
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

MPI-SIM: USING PARALLEL SIMULATION TO EVALUATE MPI PROGRAMS

Sundeep Prakash
Rajive L. Bagrodia

University of California
Computer Science Department

Los Angeles, CA 90095, U.S.A.

 o
l
y
PI
e
of

T
 in
re
tiv
 b
e
n
te
e.
u

on
an
 i
6

bu
r a
rs
1
 o
/O

94
rs
ra
de
in

l

e
d
ls

he
s
I

tly)
d

ed
.
tal

h

d
is

r
er

/O
in
ll

n
ll
d

ABSTRACT

This paper describes the design and implementation
MPI-SIM, a library for the execution driven paralle
simulation of MPI programs. MPI-LITE, a portable librar
that supports multithreaded MPI, is also described. M
SIM, built on top of MPI-LITE, can be used to predict th
performance of existing MPI programs as a function
architectural characteristics, including number of
processors and message communication latencies.
simulation models can be executed sequentially or
parallel. Parallel executions of MPI-SIM models a
synchronized using a set of asynchronous conserva
protocols. MPI-SIM reduces synchronization overheads
exploiting the communication characteristics of th
program it simulates. This paper presents validation a
performance results from the use of MPI-SIM to simula
applications from the NAS Parallel Benchmark suit
Using the techniques described here, we are able to red
the number of synchronizations in the parallel simulati
as compared with the synchronous quantum protocol
are able to achieve speedups ranging from 3.2-11.9
going from sequential to parallel simulation using 1
processors on the IBM SP2.

1 INTRODUCTION

Simulators for parallel programs can be used to test, de
and predict the performance of parallel programs fo
variety of parallel architectures. Most existing simulato
(Brewer et al 1991, Davis et al 1991, Covington et al 199
use direct execution to simulate the sequential blocks
code, and simulate only the communication and/or I
events. As sequential execution of such models (Legedza
and Weihl 1996, Reinhardt et al 1993, Dickens et al 19
Dickens et al 1996) are typically slow (slowdown facto
of 2 to 15 per processor are not atypical), seve
researchers have used parallel execution of such mo
with varying degrees of success. The primary difficulty
467
f

-

he

e
y

d

ce

d
n

g

)
f

,

l
ls

obtaining better performance is the significant
synchronization overhead in the parallel simulator.

In this paper we explore the use of a nove
conservative synchronization algorithm for parallel
simulation of message passing parallel programs. W
combine the existing null message (Misra 1986) an
conditional event (Chandy and Sherman 1989) protoco
together with a number of optimizations to significantly
reduce the frequency and cost of synchronizations in t
parallel simulator. The optimized simulation protocol ha
been incorporated in a simulation library for MPI (MP
Forum 1993), called MPI-SIM. An existing MPI program
may be linked with the MPI-SIM library (after an
appropriate pre-processing stage described subsequen
to predict its performance as a function of the desire
architectural characteristics; a programmer is not requir
to make any modifications to the original MPI program
This paper also presents the results of an experimen
study to evaluate the utility of MPI-SIM in the simulation
of the NAS Parallel Benchmark Suite.

2 MPI SIMULATION MODEL

2.1 MPI Overview and Core Functions

MPI (MPI Forum 1993) is a message passing library whic
offers a host of point-to-point and collective interprocess
communication functions to a set of single threade
processes executing in parallel. All communication
performed using a communicator—which describes the
group of communicating processes. Only membe
processes may use a given communicator. This pap
assumes that the program does not have any I
commands; simulation of the I/O constructs is described
Bagrodia et al (1997). In the subset of MPI we simulate, a
collective communication functions are implemented i
terms of point-to-point communication functions, and a
point-to-point communication functions are implemente
using a set of core non-blocking MPI functions. The core

Prakash and Bagrodia

s

th
 er
 ff
 a
a
se

s a
ta
 ts
at
lu

 t
ei

 r e
ct
 gr
cu
H
s
l.
s

o
ho
 t
ed

de
 in
le

d
 o

th
d

es
 , i
ac
 le
eq
 E
s u
 f
on

ally

o

f

l
h
h
t

s

s
t
t

n

ly

 a
n d
 ith
o f
n d
 ed
ty
f
 e

ied
h e

 f
eir

an
’ s
 t
 g
 th e
LP
en
 n
t

functions include MPI_Issend, a non-blocking synchronou
s e n d, MPI_Ibsend, a non-blocking buffered send,
MPI_Irecv non-blocking receive and MPI_Wait.

The p rim ar y d if feren ce b etw een the tw o send s is
the s yn chr on o us s en d com p letes o nly w hen th e r eceiv
accep ted the mess ag e u sin g a match in g r eceiv e; th e bu
s en d co m pletes as s o on as the d ata h as been co pied to
b uf fer. Th e b uf fer s pace is r eleas ed on ly w h en th e dat
b een tr ans mitted to th e r eceiver v ia a sy nch ro no u s
Each po int-to -p oint MP I m es s ag e car ries a tag an d th e
s en der- id. A r eceiv e m ay b e s electiv e, accepting a m es
o nly fr o m a g iv en s end er an d/or with a given
A lter nately, it m ay us e w ild car d ar g um en
MPI _A NY _ SO URCE or MP I_ AN Y _TAG , to in d icate th
a m es sag e fr o m an y s ou rce p ro ces s or with an y tag v a
accep tab le. The w ait is s im ply a f un ction w h ich b lo ck s
p ro cess un til the s p ecif ied n on - block in g (s end o r r ec
o peratio n has com pleted .

