Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

MPI-SIM: USING PARALLEL SIMULATION TO EVALUATE MPI PROGRAMS

Sundeep Prakash
Rajive L. Bagrodia

University of California
Computer Science Department
Los Angeles, CA 90095, U.S.A.

ABSTRACT obtaining better perforance is the significant
synchronization overhead in the parallel simulator.
This paper describes the design and implementation of In this paper we explore the use of a novel

MPI-SIM, a library for the execution driven parallel conservéive synchronization algorithm for parallel
simulation of MPI programs. MPI-LITE, a portable library simulation of message passing parallel programs. We
that supports multithreaded MPI, is also described. MPI- combine the existing null message (Misra 1986) and
SIM, built on top of MPI-LITE, can be used to predict the conditional event (Chandy and Sherman 1989) protocols
performance of existing MPI programs as a function of together with a number of optimizations to significantly
architectural characteristics, including nber of reduce the frequency and cost of synchronizations in the
processors and message communication latencies. Theparallel simulator. The optimized simulation protocol has
simulation models can be executed sequentially or in been incorporated in a simulation library for MPI (MPI
parallel. Parallel executions of MPI-SIM models are Forum 1993), called MPI-SIM. An existing MPI program
synchronized using a set of asynchronous conservativemay be linked with the MPI-SIM library (after an
protocols. MPI-SIM reduces synchronization overheads by appropriate pre-processing stage described subsequently)
exploiting the communication characteristics of the to predict its performance as a function of the desired
program it simulates. This paper presents validation and architectural characteristics; a programmer is not required
performance results from the use of MPI-SIM to simulate to make any modifications to the original MPI program.
applications from the NAS Parallel Benchmark suite. This paper also presents the results of an experimental
Using the techniques described here, we are able to reducestudy to evaluate the utility of MPI-SIM in the simulation
the number of synchronizations in the parallel simulation of the NAS Parallel Benchmark Suite.
as compared with the synchronous quantum protocol and
are able to achieve speedups ranging from 3.2-11.9 in2 MPI SIMULATION MODEL
going from sequential to parallel simulation using 16
processors on the IBM SP2.

2.1 MPI Overview and Core Functions
1 INTRODUCTION

MPI (MPI Forum 1993) is a message passing library which
Simulators for parallel programs can be used to test, debugoffers a host of point-to-point and collectivetérprocess
and predict the performance of parallel programs for a communication functions to a set of single threaded
variety of parallel architectures. Most existing simulators processes executing in parallel. All communication is
(Brewer et al 1991, Davis et al 1991, Covington et al 1991) performed using @ommunicator—which describes the
use direct execution to simulate the sequential blocks of group of communicating processes. Only member
code, and simulate only the communication and/or I/O processes may use a given communicator. This paper
events. As sequential execution of such modetgédza assumes that the program does not have any 1/O
and Weihl 1996, Reinhardt et al 1993, Dickens et al 1994, commands; simulation of the I/O constructs is described in
Dickens et al 1996) are typically slow (slowdown factors Bagrodia et al (1997). In the subset of MPI we simulate, all
of 2 to 15 per processor are not atypical), several collective communication functions are implemented in
researchers have used parallel execution of such modelsterms of point-to-point communication functions, and all
with varying degrees of success. The primary difficulty in point-to-point communication functions are implemented

