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ABSTRACT

This paper describes the design and implementation
MPI-SIM, a library for the execution driven paralle
simulation of MPI programs. MPI-LITE, a portable librar
that supports multithreaded MPI, is also described. M
SIM, built on top of MPI-LITE, can be used to predict th
performance of existing MPI programs as a function 
architectural characteristics, including number of
processors and message communication latencies. 
simulation models can be executed sequentially or
parallel. Parallel executions of MPI-SIM models a
synchronized using a set of asynchronous conserva
protocols. MPI-SIM reduces synchronization overheads
exploiting the communication characteristics of th
program it simulates. This paper presents validation a
performance results from the use of MPI-SIM to simula
applications from the NAS Parallel Benchmark suit
Using the techniques described here, we are able to red
the number of synchronizations in the parallel simulati
as compared with the synchronous quantum protocol 
are able to achieve speedups ranging from 3.2-11.9
going from sequential to parallel simulation using 1
processors on the IBM SP2.

1 INTRODUCTION

Simulators for parallel programs can be used to test, de
and predict the performance of parallel programs fo
variety of parallel architectures. Most existing simulato
(Brewer et al 1991, Davis et al 1991, Covington et al 199
use direct execution to simulate the sequential blocks
code, and simulate only the communication and/or I
events. As sequential execution of such models (Legedza
and Weihl 1996, Reinhardt et al 1993, Dickens et al 19
Dickens et al 1996) are typically slow (slowdown facto
of 2 to 15 per processor are not atypical), seve
researchers have used parallel execution of such mo
with varying degrees of success. The primary difficulty 
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obtaining better performance is the significant
synchronization overhead in the parallel simulator.

In this paper we explore the use of a nove
conservative synchronization algorithm for parallel
simulation of message passing parallel programs. W
combine the existing null message (Misra 1986) an
conditional event (Chandy and Sherman 1989) protoco
together with a number of optimizations to significantly
reduce the frequency and cost of synchronizations in t
parallel simulator. The optimized simulation protocol ha
been incorporated in a simulation library for MPI (MP
Forum 1993), called MPI-SIM. An existing MPI program
may be linked with the MPI-SIM library (after an
appropriate pre-processing stage described subsequen
to predict its performance as a function of the desire
architectural characteristics; a programmer is not requir
to make any modifications to the original MPI program
This paper also presents the results of an experimen
study to evaluate the utility of MPI-SIM in the simulation
of the NAS Parallel Benchmark Suite.

2 MPI SIMULATION MODEL

2.1 MPI Overview and Core Functions

MPI (MPI Forum 1993) is a message passing library whic
offers a host of point-to-point and collective interprocess
communication functions to a set of single threade
processes executing in parallel. All communication 
performed using a communicator—which describes the
group of communicating processes. Only membe
processes may use a given communicator. This pap
assumes that the program does not have any I
commands; simulation of the I/O constructs is described 
Bagrodia et al (1997). In the subset of MPI we simulate, a
collective communication functions are implemented i
terms of point-to-point communication functions, and a
point-to-point communication functions are implemente
using a set of core non-blocking MPI functions. The core
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functions include MPI_Issend, a non-blocking synchronou
s e n d, MPI_Ibsend, a non-blocking buffered send,
MPI_Irecv non-blocking receive and MPI_Wait.

The p rim ar y d if feren ce b etw een the tw o send s  is 
the s yn chr on o us  s en d  com p letes o nly w hen th e r eceiv
accep ted  the mess ag e u sin g a match in g  r eceiv e; th e bu
s en d co m pletes as  s o on  as  the d ata h as been  co pied to
b uf fer. Th e b uf fer s pace is  r eleas ed  on ly  w h en  th e dat
b een tr ans mitted to  th e r eceiver  v ia a sy nch ro no u s 
Each po int-to -p oint MP I m es s ag e car ries  a tag  an d th e
s en der- id. A  r eceiv e m ay  b e s electiv e, accepting  a m es
o nly fr o m a g iv en  s end er  an d/or  with  a given  
A lter nately, it m ay  us e w ild car d ar g um en
MPI _A NY _ SO URCE or  MP I_ AN Y _TAG , to in d icate th
a m es sag e fr o m an y s ou rce p ro ces s or  with  an y tag  v a
accep tab le. The w ait is s im ply a f un ction  w h ich b lo ck s
p ro cess  un til the s p ecif ied  n on - block in g (s end  o r  r ec
o peratio n has  com pleted .

