.  For example, 
line simulations may be used to project the futu
performance of the system while operating under one
more alternative plans. They also may be used in orde
permit the controller to employ predictive control practic
where the future consequences of a given control actio
assessed before it is implemented.  This real-ti
collection of the state information from the physical syste
under operation and the subsequent use of this real-t
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state information to initialize on-line simulation runs are
often complex tasks. In this paper, we demonstrate th
benefits of using a simulation tool that is capable of
providing a model that is applicable to both the analysis
and control of the system has on fulfilling the initialization
requirements for on-line simulation.

In general, the state of any computer program is
dependent upon its data, including the values currently
assigned to its variables and data structures. Initializing 
program to a specific state necessarily requires one t
assign values to every variable. This requirement holds fo
simulations as well.  In order to initialize a simulation to
the state of the physical system, one must initialize eac
variable and data structure such that the state of th
program represents the current state of the physical system
In most simulation applications, this is a complex task
because the variables employed to define the state of th
system and the state of the simulation model are differen
In addition, if one employs commercial simulation
languages, many of the variables that must be initialized
are inaccessible to the user.

The task of gathering the state information from the
controller can also be difficult.  In many cases, the interna
data structures employed by the controller are also hidde
from the user.  Even if these data are accessible, the us
still must determine the relationship of the data to the
current state of the system as it is being modeled.  That is
complete data dictionaries for the variables being
employed by the controller and the simulation model mus
be known.  For most commercial controllers, this
information is not available.  In summary, when one
employs commercial simulation and control tools, one
seldom is capable of defining a congruent representatio
for the system state which both the simulation model and
controller can employ.  Hence, initializing the simulation
model to the current system state becomes extremel
difficult if not impossible to achieve.

One obvious solution to this problem is to employ the
same state representation in both the simulation model an
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the controller.  An even more obvious solution would be
employ the same model for the system state transi
functions in both the simulation and controller function
Thus, the model that the controller employs to manage
system would be the same as the simulation mo
employed in the planning process.  We believe that t
capability can be achieved by considering the interactio
among the controllers as the primary basis for syst
evolution rather than the flow of entities through 
stochastic queuing network, the approach which has b
adopted by most commercial simulation tools.  Althou
most simulators do not have the capability to mod
controller interactions or control the system, the integrat
of simulation and control has been gaining popularity 
recent years, see Peters, Smith, Curry, and LaJimod
(1996).  Recently, our research team has developed a n
simulation tool that explicitly models the interaction
among the controllers in order to describe the st
transition mechanisms that govern the evolution of t
system, see Gonzalez and Davis (1997). The mod
developed by this simulation tool can either be used
project the performance of the system for planni
purposes or be employed by the controllers in manag
the response of the system.  Since the state represent
is the same for both the planner and the controller, the 
of collecting real-time state information and the
employing the collected information to initialize any on
line simulations is significantly simplified.  However, ther
are still significant challenges to be addressed, which 
will discuss later in the paper.
Our tool has two modes of operation: a control mode an
simulation mode. These two modes of operation differ o
in the way they handle the advancement of time and in
order in which they execute events. In order to provide 
simulation tool with this dual capability, a new da
structure called the pending event list was added. This list
contains the events that are waiting for a response from
hardware before they can be executed.

A simulation or control program consists of two bas
components: the simulation tool which manages 
execution of events and the model which describes wh
events can occur.  Our simulation tool, like mo
simulation tools, consists of three basic parts:

• The executive function, which manages the execut
of events under the constraints of the employed sys
model.

• The data structures, which include the scheduled ev
list, the pending event, and the resource list.

• The set of modeling elements that is used to constr
the system model.

Our tool encapsulates the system model represente
a collection of C++ objects into a comprehensi
simulation executive object.  This encapsulation has b
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developed in a manner that will support the simulation o
distributed systems, a capability which will be discussed
later.  The included objects contain the executive function
the scheduled and pending event lists, a list of availab
resources, and two pointers, one to the system model a
one to the communication program (See Figure 1). Th
collection of objects also contains the modeling element
which are used to construct the system model.