I n th is paper , we u s e th e ter ms Targ et Pr og r am to
to th e MPI p r og ram w ho se perf or m an ce is to b e pr edi
Tar get Machin e as th e machine o n w hich th e tar get p ro
execu tes , Sim ulator as th e pr og r am th at s im u lates exe
o f th e tar get p ro gr am on th e tar get m achine, and
Machine as th e mach ine o n w hich th e s im ulato r ex ecu te
g en er al, the ho st m ach in e m ay b e s eq u en tial or p aralle
d ir ect execu tio n, it is im p or tant th at th e pr o ces
con figu r atio n s in th e ho s t an d tar get m achin e be similar .

2.2 Preprocessing MPI programs for MPI-SIM

In general, the host machine will have fewer process
than the target machine (for sequential simulation, the
machine has only one processor); this requires that
simulator provides the capability for multithread
execution. As MPI programs execute as a collection
single threaded processes, it is necessary to provi
capability for multithreaded execution of MPI programs
MPI-SIM. We have developed MPI-LITE, a portab
library to support multithreaded MPI programs.

Execu tin g an ex is tin g MP I p ro gr am as a mu ltithr ea
p ro gr am requ ires ad d itio n al m od ificatio ns . The p r im ar y
d eals w ith tr an sf or m in g the p er m an en t v ar iable, i.e. glob al
v ar iables an d s tatic v ar iab les w ithin f un ction s. If
u nm od if ied MP I pr og r am is execu ted as a m ultithr ea
p ro gr am , all th read s o n a g iv en ho st pr oces s w ill acc
s in gle cop y o f each perm anent v ariab le. To p reven t th is
n eces sar y to p riva tiz e th e per manen t variable s uch th at e
thr ead h as a lo cal cop y. Each p erm an ent v ar iab
r ed eclar ed w ith an add ition al d imens ion w ho s e size is
to th e m ax im um n um b er o f thr ead s in a ho st pr ocess .
r ef er ence to th e p er manen t var iable is als o mo dif ied
that each th r ead us es its id to acces s its o wn co py o
p er m an en t v ar iab le. Th is pr o cess o f add ing a d imens i
the p er m an en t v ar iab les is refer red to as p riva tizat io n . A
p repr ocess or is p ro v id ed with MP I- SI M that auto m atic
46
at
 h as
 ered
 lo cal
has
nd .

g e
g .
 ,

e is
he
v e)

f er
ed ,
 am
 tio n
o st
. In
 F or
 o r

rs
st
he

of
 a

ed
 ne

e
 ed
 s a
t is
h
is

 ual
ach
ch
the
 to

privatizes permanent variables, converts each MPI call t
the corresponding MPI-SIM call, and implements
miscellaneous transformations needed to link the program
with the MPI-SIM library. In MPI-SIM the routines for
inter-thread communication are syntactically identical to
those for inter-process communication except for the use o
a special prefix to distinguish between the two.

2.3 Simulation Model for Core Functions

We present a model for execution and simulation of the
four core functions. The simulation model defines a logica
process (LP) for each process in the target program. Eac
LP, has a message queue for each communicator of whic
the LP is a member, a simulation clock, and an ordered lis
(ordered by simulation timestamp) of the pending (send
and receive) operations of the LP; this list is referred to a
the request list. Simulation of a process in the target
program by a corresponding LP in the simulator proceed
as follows: sequential code blocks are simulated via direc
execution. Each call to an MPI communication statemen
(collective or point-to-point) is translated to a call to the
corresponding MPI-SIM function. MPI-SIM internally
implements each call to a collective function in terms of
the core communication commands described in Sectio
2.1. For brevity, we do not describe the translation in the
paper; the reader is referred to Prakash (1996). We brief
describe the simulation of the core commands.

The s en d s in th e MP I cor e are s imu lated b y s en din g
m es sage (w ith s ou rce, des tinatio n, tag, com m un icato r a
d ata) to the receiv er LP . The m ess ag e is tim es tam p ed w
the s en d tim estam p, wh ich is th e cur r en t sim u latio n tim e
the s en d in g LP an d the r eceiv e tim es tam p, w h ich is th e s e
tim es tam p plu s th e p redicted mes sage latency . Fo r b uf fer
s en ds , the o v er head s and fu nctio n ality f o r bu f fer av ailab ili
check ar e in clu ded in th e s im ulation . The s imu latio n o
MPI _I recv sim ply ad d s a r eq uest to th e requ est list. Th
actio n tak en fo r th e w ait d ep en d s on th e ty p e of th e sp ecif
o peratio n. F o r in s tance, fo r w ait on a receive o p er ation , t
LP is b locked u ntil a match ed m ess ag e is av ailab le. O
cou rs e, th e LP mu st remo v e mess ages in th e o rd er of th
s im ulation timestam p s an d n ot in the or der in wh ich
m es sages are ph ys ically d ep os ited in its qu eue. W hen
app ro pr iate m atch in g m es s ag e is remo v ed , th e LP
s im ulation clock is up dated to the m aximu m o f th e cur ren
s im ulation time and th e r eceive times tamp o f the matchin
m es s ag e, an ack n ow ledg m en t is sent to th e send er, an d
LP is r esu med . Fo r the s y nchr on o us s end o per atio n , th e
b lo ck s u ntil th e co r resp o nd in g ack no w ledg men t has b e
r eceived f ro m the d estin ation . A t th is time, the simu latio
tim e of th e LP is u p dated to th e m ax imu m of th e cur ren
s im ulation time and th e r eceive times tamp o f the
ack no wledg m en t.
8