using a set o€ore non-blocking MPI functions. The core

467

Prakash and Bagrodia

functions include MPI_lssend,rn-blocking synchronous privatizes permanent variables, converts each MPI call to
send MPI_lbsend, anon-blocking buffered send the corresponding MPI-SIM call, and plements
MPI_lrecvnon-blocking receivand MPI_Wait. miscellaneous transformations needed to link the program
The primary difference between the two sends is thatwith the MPI-SIM library. In MPI-SIM the routines for
the synchronous send completes only when the receiver haster-thread communication are syntactically identical to
accepted the message using a matching receive; the bufferatiose for inter-process communication except for the use of
send completes as soon as the data has been copied to a loaadpecial prefix to distinguish between the two.
buffer. The buffer space is released only when the data has
been transmitted to the receiver via a synchronous send2.3 Simulation Model for Core Functions
Each point-to-point MPI message carriedag and the
sender-id A receive may be selective, accepting a messagewe present a model for execution and simulation of the
only from a given sender and/or with a given tag. four core functions. The simulation model defines a logical
Alternately, it may use wild card arguments, process (LP) for each process in the target program. Each
MPI_ANY_SOURCE or MPI_ANY_TAG, to indicate that LP, has a message queue for each communicator of which
a message from any source process or with any tag value ihe LP is a member, a simulation clock, and an ordered list
acceptable. The wait is simply a function which blocks the (ordered by simulation timestamp) of the pending (send
process until the specified non-blocking (send or receive)and receive) operations of the LP; this list is referred to as
operation has completed. the request list Simulation of a process in the target
In this paper, we use the terms Target Program to refeprogram by a corresponding LP in the simulator proceeds
to the MPI program whose performance is to be predicted.as follows: sequential code blocks are simulated via direct
Target Machine as the machine on which the target programexecution. Each call to an MPI communication statement
executes, Simulator as the program that simulates executio(colledive or point-to-point) is translated to a call to the
of the target program on the target machine, and Hostcorresponding MPI-SIM function. MPI-SIM internally
Machine as the machine on which the simulator executes. Iimplements each call to a collective function in terms of
general, the host machine may be sequential or parallel. Fothe core communication commands described in Section
direct execution, it is important that the processor 2.1.For brevity, we do not describe the translation in the

configurations in the host and target machine be similar. paper; the reader is referred to Prakash (1996). We briefly
describe the simulation of the core commands.
2.2 Preprocessing MPI programs for MPI-SIM The sends in the MPI core are simulated by sending a

message (with source, destination, tag, communicator and

In general, the host machine will have fewer processors data) to the receiver LP. The message is timestamped with
than the target machine (for sequential simulation, the host the send timestamp, which is the current simulation time of
machine has only one processor); this requires that thethe sending LP and the receive timestamp, which is the send
simulator provides the capability for multithreaded timestamp plus the predicted message latency. For buffered
execution. As MPI programs execute as a collection of sends, the overheads and functionality for buffer availability
single threaded processes, it is necessary to provide acheck are included in the simulation. The simulation of
capability for multithreaded execution of MPI programs in MPI_lrecv simply adds a request to the request list. The
MPI-SIM. We have developed MPI-LITE, a portable action taken for the wait depends on the type of the specified
library to support multithreaded MPI programs. operation. For instance, for wait on a receive operation, the

Executing an existing MPI program as a multithreaded LP is blocked until a matched message is available. Of
program requires additional modifications. The primary onecourse, the LP must remove messages in the order of their
deals with transforming the permanent variableglobal simulation timestamps andot in the order in which
variables and static variables within functions. If the messages are physically deposited in its queue. When an
unmodified MPI program is executed as a multithreadedappropriate matching message is removed, the LP’s
program, all threads on a given host process will access aimulation clock is updated to the maximum of the current
single copy of each permanent variable. To prevent this, it issimulation time and the receive timestamp of the matching
necessary tprivatizethe permanent variable such that each message, an acknowledgment is sent to the sender, and the
thread has a local copy. Each permanent variable isLP is resumed. For the synchronous send operation, the LP
redeclared with an additional dimension whose size is equablocks until the corresponding acknowledgment has been
to the maximum number of threads in a host process. Eacheceived from the destination. At this time, the simulation
reference to the permanent variable is also modified suchtime of the LP is updated to the maximum of the current
that each thread uses its id to access its own copy of theimulation time and the receive timestamp of the
permanent variable. This process of adding a dimension t@acknowledgment.
the permanent variables is referred tpmsatization. A
preprocessor is provided with MPI-SIM that automatically