A problem arises when one simply copies the data
from the controller to the simulator in order to initialize the
simulation to the state of the controller. Since the controlle
uses both the pending and the scheduled event lists wh
the simulator only uses the scheduled event list (th
simulation does not interact directly with the equipment)
one must make some accommodations for the events th
are contained within the controller’s pending event list.
Since the simulation does not receive messages from th
hardware, there is no direct means for determining whe
these events will occur. Rather, the initialization proces
must estimate when these pending events will occur an
then transfer the events from the pending event list to th
scheduled event list. The scheduled event time for eac
pending event is calculated by sampling a random devia
from a previously specified distribution of the duration
time for each pending event type contained within the
simulation model.  Once a random duration is sampled fo
the particular pending event, this duration minus the
amount of time the event has already been waiting provide
the time in the future when the event will occur.   If the
event time is computed to have occurred before the curre
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Figure 1: The Executive Object.  Note: the Circles
Represent the Data Structure Objects, the Square
Represents the Executive Function, and the Flat

Rectangles Represent Pointer Variables.
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time, then the event is scheduled to occur now.  T
controller may also help the simulator in this matter b
computing an estimated time for every new event that
inserted into the pending event list and storing it into t
event as an attribute.  If this approach is adopted, 
pending event can be immediately transferred to t
scheduled event list and scheduled to occur at the ti
predicted by the controller.

2 DISTRIBUTED SYSTEMS

One of the focuses of our research has been 
development of distributed simulation capabilities that c
more faithfully emulate the distributed control environme
that occurs in the management of real-world systems.  
this end, we have developed an even more comprehen
modeling paradigm called the Hierarchical Object-Orient
Programmable Logic Simulator (HOOPLS), whic
simulates the distributed control architecture by modeli
the interactions among the controllers, see Davis, Mac
and Setterdahl (1997) and Davis, Setterdahl, Mac
Izokaitis, and Bauman (1993).

The HOOPLS paradigm is based upon the belief th
interactions among the controllers must be considered
the simulation model in order to accurately model a syste
with a distributed control architecture.  The single mo
important characteristic of the HOOPLS-base
methodology, and what separates it from other obje
oriented simulation approaches, is its attention to model
the flow of messages among the controllers includ
within the distributed control architecture.

This paradigm is implemented by including all of th
controllers into a single simulation program.  Th
independence of the controllers is maintained b
encapsulating each controller into an object.  The includ
controllers execute independently of each other by hav
a supervisory function simulate the communicatio
network that passes messages among the controllers 
manage the order in which the messages get transmit
see Gonzalez and Davis (1997).  In its emulation of t
communication network, the supervisory function receiv
all of the control messages that are transmitted by 
control object and places them into a message queue w
they are ordered based upon their simulated delivery tim
The supervisor then sends each message to its recip
control object at its scheduled delivery time (see Figure 2

The primary reason for developing the HOOPL
methodology was to more accurately model systems t
have a distributed control architecture.  In order to test 
ability of a  single  model  to  support  both  planning an
control, we constructed a physical emulator of a flexib
manufacturing system, see Gonzalez and Davis (199
The control architecture for the physical emulator 
distributed across 25 independent controllers, ea
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consisting of an instantiation of our software tool (s
Figure 3). The distributed system was then simulate
under the HOOPLS methodology.  The state of t
distributed controllers was then successfully gathered 
used to initialize several on-line simulation runs whic
were used for planning purposes.