MPI-SIM: Using Parallel Simulation to Evaluate MPI Programs

h
u
5
o

n
h
r.
r

g

h
e
s
a
o
i

h
e
n
a
l
in
.
e

ll
o

n

c
 g
a

tly
in

d
 s
a

le
e
p
n
c

r
s

d
d

 to

l
 to
 no t
and
ly
th e
 its

g e
th e

 ag e,
e

can
 its

g
e
.

ce
l
s

e
as
M
b
h

t
of
3 PARALLEL EXECUTION OF AN MPI
SIMULATION MODEL

Two types of protocols have commonly been used in t
parallel simulation of parallel programs: the synchrono
or quantum protocol (e.g. SimOS (Rosenblum et al 199
Rosenblum et al 1997)), and the asynchronous protoc
(e.g. LAPSE (Dickens et al 1994)). In the synchronous
protocol, each LP periodically simulates its correspondi
process for a previously determined interval Q, termed t
simulation quantum, and then executes a global barrie
These barriers are used to ensure that messages f
remote LPs will be accepted in their correct timestam
order. An LP waiting at a receive will accept a matchin
message from its buffer only if the receive timestamp of the
message is less than the simulation time at which t
current quantum terminates. If more that one such messag
is present, the LP will select the one with the earlie
timestamp; if no such messages are present, the LP rem
blocked, and its simulation time is updated to the end
the current quantum. The synchronous protocol
guaranteed to be accurate only if Q<L, where L is t
communication latency of the target architecture. Howev
a small Q implies frequent global synchronizations leadi
to poor performance. (If the host machine provides
efficient hardware implementation of globa
synchronization (e.g., CM5), it might be feasible to obta
good performance even with a small value of Q
Simulation efficiency can be improved by using a larg
quantum; however with Q>L, it is no longer possible to
guarantee that the simulator is accurate. Thus para
simulators (e.g. SimOS) that use this protocol offer tw
simulation modes: fast and inaccurate, or slow a
accurate.

MPI -S IM us es an asy n ch ro n ou s pr o to co l, w hi
r ep ro du ces the co mm un icatio n or der in g o f th e tar
p ro g ram in th e s im ulato r. LP s have tw o attribu tes as so ci
w ith th em at all tim es : Execu tio n St a tu s (blocked , ru n n in g
o r term inated) an d S imulat ion S t at us (determ inis tic o r n on -
d eter min is tic m od e) . A n LP is b lo ck ed if it h as ex ecuted a
r eceive statement an d no matchin g mes s ag e is av aila
o th er wis e it is s aid to b e run ning . A n LP is in d eter m in is tic
m od e if ever y r eceive req uest in its requ est lis t exp lici
s pecifies th e s ou rce (i.e. no r eceive con ta
MPI _ANY _ SO URCE as th e so u rce) . Each LP ex ecu tes
w itho ut sy nch ro nizin g with other LPs un til it gets block e
o n so me wait op er ation ; a s yn ch r on ization p r otoco l is u
to decid e if th e LP can o r cann o t pr o ceed with a m es s
f ro m its b uf f er . We br ief ly d es cribe ou r pr o to co l.

Each LP in th e mo del com p utes a lo cal q uantity cal
its Ear liest In pu t Tim e o r EIT (J ha an d Bag ro dia 1 99 3) . Th
EIT r ep r es en ts a lo w er b o un d on th e r eceive times tam
f utur e m es sag es that the LP m ay receive. Co n s eq ue
u po n ex ecu tin g a wait statement, an LP can s af ely s ele
matching message with a receive timestamp less than
469
e
s
,
ls

g
e

om
p

e

t
ins
f

s
e
r,
g
n

)
r

el

d

h
et
ted

b le;

s

 ed
ge

d

 o f
tly,
t a
its

EIT. Different asynchronous protocols differ only in thei
method for computing EIT. Our implementation support
various protocols including the Null Message Protocol
(NMP) (Chandy and Misra 1979), the Conditional Event
Protocol (CEP) (Chandy and Sherman 1989), and a new
protocol, which is a combination the two (Jha an
Bagrodia 1993). Due to space limitations, we have omitte
details of the protocol; the interested reader is referred
Prakash (1996).