468

MPI-SIM: Using Parallel Simulation to Evaluate MPI Programs

3 PARALLEL EXECUTION OF AN MPI
SIMULATION MODEL

EIT. Different asynchronous protocols differ only in their
method for computing EIT. Our implementation supports
various protocols including thblull Message Protocol
Two types of protocols have commonly been used in the (NMP) (Chandy and Misra 1979), thH@onditional Event
parallel simulation of parallel programs: the synchronous Protocol (CEP)(Chandy and Sherman 1988hd a new

or quantum protocol (e.g. SIMOS (Rosenblum et al 1995, protocol, which is a combination the two (Jha and
Rosenblum et al 1997)), and the asynchronous protocols Bagrodia 1993). Due to space limitations, we have omitted
(e.g. LAPSE (Dickens et al 1994)). In the slronous details of the protocol; the interested reader is referred to
protocol, each LP periodically simulates its corresponding Prakash (1996).

process for a previously determined interval Q, termed the The primary overhead in implementing parallel
simulation quantum, and then executes a global barrier. conservative protocols is due to the communications to
These barriers are used to ensure that messages frontompute EIT and the blocking suffered by an LP that has not
remote LPs will be accepted in their correct timestamp peen able to advance its EIT. We have suggested and
order. An LP waiting at a receive will accept a matching implemented a number of optimizations to significantly
message from its buffer onlytifie receive timestamp of the reduce the frequency and strength of synchronization in the
message is less than the simulation time at which the parallel simulator thus reducing unnecessary blocking in its
current quantum terminatef more that one such message execution. The primary optimizations include:

is present, the LP will select the one with the earliest

timestamp; if no such messages are present, the LP remaing. Automatic detection of deterministic fragments in

blocked, and its simulation time is updated to the end of
the current quantum. The synchronous protocol is
guaranteed to be accurate only if Q<L, where L is the
communication latency of the target architecture. However,
a small Q implies frequent global synchronizations leading
to poor performance. (If the host machine provides an
efficient hardware implementation of global

synchronization (e.g., CM5), it might be feasible to obtain

good performance even with a small value of Q.) 2.

Simulation efficiency can be improved by using a larger
guantum;however with Q>L, it is no longer possible to

guarantee that the simulator is accurate. Thus parallel
simulators (e.g. SimOS) that use this protocol offer two
simulation modes: fast and inaccurate, or slow and

accurate. 3.

MPI-SIM uses an asynchronous protocol, which
reproduces the communication ordering of the target
program in the simulator. LPs have two attributes associated
with them at all timesExecution Status(blocked, running
or terminated) an8imulation Status(deterministic or non-
deterministic mode). An LP Hocked if it has executed a
receive statement and no matching message is available;
otherwise it is said to lranning. An LP is in deterministic
mode if every receive request in its request list explicitly
specifies the source (i.e. no receive
MPI_ANY_SOURCE as the sourc&ach LP executes

the parallel program. In general, an LP is blocked
either if its buffer does not contain a matching message
or if the timestamp on the message is greater than the
LP’s EIT. However, an LP in theeterministicmode

can proceed as soon as it finds a matching message,
regardless of its EIT. This is an optimization within the
framework of the null message protocol.

Reducing blocking time of an LP by exploiting the
communication characteristics of the applicationBy
precisely defining potential message sources, an LP can
reduce the communications that are used to advance its
EIT.

Reducing the frequency of synchronization with
dynamic extraction of lookahead.Lookahead is the
ability of an LP to predict lowdnounds on future times
at which it will generatea message for other LPs.
Extracting tight estimates for each communicating
partner leads to fewer synchronizations than the
commonly used static methods for computing lookahead.

RESULTS

contains 4.1 Benchmarks

without synchronizing with other LPs until it gets blocked \ve have validated MPI-SIM and measured its performance
on some wait operation; a synchronization protocol is usedior the NAS (Numerical Aerodynamic Simulation) Parallel

to deqde if the LP can or cannot proceed with a messagesenchmarks (NPB 2) (Bailey et al 1995), a set of programs
from its buffer. We briefly describe our protocol. designed at the NASA NAS program to evaluate

~_Each LP in the model computes a local quantity called sypercomputers. The IBM SP2 at UCLA was selected as
its Earliest Input Time d&IT (Jha and Bagrodia 1993). The poth the target and host machines. Each node of the IBM
EIT represents a lower bound on the receive timestamp oKp2 is a POWER2 node with 128Kb of cache and 256Mb
future messages that the LP may receive. Consequentlypf main memory. Nodes are connected using a high
upon executing a wait statement, an LP can safely select Performance switch, which offers a point-to-point

matching message with a receive timestamp less than itShandwidth of 40Mb/s, and has a hardware latency of