In the control of distributed systems, the contr
objects communicate with each other.  The pending ev
list is used in the same manner that it was used for sin
systems. At each controller, the pending event list holds 
events that are waiting for a response from an exter
agent (which can be either another controller or 
controlled piece of equipment).  When simulating th
distributed system using the HOOPLS methodology, t
control objects continue to communicate with each oth
In fact, when we simulate the system using the develo
distributed simulation capabilities, the software tool 
actually running in control mode.  The only differenc
between simulation and control mode is in the way t
clock is incremented and in the way events are schedu
to be  executed.  For  simulation  of distributed system
the time is advanced by the supervisory function and 
independently by each control object as is the case w
the simulation tool operates in the control mode.  
addition, the models communicate with each other as t
do when they are physically controlling the system

M essage
Server

agent

in itia lizes
and starts  a
sim u la tion

Hardw are

Global Event L ist

Message R elay

1

2

3

D is tributed
contro ller

S im ula tion

Controller #1

Contro lle r #2

Contro ller #3

Figure 2: The overall system.  On the left is the
controller with the message server.  On the right is the
on-line HOOPLS simulation.  The agent connecting the

two tells the server to get the system state, then gives th
state to the simulator in order to initialize a simulation

run with the system state.
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distributed systems, the time is advanced by th
supervisory function and not independently by each cont
object as is the case when the simulation tool operates
the control mode.  In addition, the models communica
with each other as they do when they are physica
controlling the system.

In initializing the distributed model for an on-line
simulation, the events in the pending event list can rem
there as opposed to moving them to the scheduled ev
list as is done for the simulation of single thread system
(i.e. a non-distributed simulation). This avoids the task 
having to move the pending events into the schedul
event list and makes the initialization task one of simp
copying the variables and data structures of the controlle
program into the simulation's program. However, sinc
some of the controller objects must communicate with t
physical hardware, for the purpose of simulation, objec
representing the physical machines must be added to 
collection of models. These equipment objects are t
submodels that are shown below the bottom horizontal li
in Figure 3. These latter models exist for simulatio
purposes only.  During control mode implementations 
the model, these models would be replaced by the act
machines. The inclusion of these equipment mode
complicates the task of defining the state of the over
system.  For these equipment objects, one can not copy
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data structures from their controller models since these
models do not exist.  Fortunately, these models represe
the most basic task-implementing elements of the system 
the lowest level of the control architecture. They generally
consist of one simple queue and a process.  Initializing
their models is usually a matter of inserting an entity into
their queue and possibly an event into their event list. In
our implementation, generating a state representation fo
these equipment models proved to be a straightforwar
task.

3 THE DEFINITION OF THE STATE

The state of the system provides a complete description fo
all the variables that change as the system evolves in tim
Some variables are initialized at the beginning of the
simulation run and then remain constant.  For example, th
total number of Automatic Guided Vehicles (AGVs) within
a given submodel is typically constant. Thus, these
variables are not considered to be a part of the stat
because they do not change with time.  The following
grammar has been developed in order to define the state f
any model or system of models developed using ou
simulation tool where the control model and the simulation
model are the same.
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Figure 4: The State of the System

system state : ( (msg) ...  (msg) ) ; the messages
( (name objstate) ...  (name objstate) ) ; the control object’s states
( time ) ; the system time

msg: fromaddr ; the source address
toaddr ; the destination address
msg ; the message
operand1 ; the operand
sn ; the serial number of the destination entity
( str1 str2 ...) ; the operand that is a queue

objstate: ( ( (ent) ...  (ent) ) ...  ( (ent) ...  (ent) ) ) ; the states of the QUESEIZE elements
( ( (ent) ...  (ent) ) ...  ( (ent) ...  (ent) ) ) ; the states of the PENDING elements
( ( (ent) ...  (ent) ) ...  ( (ent) ...  (ent) ) ) ; the states of the DELAY elements
( (evt) ...  (evt) ) ; the state of the scheduled event list
( (evt) ...  (evt) ) ; the state of the pending event list
( (results) ; the state of the list of available resources
(resmax) ; the state of the list of total resources
(resalter) ; the state of the list of alterations to be made
(needalter) ) ; the state of the alterations request flag
(time) ; the time of the control object
(model) ; state information used by the model

