
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

EFFICIENT LARGE-SCALE PROCESS-ORIENTED PARALLEL SIMULATIONS

Kalyan S. Perumalla
Richard M. Fujimoto

College of Computing
Georgia Institute of Technology

801 Atlantic Drive
Atlanta, Georgia 30332-0280, U.S.A.

e

s
e
ro
e,
g
e
n

u

ilit
e

:
-

e
n

lly
he
r
re
is
re

ly

l
-

s

r
l

t
s
e

.

-

s
s

-
n

g

n

ABSTRACT

Process oriented views are widely recognized as very us
ful for modeling, but difficult to implement efficiently in
a simulation system, as compared to event oriented view
In particular, the complexity and run-time overheads of th
implementation have prevented the widespread use of p
cess oriented views in optimistic parallel simulations. Her
we review the conventional approaches to implementin
process-oriented views, and outline some of the sourc
of problems in those approaches. We also identify a
approach that we callstack reconstruction, which is most
suited for portably and efficiently supporting optimistic
process-oriented views. Benchmark simulations using o
preliminary implementation, which is incorporated in the
TeD modeling and simulation system, confirms the low
overheads of this approach, and demonstrates its capab
to simulate over one million processes in a process-orient
model.

1 INTRODUCTION

Three widely recognized world views for simulation are
event-oriented view, process-oriented view and activity
scanning view (Mitrani 1982). The first two views are the
more widely used among the three views. All the thre
views are equivalent in the sense that process-oriented a
activity-scanning views can be translated into semantica
equivalent event-oriented views. An advantage of using t
process-oriented view is that models tend to be smalle
and easier to develop and understand, making it mo
appealing to the modelers. On the other hand, it
generally perceived that event-oriented views can be mo
efficiently implemented than the other two views, especial
in the context of optimistic parallel simulations.
459
-

.

-

s

r

y
d

d

,

In recent modeling and simulation efforts, there is
a clear demand for the capability to support very large
scale simulation. The need forparallel simulation is clear
in these application domains. In addition, the models
tend to be too complex to express using the low-leve
primitives of the event-oriented view, thus making process
oriented view a natural choice for developing such large
and complex systems. This makes it important to find
ways to efficiently support very large number of processe
in a process-oriented modeling and simulation system.

Specifically, our experiences with modeling large and
complex telecommunication networks using theTeD
language (Perumalla et al. 1998, SIGMETRICS PER
1998) served as our initial motivation to find efficient
implementation alternatives for process-orientation. Fo
example, in many interesting configurations (such as globa
Internet) of network models inTeD, the number of
processes easily exceeds one million, warranting efficien
support for large-scale process orientation. Also, modeler
demand support for full process orientation, such as th
ability to invoke wait statements over nested procedure
calls, at almost arbitrary points in a procedure body
Since TeD permits the direct embedding of C++ code
in the models (see Perumalla et al. 1998), we are
further constrained from exploring alternatives that trade
off modeling power for efficiency.

The interaction of parallel simulation techniques with
the implementation of large-scale process-oriented view
(supporting millions of processes per simulation) generate
challenges, such as minimizing the memory size and
memory copy requirements of the implementation. Process
oriented views are generally perceived to be expensive i
the context of optimistic parallel simulations. This is
mainly due to the fact that processes entail state-savin
overheads for the maintenance of additional control flow
information and transient data. These overheads ca

Perumalla and Fujimoto

r

s
v
g

t

e
n

d

,
o

k
f

r
r

n
l
i
.
it
-

e

-

n

e

lly

a

ny
g
e

e

d

e
s
nt

n
e

ed
l

ed
be quite large in naive implementations, unless they a
carefully reduced to the minimum necessary.

1.1 Related Work

A number of implementations of process-oriented view
(which are mostly language or preprocessor-based) ha
been reported in the recent years. The Maisie langua
(Bagrodia and Liao 1994) supports the concept of process
the form of an entity description, along with support for the
optimistic parallel simulation of Maisie entities. However,
Maisie does not include direct support for the suspensio
of a stack of nested procedure calls (wait statemen
cannot be used inside functions invoked by entities). Th
macros-based approach of IMPORT/SPEEDES (Whitehur
and Brutocao 1998) also seems to limit simulation tim
advances to the main process body. Apostle (Booth a
Bruce 1996) is a new language that implements proces
orientation using continuations, with support for optimistic
parallel simulations. Apostle, however, has specialize
semantics, which do not carry forward well to our domain
of interest, which is C++. Other languages and packages
such as MODSIM and Parasol support process-orientati
views, but without great success in optimistic simulations
More recent work includes the Nops system (Poplaws
1998) which reports low overhead implementation o
processes. Nops, however, only supportsconservative
parallel simulation, and it has no direct support fo
advancing simulation time over a stack of nested procedu
calls.