469

Prakash and Bagrodia

Table 1: NAS Benchmarks

Target Target 1 | Target 2 | Target 3
Names | Lines | Class | Procs.. Target Program Size/Simulator Size (Host Procs. for Simulator)
LU [4623| A | 48,16 14M/57M (1,2,4) 8M/32M(2,4,8) 5M/18M(4,8,16)
MG | 2712 S 4,8,16 600K/8M (1,2,4) 400K/5M (1,2,4,8 300K/3M (1,2,4,8,16)
BT |6290| S | 49,16 2M/24M (1,2,4) 1M/15M (1,2,4,9) 1M/12M (1,2,4,9,1B)
SP | 5555 S| 4,916 700K/7M (1,2,4) 500K/6M (1,2,4,9) 500K/5M (1,2,4,9/16)

500ns. The NPB benchmarks are written in Fortran 77 with 2 benchmarks are self-verifying, meaning that each

embedded MPI calls for communication. Since MPI-SIM benchmark after completion compares the computed

currently supports privatization only for C programs, it was results against precomputed results to ensure that it
necessary to convert the benchmarks to C. We were able toexecuted correctly. All target programs and simulators

convert four out of the five benchmarks using f2c were found to verify correctly.

(Feldman et al 1990), a Fortran-to-C converter. The Figure 1 plots the target program execution time (solid
specific configurations of the benchmarks that were used in line) and the execution time as predicted by the simulator
the performance study were constrained primarily by their (dashed lines) as a function of various target machine
memory and CPU requirements. Table 1 summarizes the configurations; note that the simulator predicted times are

relevant configuration information for the benchmarks. piotted for each host configuration listed in Table 1. The
Each benchmark was executed for three target machinegraphs were nearly identical in all simulator modes, and

configurations. For example, LU was executed on 4, 8 and consequently the figure shows only one mode: the

16 processors. NMP+CEP+Det mode. In the best case the predicted and
measured times differed by less than 5% and in the worst by
4.2 Verification and Validation 20% lending reasonable credibility to the simulations.

The target programs and the simulators were executed for4.3 Simulator Modes

all processor configurations listed in Table 1. For each

target and host processor configuration, each simulator wasA simulator can be executed in four modes. In three of these
executed in four modes described in Section 4.3. The NPB the simulation status is non-deterministic, differing in the

15 (NMP+CEP+Det) Simulator Vs Target (SP) (NMP+CEP+Det) Simulator Vs Target (BT)
. T T T T T 28 T T T T T
1.4 Target Execution <— - 2.6 Target Execution —<— -
0 13} 1 Processor Simulation —+- | 0 2.4 B 1 Processor Simulation -+-- |
kel [2 Processor Simulation -8-- kel ' s 2 Processor Simulation -8--
g 127 ‘n\,\ 4 Processor Simulation -x-— 7] g 22 4 Processor Simulation > 7]
S 11 T 9 Processor Simulation -4~ - o 2+ 9 Processor Simulation -~ -
g al > \‘\‘\ 6 Processor Simulation -x - | % 18 | 16 Processor Simulation
c - Sy £ . N
° 09 M, ° 16 | .
£ 0.8 g £ 14 |
= 0.7 + : ﬁ;:;r:,;,:?:;i:::::;xxn: = 12 + —
0.6 |- T 1t i
05 1 1 1 1 1 .T 08 1 1 1 1 1 *
4 6 8 10 12 14 16 4 6 8 10 12 14 16
Number of Processors Number of Processors
(NMP+CEP+Det) Simulator Vs Target (MG) (NMP+CEP+Det) Simulator Vs Target (LU)
0.1 T T T T T 1300] T T T T T
0.095 [Target Execution —— - 1200 B Target Execution —— -
%) 0.09 & 1 Processor Simulation -+- | w1100 F % 1 Processor Simulation -+- |
° : 2 Processor Simulation -8-- el 2 Processor Simulation -2--
S 0.085 | ™ 4 Processor Simulation x| 5 1000 - 4 Processor Simulation -
g 008 8 Processor Simulation - 2 900 | 8 Processor Simulation -&—- |
%) 16 Processor Simulation - - %) 16 Processor Simulation -x -
c 0.075 | B - 800 |
° 0.07 | E ° 700 |
E 0.065 | E £ 600 |
F 006) 4 F 500}
0.055 R 400
005 1 1 1 1 1 300 1 1 1 1 1
4 6 8 10 12 14 16 4 6 8 10 12 14 16
Number of Processors Number of Processors