The p rim ar y o verh ead in imp lemen ting paralle
con s er vativ e pr o to co ls is d u e to th e co m mu nicatio ns
com pu te EI T and the block in g su f fered b y an LP th at h as
b een ab le to ad vance its EI T. W e h av e s ug ges ted
imp lemen ted a n um ber o f o ptim ization s to sig nifican t
r ed uce the f r eq uency and streng th of sy nchr o nizatio n in
p ar allel s im u lato r thu s r ed ucin g u nn ecess ar y b lo ck ing in
execu tio n. Th e pr im ary o p tim ization s inclu de:

1. A ut omat ic det ection of d etermin ist ic frag men ts in
t he p ara llel prog ra m. In g en eral, an LP is blo ck ed
either if its b uf fer d oes n ot co ntain a m atching mes s a
o r if th e tim es tamp on th e mess age is g reater th an
LP’ s EI T. Ho w ev er , an LP in the d eter min is tic mo de
can p ro ceed as so on as it f in ds a match ing m es s
r eg ar dless o f its EI T. Th is is an op tim izatio n w ithin th
f ramewo r k of th e nu ll mes sage p r otoco l.

2. Red ucing blocking time of a n LP b y exploiting the
communica tion charact eristics of the ap plicat ion. By
precisely defin ing po tential mess age so urces, an LP
red uce th e comm unications that ar e used to ad vance
EIT.

3 . Red ucing the frequency of s ynchro nization wit h
dyn amic extract ion of looka head. Lo okahead is the
ability o f an LP to p redict lower bound s on f uture times
at which it will gen erate a messag e for other LPs.
Extractin g tigh t estimates for each com municatin
par tner leads to fewer synchronizations than th
com monly used s tatic method s for computing lo okahead

4 RESULTS

4.1 Benchmarks

We have validated MPI-SIM and measured its performan
for the NAS (Numerical Aerodynamic Simulation) Paralle
Benchmarks (NPB 2) (Bailey et al 1995), a set of program
designed at the NASA NAS program to evaluat
supercomputers. The IBM SP2 at UCLA was selected
both the target and host machines. Each node of the IB
SP2 is a POWER2 node with 128Kb of cache and 256M
of main memory. Nodes are connected using a hig
performance switch, which offers a point-to-poin
bandwidth of 40Mb/s, and has a hardware latency

Prakash and Bagrodia
Table 1: NAS Benchmarks

Target 1 Target 2 Target 3
Names Lines Class

Target
Procs.. Target Program Size/Simulator Size (Host Procs. for Simulator)

LU 4623 A 4,8,16 14M/57M (1,2,4) 8M/32M(2,4,8) 5M/18M(4,8,16)
MG 2712 S 4,8,16 600K/8M (1,2,4) 400K/5M (1,2,4,8) 300K/3M (1,2,4,8,16)
BT 6290 S 4,9,16 2M/24M (1,2,4) 1M/15M (1,2,4,9) 1M/12M (1,2,4,9,16)
SP 5555 S 4,9,16 700K/7M (1,2,4) 500K/6M (1,2,4,9) 500K/5M (1,2,4,9,16)
t

n
r

d

d
it

id
or
 e

r e
e
 d
e
n d
b y

se
e

500ns. The NPB benchmarks are written in Fortran 77 with
embedded MPI calls for communication. Since MPI-SIM
currently supports privatization only for C programs, it was
necessary to convert the benchmarks to C. We were able
convert four out of the five benchmarks using f2c
(Feldman et al 1990), a Fortran-to-C converter. The
specific configurations of the benchmarks that were used i
the performance study were constrained primarily by thei
memory and CPU requirements. Table 1 summarizes th
relevant configuration information for the benchmarks.
Each benchmark was executed for three target machin
configurations. For example, LU was executed on 4, 8 an
16 processors.

4.2 Verification and Validation

The target programs and the simulators were executed fo
all processor configurations listed in Table 1. For each
target and host processor configuration, each simulator wa
executed in four modes described in Section 4.3. The NPB
470
o

e

e

r

s

2 benchmarks are self-verifying, meaning that each
benchmark after completion compares the compute
results against precomputed results to ensure that
executed correctly. All target programs and simulators
were found to verify correctly.

F ig ur e 1 p lo ts th e tar get p ro gr am ex ecu tion time (s ol
lin e) an d th e execu tio n tim e as pr ed icted b y the simu lat
(dash ed lines) as a fu nctio n of vario us tar g et m ach in
con figu r atio n s; n ote that the s imu lator p red icted tim es a
p lo tted fo r each ho s t co n figu ratio n lis ted in Tab le 1 . Th
g raph s w er e n early identical in all s im ulator m od es, an
con sequ ently th e fig ur e s ho ws o n ly o n e mo de: th
N MP +CEP +Det m od e. I n the best case th e pr ed icted a
m easu red tim es diff ered b y less th an 5% and in th e wo rs t
2 0% len d in g r easo nab le cr ed ib ility to the s imu latio ns .