Here, we identify an approach that we callstack
reconstructionas most suited for portably and efficiently
implementing optimistic parallel simulations of “true” pro-
cess oriented views in an expressive language such as C++.
First, we define what constitutes true process orientatio
in section 2. Next, we briefly review some conventiona
implementation approaches in section 3, identifying the
problems in the context of optimistic parallel simulations
We then describe the stack reconstruction approach w
details of implementation, followed by some salient per
formance results which indicate the low overheads of th
approach.

2 PROCESS ORIENTATION

A process is a distinct flow of control, containing a
combination of computation and synchronization opera
tions. Processes typically synchronize with each oth
by exchanging events. Process orientation is an elega
way of capturing context information under the conven
tional procedural programming paradigm. (Process o
event orientation is orthogonal to object orientation. In
an object-oriented setting, procedures in fact correspo
460
e

e
e

in

n
s
e
st

d
s-

n
.
i

e

,

r

h

e

-
r
nt

r

d

Table 1: Features of an Ideal Process-oriented System

F1 Procedures can declare and use local
variables

F2 Procedure calls can be nested
F3 Procedures can be recursive and re-entrant

(a) Programming style
F4 Primitives to advance simulation time can

be invoked in any procedure
F5 Primitives to advance simulation time can

be invoked wherever a conditional, looping
or other statements can appear.

(b) Time control

to method calls.) The main body of a process can invok
procedures which in turn can invoke other procedures.

2.1 Functionality

The ideal modeling capabilities of a process are listed in
tables 2.1 (a) and (b). Note that the features are genera
orthogonal to each other (i.e. it is possible to pick and
choose a subset of the features that will be adopted by
process-oriented system). Apure process-oriented view is
one in which all the featuresF1 throughF5 are supported.
The first three features are those that are expected of a
modern languages supporting the procedural programmin
style, and expected by most modern programmers. Th
last two features are specific to the simulation domain —
time advancing primitives are those that serve to advanc
simulation time, such aswait , or hold statements and
other such variants. It is the interaction of the programming
style with the simulation time advances that gives rise to
interesting challenges in implementing process-oriente
views efficiently.

2.2 Process Type Continuum

Although pure process-oriented views are useful in som
complex models, more restrictive definitions of processe
can be made for use in some models which do not warra
the full power of pure process-orientation.

By varying the combination of features that are
supported, we can achieve variation in the efficiency
of implementation. For example, if the featuresF4 andF5
are unused by a process-oriented model (i.e., simulatio
time is advanced only at the top–level statements in th
main process body, as opposed to underif statements or
inside a procedure), then such a model can be implement
in a way that incurs no more overheads than if that mode
was re-written using event-oriented view. In fact, such
processes are nothing but event-oriented models express

ess-Oriented Parallel Simulations

uc
d
e

ot
ue

an

T

ot
a
n

k

b

un
ca
d

es
es
io
en
th
e

ag
ee
h
is
ly
ce
d

e

c
loc
th
in
us
tiv
ca
io

l
the
n
s

d
e
o
ls)

ry
to
s.
n

y
t-
r

n-
es
or
ble
y
ls

ins
e
e-

h

a
nd
n

or

ss,
t
s
e

t
n
he
e
ks

ks
t

o
n
,

Efficient Large-Scale Proc

in a way that better exposes context information. S
models with lower demands on the expressive power
appear in real-life modeling, such as cited in Perumalla
al. (1997).

Similarly, if we relax the featureF1, and enforce
the rule that all local variables areimmutable(i.e., never
change after initialization), or if local variables are n
supported at all by the modeling language, then, iss
such as re-entrancy and recursion become easier to h
in the implementation.