Figure 1: Target Execution Time vs. Simulator Predictions for NAS Benchmarks

470

MPI-SIM: Using Parallel Simulation to Evaluate MPI Programs

use of the protocol for EIT advancement. The CEP modenumber of rounds of protocol messages is normalized
(uses conditional event protocol), NMP mode (uses nullagainst the number of global synchronizations of the
message protocol) and CEP+NMP mode (combines both). Imuantum protocol. The X-axis shows the simulator mode,
the last mode the simulation status is deterministic and bothwhere “N+C” refers to the NMP+CEP mode and the
the conditional event and the null message protocol“N+C+D"” mode refers to the NMP+CEP+Det mode.
(CEP+NMP+DET mode) are used. These simulator modes

allow us to determine the contribution of each protocol and , _Norm. Sync. in BT: Targ Procs: 16, Host Procs: 4

each optimization to the performance of the simulation. ' ' ' ' '

0.8 f .
4.4 Reducing Synchronizations 0.6 |- 7
We compared all modes of each simulator against the 04r]
traditional quantum protocol. Performance of the oz | i
simuation protocol in each simulator mode is gauged by ’
the number of rounds of protocol messages, R, sent per 0
processor. The performance of the quantum protocol is Quant NMP CEP N+C N+C+D
measured as the number of global synchronizations it takes)
to simulate the same target program. A round of protocol L Norm: Sync. In BT: Targ Procs: 9, Host Procs: 4

messages is similar to a global synchronization, although it
is frequently less expensive, since in many cases a 08 N
processor does not need to wait to receive protocol

messages from all other processors. 0.6 |- -
Norm. Sync. in SP: Targ Procs: 16, Host Procs: 4 04 7
T T T T T
0.2 4
0.8 f .
O 1 1 1 1 1
06 - i Quant NMP CEP N+C N+C+D
Figure 3: Perfomance for Simulators for BT
04 r B
02 L i Norm. Sync. in SP: Targ Procs: 9, Host Procs: 4
: 1 T T T T T
O 1 1 1 1 1
0.8 -]
Quant NMP CEP N+C N+C+D
Norm. Sync. in SP: Targ Procs: 9, Host Procs: 4 06 [b
1 T T T T T
0.4 E
0.8 -]
0.2 4
0.6 B
O 1 1 1 1 1
04 L i Quant NMP CEP N+C N+C+D
02 L i Norm. Sync. in MG: Targ Procs: 8, Host Procs: 4
: 1 T T T T T
O 1 1 1 1 1
0.8 -]
Quant NMP CEP N+C N+C+D
Figure 2: Performance of Simulators for SP 0.6 |- -
Given a target processor configuration, we found that R 0.4 - 7
decreases only modestly as the number of host processors oz
used to simulate the configuration is increased. Figures 2, 3, :
4, and 5 show the variation of R with the simulator modes 0
for two representative target and host processor Quant NMP CEP N+C N+C+D
configurations of each benchmark. In each graph, the Figure 4: Performance of Simulators for MG