I n th is  paper , we u s e th e ter ms  Targ et Pr og r am  to
to th e MPI  p r og ram w ho se perf or m an ce is  to b e pr edi
Tar get Machin e as  th e machine o n  w hich th e tar get p ro
execu tes , Sim ulator  as  th e pr og r am  th at s im u lates  exe
o f th e tar get p ro gr am on  th e tar get m achine, and  
Machine as  th e mach ine o n  w hich  th e s im ulato r ex ecu te
g en er al, the ho st m ach in e m ay  b e s eq u en tial or  p aralle
d ir ect execu tio n, it is im p or tant th at th e pr o ces
con figu r atio n s in  th e ho s t an d tar get m achin e be similar .

2.2 Preprocessing MPI programs for MPI-SIM

In general, the host machine will have fewer process
than the target machine (for sequential simulation, the 
machine has only one processor); this requires that
simulator provides the capability for multithread
execution. As MPI programs execute as a collection
single threaded processes, it is necessary to provi
capability for multithreaded execution of MPI programs
MPI-SIM. We have developed MPI-LITE, a portab
library to support multithreaded MPI programs.

Execu tin g an  ex is tin g MP I  p ro gr am as  a mu ltithr ea
p ro gr am  requ ires ad d itio n al m od ificatio ns . The p r im ar y
d eals  w ith  tr an sf or m in g the p er m an en t v ar iable, i.e. glob al
v ar iables an d  s tatic v ar iab les w ithin  f un ction s. If  
u nm od if ied  MP I pr og r am  is  execu ted  as  a m ultithr ea
p ro gr am , all th read s  o n a g iv en  ho st pr oces s  w ill acc
s in gle cop y o f each  perm anent v ariab le. To p reven t th is
n eces sar y to  p riva tiz e th e per manen t variable s uch th at e
thr ead h as  a lo cal cop y. Each  p erm an ent v ar iab
r ed eclar ed  w ith  an add ition al d imens ion  w ho s e size is  
to th e m ax im um  n um b er  o f  thr ead s in  a ho st pr ocess .
r ef er ence to  th e p er manen t var iable is als o mo dif ied 
that each th r ead us es its  id to  acces s its o wn  co py  o
p er m an en t v ar iab le. Th is pr o cess  o f  add ing  a d imens i
the p er m an en t v ar iab les is refer red to as  p riva tizat io n . A 
p repr ocess or  is  p ro v id ed  with  MP I- SI M that auto m atic
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privatizes permanent variables, converts each MPI call t
the corresponding MPI-SIM call, and implements
miscellaneous transformations needed to link the program
with the MPI-SIM library. In MPI-SIM the routines for
inter-thread communication are syntactically identical to
those for inter-process communication except for the use o
a special prefix to distinguish between the two.

2.3 Simulation Model for Core Functions

We present a model for execution and simulation of the
four core functions. The simulation model defines a logica
process (LP) for each process in the target program. Eac
LP, has a message queue for each communicator of whic
the LP is a member, a simulation clock, and an ordered lis
(ordered by simulation timestamp) of the pending (send
and receive) operations of the LP; this list is referred to a
the request list. Simulation of a process in the target
program by a corresponding LP in the simulator proceed
as follows: sequential code blocks are simulated via direc
execution. Each call to an MPI communication statemen
(collective or point-to-point) is translated to a call to the
corresponding MPI-SIM function. MPI-SIM internally
implements each call to a collective function in terms of
the core communication commands described in Sectio
2.1. For brevity, we do not describe the translation in the
paper; the reader is referred to Prakash (1996). We brief
describe the simulation of the core commands.