Other simplifications (such as in Maisie, IMPOR
and Nops) preclude the featureF4, but do support feature
F5. In other words, although simulation time cann
be advanced in procedures, it can be advanced at
point in the process body (say, under conditional a
looping statements). In such implementations, a stac
suspended procedures must be indirectlyemulatedusing a
chain of stack-less processes. The issues of local varia
and recursion are also simpler to handle, especially
optimistic simulations, due to the reduction in the amo
of information to state-save, and, the issues of lo
variables and re-entrancy can be effectively delegate
the host language, such as C++.

3 IMPLEMENTATION ALTERNATIVES

There exist several techniques for implementing proc
oriented views, of which we outline the important on
One approach is to view the control and data informat
of a process as a black box, and preserve its cont
across suspension and resumption points — this is
threads-based approach, such as in Mascarenhas and R
1996. Another approach is to define the modeling langu
semantics in such a way as to effectively remove the n
for a stack — thecontinuations-based approach of Boot
and Bruce 1996 is an example. Yet another approach
transparently maintain auxiliary information that is bare
sufficient to restore the native stack of a suspended pro
— which is thestack reconstructionapproach describe
here. We describe each of these approaches next.

3.1 Process Stack

Many modern languages (compilers, to be precise) us
optimization, calledphysical or native stack, for the very
frequent type of operation: procedure call. A native sta
is an encoding of program counter, return addresses,
variables and argument lists (Koopman). Although
logical stack can be implemented in other ways (say, us
linked lists), it is very often represented in contiguo
memory locations for performance reasons. The na
stack is used to efficiently implement the procedure
semantics by pushing and popping invocation informat
461
h
o
t

s
dle

ny
d
of

les
in
t
l
to

s-
.
n
ts
e
go
e
d

to

ss

an

k
al

e
g

e
ll
n

on and off the stack. Since the memory size of loca
variables and argument lists varies across procedures,
native stack serves to optimize the memory allocatio
and deallocation operations, by exploiting the contiguou
memory feature of the native stack.

The preceding way in which native stacks are use
is tightly coupled to the operation of executable cod
that most compilers generate, and tightly integrated int
the way many operating system services (such as signa
operate.

Since the procedure stack is precisely what is necessa
to support process-oriented views, it is natural to attempt
utilize native stacks to implement the simulation processe
This is the approach taken in implementations based o
threads.

3.2 Threads

Threads are light-weight computation abstractions widel
used in many domains such as high performance compu
ing and multi-media servers. Threads provide support fo
multiple process stacks which can communicate and sy
chronize with each other. Several multi-threading packag
exist that provide operating system-level threads and/
user process-level threads (Tanenbaum 1995). Porta
implementations of threads are available, which typicall
make use of standard facilities such as the POSIX cal
setjmp() and longjmp() . Threads can be scheduled,
suspended and resumed. Each thread typically conta
a stack of procedure activation frames, although som
optimized packages use special thread synchronization s
mantics to avoid using physically distinct stacks for eac
thread.

One way to implement simulation processes is to use
single thread for each process. The thread suspension a
resumption primitives can be used to achieve the simulatio
time advances in the simulation process code. Thus, f
example, await statement in the simulation process will be
mapped to suspending the thread of the simulation proce
and handing control over to the simulator’s scheduler. A
the instant the waiting condition is satisfied, the proces
is resumed just after the wait statement, by resuming th
thread of the simulation process.

The advantage of using a threads to implemen
simulation processes is that little additional implementatio
work is necessary to save and restore the stacks of t
simulation processes. The simulator only acts as th
thread scheduler. There are, however, several drawbac
of threads-based implementation. Either thread stac
bump into each other (thread stacks typically do no
grow), or the memory requirements can be high t
support very large number of processes. Thread migratio
is either unsupported or expensive. More importantly

and Fujimoto

c

a
s
ic
iv

u
e

e

i
o
i
e

li

n
w

a

e

s
n
e
h
n

a

w

a
t

h

d
s
g

h
a

e

d

Perumalla

conventional threads are difficult to optimize for optimisti
parallel simulation (as discussed in more detail in the ne
section). The design of off-the-shelf thread systems m
not be well suited to scale to millions of active thread
Special large-scale multi-threading systems exist, wh
could potentially be useful in sequential and conservat
parallel simulations; but they have not been tested for u
in optimistic parallel simulation.