471

Prakash and Bagrodia

Norm. Sync. in LU: Targ Procs: 16, Host Procs: 4 program configuration. L is the minimum message latency
' ' ' ' ' of the target machine. The 9-processor BT benchmark has
08 4 the largest average uninterrupted execution time per thread,
and in the simulation, the CEP mode is able to eliminate
0.6 |- . more than 80% of the global synchronizations of the
guantum protocol. The NMP mode is able to eliminate only
041] 40% of the global synchronizations of the quantum protocol.
oz | i This is because the CEP significantly improves over the
' NMP when some LPs are far ahead of the others in
0 simulation time, requiring the other LPs to exchange many
Quant NMP CEP N+C N+C+D rounds of null messages to update their simulation times.
Norm, Sync. in LU: Targ Procs: 8, Host Procs: 4 Thg 16-processor M_G bgnchmark has the smallest average
1 ; ; ; ; ; uninterrupted execution time per thread, and the NMP+CEP
mode is unable to significantly reduce the number of global
0.8 - 7 synchronizations of the quantum protocol.
0.6 |- - Table 2: Average Uninterrupted Execution Time
0.4 - g Benchmark 16 Target Procs. 8 or 9 Target Procs.
LU 8.74L 11.77L
02 T MG 2.79L 4.03L
o , , , , , BT 12.33L 24.81L
Quant NMP CEP N+C N+C+D SP 4.61L 9.29L

Figure 5: Performance of Simulators for LU

Using our optimizations for exploiting the
Consider only the CEP mode: the amount of determinism in the program, we note that it is possible to
improvement over the quantum protocol is strongly eliminateall global synchronizationsn the BT and SP
dependent on the average duration for which an LP (i.epenchmarks. The optimizations were not effective in
thread) executes before getting blocked. Table 2 shows thigjgnificantly reducing the synchronizations from the MG
average duration for each benchmark and each targeind LU benchmarks as discussed in the next section.

(NMP+CEP+Det) Sim. Char.: Speedup for SP (NMP+CEP+Det) Sim. Char.: Speedup for BT
12 T T T T T T T B I 8 T T T T T T T
4 Processor Problem_ - ran 4 Processor Problem - [
10 9 Processor Problem -o— - 9 Processor Problem -—e—=
16 Processor Problem -+-- 6 L 16 Processor Problem™ —+- |
a 8 7 a T
=] A =] 5 | - .
ket - ket
$ °r 1 g
& 5 ']
4 = .
3F i
2+ B 2k 4
0 1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of Processors In Simulation Number of Processors In Simulation
(NMP+CEP+Det) Sim. Char.: Speedup for BT (NMP+CEP+Det) Sim. Char.: Speedup for BT
8 T T T T T T T 8 T T T T T T T
7L 4 Processor Problem - P 7L 4 Processor Problem - s
9 Processor Problem —— 9 Processor Problem ——
6 L 16 Processor Problem™ —+- | 6 L 16 Processor Problem’ —+-- |
s T 2 T
ket 51 T k! 5r T
5] Q
g2 4 4 g 4k i
7] »n
3r B 3r R
2 r B 2 r R
l 1 1 1 l 1 1 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of Processors In Simulation Number of Processors In Simulation

Figure 6: Fast Simulator Speedups
472

MPI-SIM: Using Parallel Simulation to Evaluate MPI Programs

4.5 Reducing Simulator Execution Times until that time. Runtime analysis involves simply running
an LP until it communicates. If it stops at the equivalent of
We present the speedup measured by executing the parallel receive statement, analysis performed at compile time is
simulator using the combined NMP and CEP algorithm as used to predict when it would have sent a message if it
well as the deterministic protocol. A receive can be were instantly resumed. The method of local barriers uses
deterministic either if it specifies the source explicitly or it statically available communication topology information
specifies an explicit tag and each source uses unique tags(i.e. groups of LPs that communicate only within the
Although the first type of determinism can betetted groups they belong to) to reduce the global synchronization
automatically by the current simulator, we have not yet at the end of a simulation quantum to local
implemented the second mode. Out of the four benchmarkssynchronizations between groups of LPs.
used, SP and BT have the determinism of first type. The LAPSE (Dickens et al 1994) is a parallel simulation
MG and LU benchmarks have determinism of second kind. engine for programs using the message passing library of
Although this optimization is not automatically the Intel Paragon. It uses a quantum protocol called
implemented in the compiler, we manually inserted the WHOA (Window-based Halting On Appointments). Like
optimizations to evaluate the potential benefit that can be Parallel Proteus, it uses runtime analysis to determine the
derived from exploiting this form of non-determinism. The size of the simulation quantum, but the runtime analysis is
final speedups obtained from the execution of all the not supplemented with compile time analysis.
benchmarks are presented in Figure 6. We measure In comparison, we use the equivalent of runtime
speedup (N) by taking the ratio of the execution time of the analysis since we execute an LP until it reaches a receive
sequential simulator to the execution time of the simulator statement. The benefits of compile time analysis are
using N processors. The speedups for the LU benchmarksachieved using the conditional event protocol, which is
are relative to the smallest host processor configuration portable and does not need target instruction set analysis.
that could be used to run the simulator. For example, the 8In addition, our implementation of the null message
target processor simulator could be executed on 2, 4 or 8protocol adapts automatically to the dynamically changing
host processors. Hence, the reference execution time is ofcommunication topology specified by the target program.
the 2-processor simulation. Thimderstateshe expected Perhaps most importantly, it automatically recognizes
performance improvement for this application. Notice that (some forms of) deterministic code and switches off all
the speedups achieved with the simulation are synchronization while simulating it; automatic recognition
characteristic of the application itself, as the simulation of other forms of determinism are being added to the