4.3 Simulator Modes

A s im ulato r can b e execu ted in f ou r m od es . I n th r ee o f the
the s im u latio n statu s is no n- deter min is tic, diff ering in th
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

4 6 8 10 12 14 16

T
im

e
in

 S
ec

on
d

s

Number of Processors

(NMP+CEP+Det) Simulator Vs Target (SP)

Target Execution
1 Processor Simulation
2 Processor Simulation
4 Processor Simulation
9 Processor Simulation

16 Processor Simulation

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

4 6 8 10 12 14 16

T
im

e
in

 S
ec

on
d

s

Number of Processors

(NMP+CEP+Det) Simulator Vs Target (BT)

Target Execution
1 Processor Simulation
2 Processor Simulation
4 Processor Simulation
9 Processor Simulation

16 Processor Simulation

0.05
0.055
0.06

0.065
0.07

0.075
0.08

0.085
0.09

0.095
0.1

4 6 8 10 12 14 16

T
im

e
in

 S
ec

on
d

s

Number of Processors

(NMP+CEP+Det) Simulator Vs Target (MG)

Target Execution
1 Processor Simulation
2 Processor Simulation
4 Processor Simulation
8 Processor Simulation

16 Processor Simulation

300
400
500
600
700
800
900

1000
1100
1200
1300

4 6 8 10 12 14 16

T
im

e
in

 S
ec

on
d

s

Number of Processors

(NMP+CEP+Det) Simulator Vs Target (LU)

Target Execution
1 Processor Simulation
2 Processor Simulation
4 Processor Simulation
8 Processor Simulation

16 Processor Simulation

Figure 1: Target Execution Time vs. Simulator Predictions for NAS Benchmarks

MPI-SIM: Using Parallel Simulation to Evaluate MPI Programs

n
)

 c
d
n

h
e

p

k

c

t
s

d
s

alized
f the

o de,
the
u se o f the p r otocol fo r EIT adv ancem ent. Th e CEP mo
(us es co nd ition al ev en t p ro to co l), N MP mo de (u ses
m es sage pr oto co l) an d CEP +N MP m o de (com bines b oth
the las t m od e the s imu latio n statu s is deter minis tic an d b
the con d itio n al even t an d the n u ll m ess ag e p ro to
(CEP+NMP +D ET mo de) are u s ed . Th ese s imu lato r m o
allow us to determine the contribution of each protocol a
each optimization to the performance of the simulation.

4.4 Reducing Synchronizations

We compared all modes of each simulator against t
traditional quantum protocol. Performance of th
simulation protocol in each simulator mode is gauged b
the number of rounds of protocol messages, R, sent
processor. The performance of the quantum protocol
measured as the number of global synchronizations it ta
to simulate the same target program. A round of protoc
messages is similar to a global synchronization, although
is frequently less expensive, since in many cases
processor does not need to wait to receive proto
messages from all other processors.

0

0.2

0.4

0.6

0.8

1

Quant NMP CEP N+C N+C+D

Norm. Sync. in SP: Targ Procs: 16, Host Procs: 4

0

0.2

0.4

0.6

0.8

1

Quant NMP CEP N+C N+C+D

Norm. Sync. in SP: Targ Procs: 9, Host Procs: 4

Figure 2: Performance of Simulators for SP

G iv en a targ et pr oces so r con f ig ur ation , w e fo un d tha
d ecreas es on ly mo des tly as th e n um ber o f ho s t pr o ce
u sed to simu late th e con f ig ur ation is increased. Fig u res 2
4 , an d 5 s ho w the v ariation o f R w ith the s imu lator m o
f or two repr esentative targ et an d ho s t pr oces
con figu r atio n s of each b enchm ar k . In each g r ap h,
471
 de
 ull
. I n
 oth
ol
 es
d

e

y
er
is
es
ol
 it
a

ol

 R
 s or s
, 3,
 es
 or
th e

n um ber o f ro u nd s of pr oto co l mes sages is no r m
again st th e n um ber o f glo bal sy n ch ro n izatio ns o
q uantum pr oto co l. Th e X- axis sh o ws th e simu lator m
w here “N +C” r ef er s to th e N MP +CEP mo d e an d
“N+C+D” mo de refers to th e NMP+CEP +D et mo de.

0

0.2

0.4

0.6

0.8

1

Quant NMP CEP N+C N+C+D

Norm. Sync. in BT: Targ Procs: 16, Host Procs: 4

0

0.2

0.4

0.6

0.8

1

Quant NMP CEP N+C N+C+D

Norm. Sync. in BT: Targ Procs: 9, Host Procs: 4

Figure 3: Perfomance for Simulators for BT

0

0.2

0.4

0.6

0.8

1

Quant NMP CEP N+C N+C+D

Norm. Sync. in SP: Targ Procs: 9, Host Procs: 4

0

0.2

0.4

0.6

0.8

1

Quant NMP CEP N+C N+C+D

Norm. Sync. in MG: Targ Procs: 8, Host Procs: 4

Figure 4: Performance of Simulators for MG

nd Bagrodia

o
 g
(

r

s
,

.