The s en d s in  th e MP I  cor e are s imu lated  b y s en din g
m es sage (w ith  s ou rce, des tinatio n, tag, com m un icato r a
d ata)  to  the receiv er LP . The m ess ag e is tim es tam p ed  w
the s en d  tim estam p, wh ich  is th e cur r en t sim u latio n tim e 
the s en d in g LP an d the r eceiv e tim es tam p, w h ich is th e s e
tim es tam p plu s th e p redicted mes sage latency . Fo r  b uf fer
s en ds , the o v er head s  and  fu nctio n ality  f o r bu f fer av ailab ili
check  ar e in clu ded in th e s im ulation . The s imu latio n o
MPI _I recv sim ply ad d s a r eq uest to  th e requ est list. Th
actio n tak en  fo r th e w ait d ep en d s on  th e ty p e of  th e sp ecif
o peratio n. F o r in s tance, fo r w ait on  a receive o p er ation , t
LP is  b locked  u ntil a match ed  m ess ag e is av ailab le. O
cou rs e, th e LP mu st remo v e mess ages in th e o rd er  of  th
s im ulation  timestam p s an d  n ot in  the or der  in wh ich 
m es sages  are ph ys ically d ep os ited in  its qu eue. W hen 
app ro pr iate m atch in g  m es s ag e is  remo v ed , th e LP
s im ulation  clock is  up dated  to the m aximu m o f th e cur ren
s im ulation  time and  th e r eceive times tamp  o f  the matchin
m es s ag e, an  ack n ow ledg m en t is sent to  th e send er, an d
LP is  r esu med . Fo r the s y nchr on o us  s end  o per atio n , th e 
b lo ck s u ntil th e co r resp o nd in g ack no w ledg men t has  b e
r eceived  f ro m  the d estin ation . A t th is time, the simu latio
tim e of  th e LP is  u p dated  to th e m ax imu m of  th e cur ren
s im ulation  time and  th e r eceive times tamp  o f  the
ack no wledg m en t.
8
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3 PARALLEL EXECUTION OF AN MPI
SIMULATION MODEL

Two types of protocols have commonly been used in t
parallel simulation of parallel programs: the synchrono
or quantum protocol (e.g. SimOS (Rosenblum et al 199
Rosenblum et al 1997)), and the asynchronous protoc
(e.g. LAPSE (Dickens et al 1994)). In the synchronous
protocol, each LP periodically simulates its correspondi
process for a previously determined interval Q, termed t
simulation quantum, and then executes a global barrie
These barriers are used to ensure that messages f
remote LPs will be accepted in their correct timestam
order. An LP waiting at a receive will accept a matchin
message from its buffer only if the receive timestamp of the
message is less than the simulation time at which t
current quantum terminates. If more that one such messag
is present, the LP will select the one with the earlie
timestamp; if no such messages are present, the LP rem
blocked, and its simulation time is updated to the end 
the current quantum. The synchronous protocol 
guaranteed to be accurate only if Q<L, where L is t
communication latency of the target architecture. Howev
a small Q implies frequent global synchronizations leadi
to poor performance. (If the host machine provides 
efficient hardware implementation of globa
synchronization (e.g., CM5), it might be feasible to obta
good performance even with a small value of Q
Simulation efficiency can be improved by using a larg
quantum; however with Q>L, it is no longer possible to
guarantee that the simulator is accurate. Thus para
simulators (e.g. SimOS) that use this protocol offer tw
simulation modes: fast and inaccurate, or slow a
accurate.