overhead is relatively small. simulator. As seen in Section 4, this optimization helps us
eliminate almost all the synchronization overhead in
5 RELATED WORK simulating many real applications.

Most simulation engines use sequential or parallel 6 CONCLUSION

implementations of the quantum protocol. Among these are

Proteus (Brewer et al 1991), a parallel architecture In this paper, we have shown the usefulness of the null
simulation engine, Tango (Davis et al 1991), a shared message and the conditional event protocols in the
memory architecture simulation engine, Wisconsin Wind conservative parallel simulation of parallel programs. We
Tunnel (Reinhardt et al 1993), a shared memory have used application characteristics to optimize the
architecture simulation engine and SimOS, a complete performance of the null message protocol, and used the
system simulator (multiple programs plus operating comparatively slower conditional event protocol only

system). Two simulation engines which use approacheswhere the null message protocol fails. We have

similar to ours are Parallel Proteus (Legedza ¥reihl demorstrated that for deterministic sections of code, the
1996) and LAPSE. simuation protocol can be bypassed completely without
Parallel Proteus is the parallelization of tReoteus affecting the correctness of the simulation. These

simulation engine, which uses the quantum protocol. The optimizations have been implemented in a simulation
synchronization overhead caused by frequent barriers islibrary (MPI-SIM) for a subset of MPI, an accepted
reduced using two methods: (a) Predictive barriers and (b) standard for message passing parallel programs. MPI-SIM
Local barriers. Predictive barriers is a method for safely has been validated and shown to be fast for a subset of the
increasing the simulation quantum beyond L, the minimum NAS Parallel Benchmarks (NPB 2).

communication latency of the target machine. This method

uses runtime and compile time analysis to determine, at the

beginning of a simulation quantum, the earliest simulation

time at which any LP will send a message to any other LP.

Consequently, the simulation quantum can be extended

473

Prakash and Bagrodia

ACKNOWLEDGMENTS MPI Forum. MPIl. A Message Passing Interface. In
Proceedings of 1993 Supercomputing Conference

This work was supported by the Advanced Research Portland, Washington, November 1993.

Projects Agency, DARPA/CSTO, under Contract F-30602- Fujimoto, R. Parallel Discrete Event Simulation.

94-C-0273, “Scalable Systems Software Measurement and Communications of The ACM3(10):30-53, October

Evaluation” and by DARPA/ITO Contract N-66001-97-C- 1990.

8533, “End-to-End Performance Modeling of Large Jha, V., and R. Bagrodia. Transparent Implementation of
Heterogenous Adaptive Parallel/Distributed Computer/Com- Conservative Algorithms In Parallel Simulation
munication Systems.” All data was collected on the I1BM Languages. In Winter Simulation Conference

SP2 at UCLA's Office of Academic Computing, granted to December 1993.
UCLA by IBM Corporation under the Shared University Legedza, U., and W. E. Weihl. Reducing Synchronization

Research Program. Overhead in Parallel Simulation. Tenth Workshop on
Parallel and Distributed Simulation PADS 9%lay
REFERENCES 1996.
Misra, J. Distributed Discrete-Event SimulatioACM
Brewer, E. A., C. N. Dellarocas, A. Colbrook, and W. E. Computing Survey$8(1):39-65, March 1986.