 .
 e

l

Prakash a

0

0.2

0.4

0.6

0.8

1

Quant NMP CEP N+C N+C+D

Norm. Sync. in LU: Targ Procs: 16, Host Procs: 4

0

0.2

0.4

0.6

0.8

1

Quant NMP CEP N+C N+C+D

Norm. Sync. in LU: Targ Procs: 8, Host Procs: 4

Figure 5: Performance of Simulators for LU

Con sider o nly the CEP mo d e: the am ou n t
im p ro vemen t ov er th e q uantu m pr oto co l is stro n
d ep en dent on th e av er age d u ration fo r w hich an LP
thr ead) ex ecu tes bef or e g etting block ed . Tab le 2 sh ow s
average du ratio n fo r each b en ch m ar k and each ta
472
f
ly
 i.e.
this
 g et

p ro gr am co nf igu ratio n. L is the minim um m es s ag e laten cy
o f th e tar get m achin e. Th e 9- pr o cess o r BT b ench m ar k ha
the lar g es t average un in ter ru pted ex ecu tion time per th r ead
and in the s imu latio n, th e CEP m od e is ab le to elim in ate
m or e th an 80 % o f th e g lo b al s yn ch ro n izatio n s of th e
q uantum pr oto co l. Th e NMP m od e is ab le to elim in ate o nly
4 0% o f the g lob al s yn ch ro n izatio ns o f the qu an tu m p ro tocol
This is becau se the CEP s ig nifican tly imp ro v es o v er the
N MP w hen s om e LPs ar e far ahead of th e other s in
s im ulation time, req uirin g th e o th er LP s to ex ch ang e man y
r ou nd s o f nu ll mess ages to up date th eir s im u latio n times
The 1 6- p ro ces so r MG bench mark h as th e s mallest av er ag
u ninter r up ted executio n tim e p er thr ead , and the NMP+CEP
m od e is un able to sign ificantly red uce th e n um b er o f g lo ba
s yn chr on ization s o f th e q uan tu m pr o to co l.

Table 2: Average Uninterrupted Execution Time

Benchmark 16 Target Procs. 8 or 9 Target Procs.
LU 8.74L 11.77L
MG 2.79L 4.03L
BT 12.33L 24.81L
SP 4.61L 9.29L

Using our optimizations for exploiting the
determinism in the program, we note that it is possible to
eliminate all global synchronizations in the BT and SP
benchmarks. The optimizations were not effective in
significantly reducing the synchronizations from the MG
and LU benchmarks as discussed in the next section.
0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Number of Processors In Simulation

(NMP+CEP+Det) Sim. Char.: Speedup for SP

4 Processor Problem
9 Processor Problem

16 Processor Problem

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Number of Processors In Simulation

(NMP+CEP+Det) Sim. Char.: Speedup for BT

4 Processor Problem
9 Processor Problem

16 Processor Problem

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Number of Processors In Simulation

(NMP+CEP+Det) Sim. Char.: Speedup for BT

4 Processor Problem
9 Processor Problem

16 Processor Problem

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Number of Processors In Simulation

(NMP+CEP+Det) Sim. Char.: Speedup for BT

4 Processor Problem
9 Processor Problem

16 Processor Problem

Figure 6: Fast Simulator Speedups

MPI-SIM: Using Parallel Simulation to Evaluate MPI Programs

ra
 a
b
 i
ta

y
a
T
in
y
th

e

th
su
th
t
a
ti
e

o
is

a
r

io

ll
 a
u
re
in
o
e
n
h

s

e
u
ho
t the
ion
LP.
ded

g
 of
e is
if it
ses
n
e

tion
al

n
y of
led
e
 the
 is

e
eive
re

 is
sis.
e

ing
m.
es
all
n
he
 us
in

null
the

e
the
the
ly
ve
he
ut
se
on
d
IM

f the
4.5 Reducing Simulator Execution Times

We present the speedup measured by executing the pa
simulator using the combined NMP and CEP algorithm
well as the deterministic protocol. A receive can
deterministic either if it specifies the source explicitly or
specifies an explicit tag and each source uses unique
Although the first type of determinism can be detected
automatically by the current simulator, we have not
implemented the second mode. Out of the four benchm
used, SP and BT have the determinism of first type.
MG and LU benchmarks have determinism of second k
Although this optimization is not automaticall
implemented in the compiler, we manually inserted
optimizations to evaluate the potential benefit that can
derived from exploiting this form of non-determinism. Th
final speedups obtained from the execution of all
benchmarks are presented in Figure 6. We mea
speedup (N) by taking the ratio of the execution time of
sequential simulator to the execution time of the simula
using N processors. The speedups for the LU benchm
are relative to the smallest host processor configura
that could be used to run the simulator. For example, th
target processor simulator could be executed on 2, 4
host processors. Hence, the reference execution time
the 2-processor simulation. This understates the expected
performance improvement for this application. Notice th
the speedups achieved with the simulation a
characteristic of the application itself, as the simulat
overhead is relatively small.

5 RELATED WORK

Most simulation engines use sequential or para
implementations of the quantum protocol. Among these
Proteus (Brewer et al 1991), a parallel architect
simulation engine, Tango (Davis et al 1991), a sha
memory architecture simulation engine, Wisconsin W
Tunnel (Reinhardt et al 1993), a shared mem
architecture simulation engine and SimOS, a compl
system simulator (multiple programs plus operati
system). Two simulation engines which use approac
similar to ours are Parallel Proteus (Legedza and Weihl
1996) and LAPSE.