MPI -S IM us es  an  asy n ch ro n ou s pr o to co l, w hi
r ep ro du ces  the co mm un icatio n or der in g o f th e tar
p ro g ram in  th e s im ulato r. LP s have tw o attribu tes  as so ci
w ith th em at all tim es : Execu tio n St a tu s ( blocked , ru n n in g
o r term inated ) an d S imulat ion  S t at us  ( determ inis tic o r n on -
d eter min is tic m od e) . A n LP is  b lo ck ed  if  it h as  ex ecuted  a
r eceive statement an d no  matchin g mes s ag e is  av aila
o th er wis e it is  s aid  to b e run ning . A n LP  is  in  d eter m in is tic
m od e if ever y r eceive req uest in  its  requ est lis t exp lici
s pecifies th e s ou rce ( i.e. no  r eceive con ta 
MPI _ANY _ SO URCE as  th e so u rce) . Each LP ex ecu tes
w itho ut sy nch ro nizin g with other  LPs  un til it gets block e
o n so me wait op er ation ; a s yn ch r on ization  p r otoco l is  u
to decid e if  th e LP  can o r cann o t pr o ceed with a m es s
f ro m its  b uf f er . We br ief ly  d es cribe ou r pr o to co l.

Each LP  in  th e mo del com p utes  a lo cal q uantity  cal
its  Ear liest In pu t Tim e o r EIT  (J ha an d Bag ro dia 1 99 3) . Th
EIT r ep r es en ts a lo w er  b o un d on  th e r eceive times tam
f utur e m es sag es  that the LP  m ay  receive. Co n s eq ue
u po n ex ecu tin g a wait statement, an LP can s af ely  s ele
matching message with a receive timestamp less than
469
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EIT. Different asynchronous protocols differ only in thei
method for computing EIT. Our implementation support
various protocols including the Null Message Protocol
(NMP) (Chandy and Misra 1979), the Conditional Event
Protocol (CEP) (Chandy and Sherman 1989), and a new
protocol, which is a combination the two (Jha an
Bagrodia 1993). Due to space limitations, we have omitte
details of the protocol; the interested reader is referred
Prakash (1996).

The p rim ar y o verh ead  in imp lemen ting  paralle
con s er vativ e pr o to co ls  is  d u e to  th e co m mu nicatio ns
com pu te EI T and  the block in g su f fered  b y an  LP  th at h as 
b een ab le to  ad vance its  EI T. W e h av e s ug ges ted 
imp lemen ted a n um ber  o f o ptim ization s  to sig nifican t
r ed uce the f r eq uency  and  streng th of  sy nchr o nizatio n in  
p ar allel s im u lato r thu s r ed ucin g  u nn ecess ar y  b lo ck ing  in
execu tio n. Th e pr im ary  o p tim ization s inclu de:

1. A ut omat ic det ection  of  d etermin ist ic frag men ts  in 
t he p ara llel prog ra m. In  g en eral, an  LP is blo ck ed
either if its  b uf fer  d oes  n ot co ntain  a m atching  mes s a
o r if  th e tim es tamp  on  th e mess age is  g reater th an 
LP’ s EI T. Ho w ev er , an LP  in  the d eter min is tic mo de
can  p ro ceed as so on  as  it f in ds  a match ing  m es s
r eg ar dless  o f  its  EI T. Th is  is an op tim izatio n w ithin  th
f ramewo r k of  th e nu ll mes sage p r otoco l.

2. Red ucing blocking time of a n LP b y exploiting  the
communica tion charact eristics of the ap plicat ion. By 
precisely  defin ing po tential mess age so urces, an LP  
red uce th e comm unications that ar e used  to ad vance
EIT.