ent : sn ; the serial number of the entity
attr1 attr2 ...  attr10 ; the 10 attributes
strattr1 strattr2...  strattr10 ; the 10 string attributes
timein ; the time in attribute
param1 param2 ...  param10 ; the 10 parameters
(pp1 pp2...) ; the process plan queue
(retaddr1 retaddr2 ...) ; the return address queue
pri ; the entity’s priority

evt: type ; the event type
whichone ; the modeling element number
eventtime ; the time the event is to occur
key1 key2 key3 ; the keys for matching pending events
sn ; the event serial number
a

o
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The state of the overall system, which includes all o
the sub-models in a distributed system, consists of t
following three items. The messages that were in th
network at the time the control objects generated their st
data, the state of each of the control objects in the cont
architecture, and the current time.  The rationale f
including the messages as part of the state will b
discussed later.  Each control object state is preceded
the object’s name.  This allows the process for building th
system state to gather the state for each controller in a
order.

The state of the data structures (msg, ent, and evt)
simply the data contained in the structures.  The label m
is for the structure that contains the messages, ent 
entity, and evt for event.  Note that if the data structu
contains a queue, then the data for the items in the qu
are enclosed by parentheses.  The parentheses are us
51
f
he
e
te

rol
r
e
by
e
ny

 is
sg
for
re
ue
d to

tell the parser which data are associated with the queu
because the queue can contain any number of items.  
interpreting the system state, the parser employs a finit
state machine. The parentheses in the system sta
description are used to guide the parser through the sta
information.

In our tool there are three modeling elements that hav
the capacity to store entities. The QUESEIZE elemen
models the entities that are waiting for resources to becom
available. The DELAY element models entities that are
being processed and are waiting for a schedule
completion event to occur.  The PENDING element hold
entities that are waiting for a message from an extern
agent to arrive.  Thus, the QUESEIZE, PENDING and
DELAY elements must have a queue to hold the entities
These are also the only data structures associated with t
modeling elements that need to be included in the sta
1
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definition.  The rest of the data are either statistica
variables, which are reinitialized before each on-lin
simulation run, or variables who's value remain consta
throughout the simulation.  Because the queue is the on
data that is relevant in the state, the state of these mode
elements can be defined by the list of the state variables 
each entity that is in its queue.  In general, there may 
any number of a given type of modeling element in th
model.  For example, the model may include thre
QUESEIZE, four DELAY and one PENDING element.
The first line of the control object’s state definition
specifies its QUESEIZE elements.  Following this line, th
first set of parentheses is for the QUESEIZE1 element, t
second is for the QUESEIZE2 element, and so on.  With
each set of parentheses is a list of the entities that are in 
associated element’s queue, as specified in the first line 
each control object.  The state data for the PENDING an
DELAY elements are organized in a similar fashion.

The scheduled event-list and pending event list conta
only the list of events as their object’s data.  Therefore, th
state for these lists includes each event that is curren
contained in the list.  The resource states are implemen
as tables of integers.  Each resource has two integ
associated with it. The first is the number of availabl
resources of that type and the second is the total numbe
resources of that type in the system.

Some of the queues that are stored in the sta
representation have a particular order based upon 
employed priority scheme.  Even though the order of ea
queue is always maintained in the state, these associa
priorities must be saved separately.  In the case of the ev
and the pending event list, the priority can be obtaine
from the events themselves.  The queue associated wit
DELAY modeling element uses the time that the dela
event will occur for the order of the entities in the queue
and this event time must be stored along with the entity.