Weihl., Technical Report MIT/LCS/TR-516, Prakash, S. Performance Prediction of Parallel Programs.
Massachusetts Institute of Technology, Cambridge, MA Ph.D. Thesis, Computer Science Department, UCLA,

02139, 1991. Los Angeles, CA 90095, November 1996.

Bagrodia, R., S. Docy, and A. Kahn, Parallel Simulation of Reinhardt, S. K., M. D. Hill, J. R. Larus, A. R. Lebeck, J. C.
Parallel File Systems and 1/O Programs. In Lewis, and D. A. Wood. The Wisconsin Wind Tunnel:
Supercomputing 97997. Virtual Prototyping of Parallel Computers. In

Bailey, D., T. Harris, W. Saphir, R. V. D. Wijngaart, A. Proceedings of the 1993 ACM Sigmetrics Conference

Woo, and M. Yarrow. The NAS Parallel Benchmarks May 1993.
2.0. Technical Report Nas-95-020, NASA Ames Rosenblum, M. E. Begnion, S. Devine, and S. A. Herrod.

Research Center, Moffet Field, CA 94035-1000, Using The SimOS Machine Simulator to Study

December 1995. Complex Computer SystemACM Transactions on
Covington, R. G., S. Dwarkadas, J. R. Jump, J.B. Sinclair, Modeling and Computer Simulatjo7(1), January

and S. Madala. The Efficient Simulation of Parallel 1997.

Computer SystemilCS 1:31-58, 1991. Rosenblum, M. S. A. Herrod, E. Witchel, and A. Gupta.

Chandy, K. M., and J. Misra. Distributed Simulation: A Complete Computer System Simulation: The SimOS
Case Study in Design and Verification of Distributed Approach.IEEE Parallel and Distributed Technology
ProgramslEEE Transactions on Software Engineering Vol. 3, No. 4, Winter 1995.

Pages 440-452, September 1979.

Chandy, K. M., and R. Sherman. The Conditional Event AUTHOR BIOGRAPHIES
Approach to Distributed Simulation. Pnoceedings of
the SCS Multiconference on Distributed Simulation SUNDEEP PRAKASH received a B.Tech. in Electrical
Miami, Pages 93-99, 1989. Engineering from the Indian Institute of Technology,

Davis, H., S. R. Goldschmidt, and Hennessey. Delhi, India in 1989, an M.S. from the University of
Multiprocessor Simulation and Tracing Using Tango. In Florida in 1991, and a Ph.D in Computer Science from the
Proceedings of ICPP '9Pages 99-107, August 1991. University of California, Los Angeles in 1996. Since 1997,

Dickens, P., P. Heidelberger, and D. Nicol. A Distributed he has been a software engineer at TIBCO Software, Inc.
Memory Lapse: Parallel Simulation of Message-Passingin Palo Alto. His research interests include algorithms for
Programs. InWorkshop on Parallel and Distributed parallel and distributed simulation, compilation of parallel
Simulation Pages 32-38, July 1994. programs for shared and distributed memory machines, and

Dickens, P. M., P. Heidelberger, and D.M. Nicol. messaging interfaces and protocols.

Parallelized Direct Execution Simulation of Message-

Passing Parallel Program&EEE Transactions on RAJIVE L. BAGRODIA is a professor in the Department
Parallel and Distributed Systems6(4):297-320, of Computer Science at the University of California, Los
October 1996. Angeles. He holds an M.S. and Ph.D. in Computer Science

Feldman, S. I, D. M. Gay, Mark W. Maimone, and N. L. from the University of Texas at Austin. His research
Schryer. A Fortran-To-C Converter. Technical Report interests include computer and communication networks,
No. 149, AT&T Bell Laboratories, Murray Hill, NJ, nomadic systems, and parallel languages.

May 1990.

474

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