3 .  Red ucing the frequency of s ynchro nization wit h
dyn amic extract ion of  looka head. Lo okahead is the
ability o f an LP to p redict lower  bound s on f uture times
at which it will gen erate a messag e for other LPs.
Extractin g tigh t estimates for each com municatin
par tner leads to fewer synchronizations  than th
com monly used s tatic method s for computing lo okahead

4 RESULTS

4.1 Benchmarks

We have validated MPI-SIM and measured its performan
for the NAS (Numerical Aerodynamic Simulation) Paralle
Benchmarks (NPB 2) (Bailey et al 1995), a set of program
designed at the NASA NAS program to evaluat
supercomputers. The IBM SP2 at UCLA was selected 
both the target and host machines. Each node of the IB
SP2 is a POWER2 node with 128Kb of cache and 256M
of main memory. Nodes are connected using a hig
performance switch, which offers a point-to-poin
bandwidth of 40Mb/s, and has a hardware latency 
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Table 1: NAS Benchmarks

Target 1 Target 2 Target 3
Names Lines Class

Target
Procs.. Target Program Size/Simulator Size (Host Procs. for Simulator)

LU 4623  A  4,8,16  14M/57M (1,2,4)  8M/32M(2,4,8)  5M/18M(4,8,16)
MG 2712  S  4,8,16  600K/8M (1,2,4)  400K/5M (1,2,4,8)  300K/3M (1,2,4,8,16)
BT 6290  S  4,9,16  2M/24M (1,2,4)  1M/15M (1,2,4,9)  1M/12M (1,2,4,9,16)
SP 5555  S  4,9,16  700K/7M (1,2,4)  500K/6M (1,2,4,9)  500K/5M (1,2,4,9,16)
t

n
r

d

d
it

id 
or 
 e

r e
e
 d
e
n d
b y

se
e

500ns. The NPB benchmarks are written in Fortran 77 with
embedded MPI calls for communication. Since MPI-SIM
currently supports privatization only for C programs, it was
necessary to convert the benchmarks to C. We were able 
convert four out of the five benchmarks using f2c
(Feldman et al 1990), a Fortran-to-C converter. The
specific configurations of the benchmarks that were used i
the performance study were constrained primarily by thei
memory and CPU requirements. Table 1 summarizes th
relevant configuration information for the benchmarks.
Each benchmark was executed for three target machin
configurations. For example, LU was executed on 4, 8 an
16 processors.

4.2 Verification and Validation

The target programs and the simulators were executed fo
all processor configurations listed in Table 1. For each
target and host processor configuration, each simulator wa
executed in four modes described in Section 4.3. The NPB
470
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2 benchmarks are self-verifying, meaning that each
benchmark after completion compares the compute
results against precomputed results to ensure that 
executed correctly. All target programs and simulators
were found to verify correctly.

F ig ur e 1  p lo ts th e tar get p ro gr am ex ecu tion  time (s ol
lin e)  an d th e execu tio n tim e as  pr ed icted  b y  the simu lat
( dash ed  lines ) as  a fu nctio n of  vario us  tar g et m ach in
con figu r atio n s; n ote that the s imu lator  p red icted  tim es  a
p lo tted  fo r each ho s t co n figu ratio n lis ted in Tab le 1 . Th
g raph s w er e n early identical in  all s im ulator  m od es, an
con sequ ently  th e fig ur e s ho ws  o n ly  o n e mo de: th
N MP +CEP +Det m od e. I n  the best case th e pr ed icted  a
m easu red  tim es diff ered b y less  th an  5% and  in  th e wo rs t 
2 0% len d in g r easo nab le cr ed ib ility  to  the s imu latio ns .

4.3 Simulator Modes

A  s im ulato r can  b e execu ted  in f ou r m od es . I n th r ee o f the
the s im u latio n statu s is  no n- deter min is tic, diff ering  in  th
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Figure 1: Target Execution Time vs. Simulator Predictions for NAS Benchmarks
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u se o f the p r otocol fo r EIT adv ancem ent. Th e CEP  mo
( us es  co nd ition al ev en t p ro to co l), N MP mo de (u ses  
m es sage pr oto co l)  an d CEP +N MP  m o de ( com bines  b oth
the las t m od e the s imu latio n statu s is deter minis tic an d  b
the con d itio n al even t an d  the n u ll m ess ag e p ro to
( CEP+NMP +D ET mo de) are u s ed . Th ese s imu lato r  m o
allow us to determine the contribution of each protocol a
each optimization to the performance of the simulation.