Parallel Proteus is the parallelization of the Proteus
simulation engine, which uses the quantum protocol. T
synchronization overhead caused by frequent barrier
reduced using two methods: (a) Predictive barriers and
Local barriers. Predictive barriers is a method for saf
increasing the simulation quantum beyond L, the minim
communication latency of the target machine. This met
uses runtime and compile time analysis to determine, a
beginning of a simulation quantum, the earliest simulat
time at which any LP will send a message to any other
Consequently, the simulation quantum can be exten
47
llel
s

e
t
gs.

et
rks
he
d.

e
be

e
re
e

or
rks
on
 8

r 8
 of

t
e
n

el
re

re
d

d
ry
te
g
es

he
 is
(b)
ly
m
d

until that time. Runtime analysis involves simply runnin
an LP until it communicates. If it stops at the equivalent
a receive statement, analysis performed at compile tim
used to predict when it would have sent a message
were instantly resumed. The method of local barriers u
statically available communication topology informatio
(i.e. groups of LPs that communicate only within th
groups they belong to) to reduce the global synchroniza
at the end of a simulation quantum to loc
synchronizations between groups of LPs.

LAPSE (Dickens et al 1994) is a parallel simulatio
engine for programs using the message passing librar
the Intel Paragon. It uses a quantum protocol cal
WHOA (Window-based Halting On Appointments). Lik
Parallel Proteus, it uses runtime analysis to determine
size of the simulation quantum, but the runtime analysis
not supplemented with compile time analysis.

In comparison, we use the equivalent of runtim
analysis since we execute an LP until it reaches a rec
statement. The benefits of compile time analysis a
achieved using the conditional event protocol, which
portable and does not need target instruction set analy
In addition, our implementation of the null messag
protocol adapts automatically to the dynamically chang
communication topology specified by the target progra
Perhaps most importantly, it automatically recogniz
(some forms of) deterministic code and switches off
synchronization while simulating it; automatic recognitio
of other forms of determinism are being added to t
simulator. As seen in Section 4, this optimization helps
eliminate almost all the synchronization overhead
simulating many real applications.

6 CONCLUSION

In this paper, we have shown the usefulness of the
message and the conditional event protocols in
conservative parallel simulation of parallel programs. W
have used application characteristics to optimize
performance of the null message protocol, and used
comparatively slower conditional event protocol on
where the null message protocol fails. We ha
demonstrated that for deterministic sections of code, t
simulation protocol can be bypassed completely witho
affecting the correctness of the simulation. The
optimizations have been implemented in a simulati
library (MPI-SIM) for a subset of MPI, an accepte
standard for message passing parallel programs. MPI-S
has been validated and shown to be fast for a subset o
NAS Parallel Benchmarks (NPB 2).
3

Prakash and Bagrodia

ar c
 02
 a
 C-
 ge
om
M

 to
 ity

E
 ,
M

 o
I n

 .
 ks
 es
0

la
lle

A
ted
 g

 en

o n

 ey
 . In

 te
 sin
d

ol.
e

L.
 o
 ,

I n
nce

 n.
r

n of
n

tio n

 rams .
LA ,

. C.
 el:
I n
n ce

 r od .
d y

 ta.
 OS
 y

l
y,
f
the
7,
Inc.
for
lel
 and

nt
os
nce
ch
rks,
ACKNOWLEDGMENTS

This wo r k was s up po r ted b y th e A dv an ced Res e
P ro jects A gen cy , DA RPA /CS TO , un d er Co ntract F- 30 6
9 4- C- 02 7 3, “S calable S ys tem s So f tw ar e Meas u rement
Evalu ation ” and b y D ARPA /ITO Co n tr act N -6 60 0 1- 97 -
8 53 3, “End -to -End P erf or m an ce Mo deling o f Lar
H eter og eno us Ad ap tiv e Par allel/D is tr ibu ted Com pu ter /C
m un ication S y stem s.” A ll data w as co llected o n th e I B
S P2 at U CLA’ s O ff ice o f A cademic Com p utin g, gr an ted
U CLA by IBM Cor po ratio n u n d er the Sh ar ed Un iv ers
Res earch P ro g ram.

REFERENCES

Brewer, E. A ., C. N . D ellaro cas , A . Colbr oo k , an d W .
W eihl., Tech n ical Repo rt MI T/LCS /TR- 5 16
Mas s achu setts I n stitute o f Techn olo gy , Cam br id g e,
0 21 39 , 1 99 1.

Bag ro dia, R., S . D ocy, and A . K ah n , Parallel S im ulation
P ar allel F ile S ys tem s an d I /O P r og ram s.
S up er co m pu tin g 97 , 1 99 7.

Bailey, D., T. Harr is, W . S ap hir, R. V. D. W ijng aar t, A
W oo , an d M. Y ar ro w. The N AS Parallel Ben ch m ar
2 .0 . Techn ical Repo r t Nas -9 5- 02 0 , NA S A Am
Res earch Cen ter , Mof fet F ield , CA 94 0 35 -1 0 0
D ecem b er 1 99 5 .

Cov in gto n, R. G ., S . D wark ad as, J . R. Ju m p, J .B. S in c
and S . Mad ala. The Eff icien t S im ulation of P ar a
Com pu ter S ys tem s. I JCS, 1 :3 1- 5 8, 1 9 91 .