Fundamentally, conventional threads are general-p
pose computation abstractions, with potentially compl
inter-thread synchronization, and scheduling discipline
Simulation processes, however, have simple and w
defined suspension and resumption semantics (based
simulation time advances), and a simple scheduling d
cipline (usually, least timestamp first). Whereas supp
for preemptive threads incurs overheads such as sav
register state, simulation processes on the other hand n
never incur such overheads, due to their simpler schedu
discipline.

3.3 Continuations

Continuations (Appel 1992) constitute another efficie
mechanism for implementing processes. Suppose
define the modeling language in a way that allow
the compiler to cast all language constructs (such
conditional or looping statements) into separate blocks
non-interruptible operations. In such a case, the proc
can be implemented as a special form of a finite sta
machine, in which each state dynamically designates
successor, called acontinuation. If we ignore the issue of
local variables for simplicity, it is clear that the proces
context is fully represented just by the identity of the curre
continuation (pointer to a function) of the process. Furth
optimizations are possible whereby explicit storage of t
per-process continuation information can be avoided, a
implicitly recorded on the run-time stack of the simulato
(Booth and Bruce 1996).

To effectively implement this technique, either speci
language constructs have to be defined, or compilers
existing languages have to be modified (Appel 1992).

4 STACK RECONSTRUCTION

Another approach to implementing process-oriented vie
is what we callstack reconstruction. The underlying idea
is that, instead of saving and restoring the contents
the native stack, we separately maintain information
runtime such that the native stack can be reconstruc
to the same state in which it was when the process w
suspended. This not only allows us to throw away t
unnecessary contents of the native stack, but also perm
us to easily capture modifications to the process sta
462
xt
y
.
h
e

se

r-
x
s.
ll
on

s-
rt
ng
ed

ng

t
e

s
s

of
ss
te
its

t
r
e
d

r

l
of

s

of
t

ed
as
e
its

te,

which is essential for state-saving operations in optimistic
parallel simulation.

We use a compiler-based solution for supporting this
approach transparently, leaving the models uncluttere
with the implementation details. We assume the model
are translated into some general purpose programmin
language code, such as C++ which is then compiled to
result in executable models. We use C++ as the target
language in our examples.

1. procedure one()
2. {
3. ...
4. wait(c2)
5. ...
6. }
7. procedure two()
8. {
9. s1

10. if(...) {
11. s2
12. wait(c1)
13. s3
14. }
15. for(...) {
16. s4
17. call one()
18. s5
19. }
20. }
21. process p()
22. {
23. ...
24. call two()
25. ...
26. }

Figure 1: Model Code of a Processp which Invokes
two() , which in turn Waits on a Condition, and Invokes
one()

To understand how the stack reconstruction approac
works, consider the pseudocode fragment in figure 1 of
process-oriented model containing two proceduresone()
and two() . For simplicity, we postpone the treatment
of local variables and procedure arguments to later in th
discussion. The proceduretwo() contains some (arbitrary
computation) statements,s1 , s2 , · · ·, s5 . In addition, it
contains a simulation advance (wait) statement inside a
conditional (if) statement, and a procedure call toone()
inside a looping (for) statement.

Consider the execution of processp when it invokes
the proceduretwo() . If and when the procedure execution
reaches line 12, it must be suspended at thewait statement,
and when the wait condition is satisfied, it must be resume
at line 13 with the statements3 . Similarly, when the

Efficient Large-Scale Process-Oriented Parallel Simulations

b

a
i

e
t

2
1

s
a

s

n

he

.

s
)
,

e

e,
e
o

s

.

s

.
r,
s
nt
ng
),

g

execution reaches line 17, the procedureone() must
be invoked; again, process execution may have to
suspended if the procedureone() invokes some other
wait statement, and resumed at the correct position
procedureone() when the process is resumed.