4.4 Reducing Synchronizations

We compared all modes of each simulator against t
traditional quantum protocol. Performance of th
simulation protocol in each simulator mode is gauged b
the number of rounds of protocol messages, R, sent 
processor. The performance of the quantum protocol
measured as the number of global synchronizations it ta
to simulate the same target program. A round of protoc
messages is similar to a global synchronization, although
is frequently less expensive, since in many cases
processor does not need to wait to receive proto
messages from all other processors.
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Figure 2: Performance of Simulators for SP

G iv en  a targ et pr oces so r  con f ig ur ation , w e fo un d  tha
d ecreas es on ly mo des tly as th e n um ber  o f ho s t pr o ce
u sed to  simu late th e con f ig ur ation  is  increased. Fig u res 2
4 , an d 5  s ho w  the v ariation  o f R w ith  the s imu lator  m o
f or  two  repr esentative targ et an d ho s t pr oces
con figu r atio n s of  each  b enchm ar k . In  each  g r ap h, 
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n um ber o f ro u nd s of  pr oto co l mes sages  is no r m
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Figure 3: Perfomance for Simulators for BT
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Figure 4: Performance of Simulators for MG
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Figure 5: Performance of Simulators for LU

Con sider  o nly  the CEP mo d e: the am ou n t 
im p ro vemen t ov er th e q uantu m pr oto co l is stro n
d ep en dent on  th e av er age d u ration  fo r w hich  an  LP 
thr ead)  ex ecu tes bef or e g etting  block ed . Tab le 2  sh ow s
average du ratio n fo r  each  b en ch m ar k and  each  ta
472
f 
ly
 i.e.
this
 g et

p ro gr am  co nf igu ratio n. L is  the minim um  m es s ag e laten cy
o f th e tar get m achin e. Th e 9- pr o cess o r BT b ench m ar k ha
the lar g es t average un in ter ru pted ex ecu tion  time per th r ead
and  in the s imu latio n, th e CEP m od e is ab le to  elim in ate
m or e th an 80 % o f th e g lo b al s yn ch ro n izatio n s of  th e
q uantum  pr oto co l. Th e NMP  m od e is ab le to  elim in ate o nly
4 0% o f the g lob al s yn ch ro n izatio ns  o f  the qu an tu m  p ro tocol
This is  becau se the CEP s ig nifican tly  imp ro v es  o v er  the
N MP  w hen  s om e LPs  ar e far  ahead  of  th e other s in
s im ulation  time, req uirin g th e o th er  LP s to  ex ch ang e man y
r ou nd s o f nu ll mess ages to up date th eir  s im u latio n times
The 1 6- p ro ces so r MG  bench mark  h as th e s mallest av er ag
u ninter r up ted  executio n tim e p er  thr ead , and  the NMP+CEP
m od e is  un able to  sign ificantly red uce th e n um b er  o f g lo ba
s yn chr on ization s  o f th e q uan tu m pr o to co l.

Table 2: Average Uninterrupted Execution Time

Benchmark  16 Target Procs.  8 or 9 Target Procs.
LU  8.74L  11.77L
MG  2.79L  4.03L
BT  12.33L  24.81L
SP  4.61L  9.29L

Using our optimizations for exploiting the
determinism in the program, we note that it is possible to
eliminate all global synchronizations in the BT and SP
benchmarks. The optimizations were not effective in
significantly reducing the synchronizations from the MG
and LU benchmarks as discussed in the next section.
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Figure 6: Fast Simulator Speedups
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4.5 Reducing Simulator Execution Times