Chand y, K . M., and J. Mis ra. D is tr ibu ted S im ulation :
Cas e Stu dy in D es ig n and Verificatio n o f Dis tr ib u
P ro gr am s . I EEE Tr a ns actio ns o n S oftwa re En g in eerin,
P ag es 4 4 0- 45 2 , Septemb er 19 79 .

Chand y, K . M., and R. S her man. Th e Co n ditio nal Ev
A pp ro ach to D is tr ib u ted S im ulation . I n Pro ceed ing s o f
the S CS Multico n feren ce o n D is tr ibu ted S im ula ti,
Miami, P ag es 93 -9 9, 19 89 .

D av is , H ., S . R. G olds ch m id t, and H en ness
Multip ro cess o r Sim ulatio n and Tr acin g U sin g Tang o
Pro ceed ing s o f ICPP '9 1, P ag es 99 -1 0 7, A ug u st 1 9 91 .

D ickens , P ., P. H eidelb erg er , and D . N icol. A D is trib u
Mem or y Lap se: P ar allel S imu latio n of Mes s ag e- Pas
P ro gr am s . I n Wor ks ho p o n Par allel a nd Distrib ute
S im ulation , P ag es 32 -3 8 , Ju ly 19 94 .

D ickens , P . M., P . H eidelb erg er , and D .M. N ic
P ar allelized Direct Ex ecu tion Simu latio n o f Mess ag
P as sing Parallel Pr o gr am s . I EEE Tr a ns actio ns o n
Par allel a nd Distrib uted System s , 6 (4):29 7- 32 0 ,
O ctob er 19 96 .

F eldm an , S . I., D . M. Gay, Mark W. Maimo ne, and N .
S ch ry er . A F or tr an- To - C Co nv erter . Techn ical Rep
N o. 1 49 , A T& T Bell Lab or ato ries , Mur r ay H ill, NJ
May 1 99 0 .
474
h
 -
n d

 -

.

A

 f

 ,

ir ,
l

t

.

d
g

-

r t

MPI F or u m. MP I: A Mess ag e P as sin g In ter face.
Pro ceeding s o f 1 99 3 Su p er co m pu ting Co nfere,
P or tlan d , Was hing to n , No v em ber 1 99 3.

F ujim oto , R. Parallel Dis cr ete Event Simu latio
Com m un ication s o f Th e ACM, 3 3(10) :30 -5 3, Octo b e
1 99 0.

J ha, V., and R. Bag ro dia. Tr ans paren t Im p lementatio
Con serv ative Algo rithm s I n Parallel S im ulatio
Lan gu ag es. I n Win ter S im ula tion Co nfer ence,
D ecem ber 1 99 3.

Leg ed za, U ., an d W. E. W eihl. Red ucing S y nchr on iza
O verh ead in P ar allel S im u lation . I n T en th Wo rksh o p on
Par allel a nd Distrib uted Simu la tio n PAD S 96 , May
1 99 6.

Mis ra, J . Dis tr ib u ted Dis cr ete-Event Simu latio n. ACM
Com pu tin g Su r veys , 1 8(1) :39 -6 5, March 1 98 6.

P rakash , S . P er fo rm ance P rediction o f P ar allel P r o g
P h.D. Th es is , Com pu ter S cience D ep ar tm en t, U C
Los A ng eles, CA 9 00 9 5, N o vemb er 19 96 .

Reinh ar d t, S . K ., M. D . H ill, J . R. Lar us , A . R. Leb eck, J
Lew is , and D . A . Wo o d. Th e Wisco ns in Wind Tu nn
V ir tu al Pr oto ty ping of P arallel Co mp u ters .
Pro ceed ing s o f th e 1 99 3 ACM S ig metr ics Co n fer e,
May 1 99 3 .

Ros en blu m, M. E. Beg nion , S . D ev in e, and S . A . H er
U sing Th e S im OS Mach in e S im ulato r to Stu
Com plex Co mp u ter Sy s tems . ACM T ra n sa ction s on
Mod elin g a nd Co mp uter Sim ulatio n , 7 (1), Janu ary
1 99 7.

Ros en blu m, M. S. A. H er ro d, E. W itch el, and A . G up
Com plete Com p uter S y stem Simu latio n: Th e S im
A pp ro ach . I EEE Pa r allel a nd D istrib uted T ech no log.
V ol. 3, No . 4 , W in ter 1 99 5.

AUTHOR BIOGRAPHIES

SUNDEEP PRAKASH received a B.Tech. in Electrica
Engineering from the Indian Institute of Technolog
Delhi, India in 1989, an M.S. from the University o
Florida in 1991, and a Ph.D in Computer Science from
University of California, Los Angeles in 1996. Since 199
he has been a software engineer at TIBCO Software,
in Palo Alto. His research interests include algorithms
parallel and distributed simulation, compilation of paral
programs for shared and distributed memory machines,
messaging interfaces and protocols.

RAJIVE L. BAGRODIA is a professor in the Departme
of Computer Science at the University of California, L
Angeles. He holds an M.S. and Ph.D. in Computer Scie
from the University of Texas at Austin. His resear
interests include computer and communication netwo
nomadic systems, and parallel languages.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