4 THE GATHERING OF THE STATE

The gathering of the state is a delicate operation th
requires some thought. Any message that is in the netwo
at the time the state is generated must be accounted for
including it as part of the state.  If these messages are 
correctly placed into the state description, then th
following situation can occur.  One controller's stat
description reflects the object as waiting for a messa
from a sending object.  However, the sending object’s sta
description reflects the message as already being sent a
thus, does not send the message.  This situation can put
simulation into a deadlock state.  Hence, the messages t
are part of the state must be put into the message re
before starting the on-line simulation.  This initialization
task correctly identifies the messages that were in t
network at the time the state was gathered.  Becau
gathering the system state requires knowing whe
512
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messages are at the time the state is measured, the 
agent to gather the state is the message server.  In 
control architecture, all of the messages going from on
control object to another are routed through this messa
server (see Figure 2).  The message server is the agent 
routes all of the messages and keeps a log of all messa
that are currently being transmitted.  It is also responsib
for collecting the state data from each control object, alon
with the anticipated messages, and then generating 
complete system state.

Since the controller must continue controlling the
system while it gathers the state information, it is necessa
to minimize the disruption that gathering the state has up
the controller.  It is also essential that the controllers b
able to continue communicating with each other while th
state is being gathered.  For this reason, one cannot sim
tell all of the controllers to stop sending messages and w
until all of the messages in the network arrive at the
destination before starting the state gathering process. T
method of emptying the network before gathering the sta
is intuitively desirable, but no controller can be suspende
for the amount of time it takes to clear the network.  Th
network must continue to transmit messages and t
controllers must continue to operate while the state is bei
gathered. Thus, the agent that gathers the state must
some bookkeeping in order to determine which messag
should be included as part of the state and which shou
not.

Our controllers were distributed across several UNI
workstations. Since the UNIX sockets preserve the order
which messages travel from one point to the next, th
message server can use this fact to determine wh
messages must be included in the current state definitio
In order to gather the system state, the message ser
sends a message to each of the control objects reques
its state.  For each communication link, all of the messag
that arrive after the state request message is sent and be
the state itself is received are messages that will not 
accounted for in the individual object sub-states an
therefore must be included as part of the overall syste
state. Because all of the control objects process messa
in the order that they are received, the controller know
which messages were sent before the request to sub
state occurred. As mentioned above, the messages that
received between the time the state request message is 
and the state itself is received must be made pa of t
system state. However these messages can be sent to 
destination as soon as a copy is written to the system st
even though the state of the destination object has not 
been received. Since UNIX preserves the order in whic
messages are received, the destination object will n
process this message until after it has gathered its sta
There is never a need to hold a message. This method
collecting the state information causes only a mino
disruption for each controller.  That is, the controller i
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only interrupted for the length of time it takes it to gath
its state and does not need to pause while all mess
reach their destinations.  Furthermore, a given contro
does not wait for other controllers to finish gathering th
state before continuing with its operation.

Once the message server has received the state
every object, the overall state description is generated 
sent to the HOOPLS simulation executive function, whe
it is decomposed into the messages and the s
description for each simulated object.  To initialize t
simulation, the HOOPLS function first creates a messa
object for each message in the state description and in
it into the message relay. Then, each object within 
simulation contains a function which allows it to initializ
itself to the given state. The HOOPLS function calls ea
simulation object and passes it the portion of the sys
state that corresponds to that object.

5 CONCLUSION

In this paper, we have shown the benefit that employ
the same model for control and simulation has up
defining and transferring the system state. The state o
program consists of the data stored in the variables 
data structures.  If the model that is used to contro
system has the same variables and data structures a
simulation model, the definition of the state is simply t
state of the program which implements the model. T
approach completely avoids having to produce a s
description that is compatible with both the simulation a
control program.  Producing such a description requi
one to translate the state description in the control mode
that of the simulation model.  If the models are not t
same, this translation may be impossible.

In order to employ the same controller and simulati
model, we implemented a new software tool that has 
capability to control the system as well as simulate it us
the same model.  We briefly discussed our software t
and described the state definition employed by our to
We also discussed how our HOOPLS-based mode
methodology allows us to address both distributed con
and simulation of the same system.  Finally, we outlin
the procedure we adopted for collecting the current s
description.
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