We present the speedup measured by executing the pa
simulator using the combined NMP and CEP algorithm
well as the deterministic protocol. A receive can 
deterministic either if it specifies the source explicitly or
specifies an explicit tag and each source uses unique 
Although the first type of determinism can be detected
automatically by the current simulator, we have not 
implemented the second mode. Out of the four benchm
used, SP and BT have the determinism of first type. 
MG and LU benchmarks have determinism of second k
Although this optimization is not automaticall
implemented in the compiler, we manually inserted 
optimizations to evaluate the potential benefit that can
derived from exploiting this form of non-determinism. Th
final speedups obtained from the execution of all 
benchmarks are presented in Figure 6. We mea
speedup (N) by taking the ratio of the execution time of 
sequential simulator to the execution time of the simula
using N processors. The speedups for the LU benchm
are relative to the smallest host processor configura
that could be used to run the simulator. For example, th
target processor simulator could be executed on 2, 4 
host processors. Hence, the reference execution time 
the 2-processor simulation. This understates the expected
performance improvement for this application. Notice th
the speedups achieved with the simulation a
characteristic of the application itself, as the simulat
overhead is relatively small.

5 RELATED WORK

Most simulation engines use sequential or para
implementations of the quantum protocol. Among these
Proteus (Brewer et al 1991), a parallel architect
simulation engine, Tango (Davis et al 1991), a sha
memory architecture simulation engine, Wisconsin W
Tunnel (Reinhardt et al 1993), a shared mem
architecture simulation engine and SimOS, a compl
system simulator (multiple programs plus operati
system). Two simulation engines which use approac
similar to ours are Parallel Proteus (Legedza and Weihl
1996) and LAPSE.

Parallel Proteus is the parallelization of the Proteus
simulation engine, which uses the quantum protocol. T
synchronization overhead caused by frequent barrier
reduced using two methods: (a) Predictive barriers and
Local barriers. Predictive barriers is a method for saf
increasing the simulation quantum beyond L, the minim
communication latency of the target machine. This met
uses runtime and compile time analysis to determine, a
beginning of a simulation quantum, the earliest simulat
time at which any LP will send a message to any other 
Consequently, the simulation quantum can be exten
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until that time. Runtime analysis involves simply runnin
an LP until it communicates. If it stops at the equivalent
a receive statement, analysis performed at compile tim
used to predict when it would have sent a message 
were instantly resumed. The method of local barriers u
statically available communication topology informatio
(i.e. groups of LPs that communicate only within th
groups they belong to) to reduce the global synchroniza
at the end of a simulation quantum to loc
synchronizations between groups of LPs.

LAPSE (Dickens et al 1994) is a parallel simulatio
engine for programs using the message passing librar
the Intel Paragon. It uses a quantum protocol cal
WHOA (Window-based Halting On Appointments). Lik
Parallel Proteus, it uses runtime analysis to determine
size of the simulation quantum, but the runtime analysis
not supplemented with compile time analysis.

In comparison, we use the equivalent of runtim
analysis since we execute an LP until it reaches a rec
statement. The benefits of compile time analysis a
achieved using the conditional event protocol, which
portable and does not need target instruction set analy
In addition, our implementation of the null messag
protocol adapts automatically to the dynamically chang
communication topology specified by the target progra
Perhaps most importantly, it automatically recogniz
(some forms of) deterministic code and switches off 
synchronization while simulating it; automatic recognitio
of other forms of determinism are being added to t
simulator. As seen in Section 4, this optimization helps
eliminate almost all the synchronization overhead 
simulating many real applications.

6 CONCLUSION

In this paper, we have shown the usefulness of the 
message and the conditional event protocols in 
conservative parallel simulation of parallel programs. W
have used application characteristics to optimize 
performance of the null message protocol, and used 
comparatively slower conditional event protocol on
where the null message protocol fails. We ha
demonstrated that for deterministic sections of code, t
simulation protocol can be bypassed completely witho
affecting the correctness of the simulation. The
optimizations have been implemented in a simulati
library (MPI-SIM) for a subset of MPI, an accepte
standard for message passing parallel programs. MPI-S
has been validated and shown to be fast for a subset o
NAS Parallel Benchmarks (NPB 2).
3
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