1. int two()
2. {
3. switch(JI) {
4. case 0: goto start;
5. case 1: goto lbl_1;
6. case 2: goto lbl_2;
7. }
8. start: /*continue*/;
9. s1

10. if(...) {
11. s2
12. wakeup = c1;
13. JI = 1;
14. return SUSPENDED;
15. lbl_1: /*continue*/;
16. s3
17. }
18. for(...) {
19. s4
20. lbl_2: flag = one();
21. if(flag == SUSPENDED)
22. {
23. JI = 2;
24. return SUSPENDED;
25. }
26. s5
27. }
28. JI = 0;
29. return DONE;
30. }

Figure 2: Extracts of Code Generated fortwo()

In the stack reconstruction approach, the compile
identifies and marks all the positions in a procedure
which a process suspension can occur. Lines 12 and l
17 qualify as suspension points of proceduretwo() . The
compiler then assigns ordinal numbers 1 and 2 to th
two suspension points. When the execution of procedu
two() is suspended, it is sufficient to remember th
ordinal number (or, jump index, JI) of the point where i
was suspended. Using this number, we can directly jum
(using a combination ofswitch() andgoto statements
at the beginning of the procedure) to the point where th
execution was left off. This is demonstrated in figure
which lists the code generated from the model of figure
Note that the resumption point for await statement is just
beyond thewait statement, whereas the resumption poin
for a procedurecall statement is exactly at the same
procedurecall statement, which results in a re-invocation
of the procedures.
463
e

in

r
t

ne

e
re

p

e

.

t

The unrolling of native stack occurs when the proces
is suspended — all the procedures actually perform
return , returning control to the simulation system. The
reconstruction of native stack occurs when the proces
is resumed — the procedure call chain is correctly
reconstructed using function re-invocation, with the help
of the saved ordinal numbers.

If each procedure can have at most 256 suspensio
points in its body (which is a reasonable limit for human-
written models), a single byte is sufficient to record the
jump index for each procedure. An array of jump indices
can be used for each suspended process to record t
jump indices of its active procedures. (The jump indices
representforward addresses albeit, more memory efficient,
as opposed to thereturn addresses of conventional native
stacks.)

4.1 Local Variables

Now let us consider the implementation of local variables
We maintain a pointer to a memory buffer (frame) along
with each jump index. References to the local variable
in the procedure body are translated to indirect (pointer
references to the frame. In optimistic parallel simulations
the frame remains allocated until the global simulation
time (GVT) sufficiently advances to guarantee that the
frame deallocation will not be rolled back.

Procedure arguments can be viewed as special typ
of local variables, which are initialized automatically by
the compiler based on the procedure invocation. Henc
the compiler can treat them as such, and follow the sam
techniques as for local variables to save modifications t
the arguments. A value of 0 for the jump index can be
used by the compiler to distinguish between invocation
and reconstruction, to enable it to initialize the argument
upon invocation of a procedure, and skip the initialization
if the procedure is re-invoked during stack reconstruction

4.2 Optimistic Simulation

The important feature of stack reconstruction that help
in optimistic simulations is that it allows to easily and
transparently trap modifications to the logical stack. The
logical stack consists of jump indices and local variables
Jump indices are incrementally state saved by the compile
since the compiler manages them itself. Local variable
can also be incrementally state saved using transpare
incremental state saving techniques, such as those usi
overloaded assignment operators (Ronngren et al. 1996
by trapping modifications to local variables in the procedure
body. The stack reconstruction approach is also appealin
for optimistic parallel simulation due to its reduction in
the amount of state-saved information.

Perumalla and Fujimoto

n

c

s
p
i
e

h
i

y
e
r

d
t

a

t

h

n

n

t
l

d
e

i

e,
its

ted
nt-
ect
s.

er
ss
is
a

or
ed
3

t

e
del
of

ing
the

run

g

g
ls,
tive
s
g
ch
es,
In native stacks, it is the case that not only mor
extensive information is stored on the stack, but also it
hard to gain precise access to any and all modificatio
to that information. These factors together preclud
efficient state-saving of modified information in optimisti
simulations. Thus, if native stacks are used to impleme
process-oriented views in optimistic simulations, it i
becomes unavoidable to perform a brute-force blind co
of the whole native stack for state-saving, resulting
large and expensive state-saving costs for every proc
context-switch. This has been the fundamental reas
for the perception that process-orientation is expensive
support under optimistic parallel simulations. It is now
clear that with a minimal intermediate translator, whic
maintains jump indices and local variables, the state-sav
costs can be reduced to the minimum required.

This approach also allows for lazy and tight memor
allocation, which is important when simulating very larg
number of processes. In our implementation, we perfo
lazy allocation of memory — memory for the frame is no
allocated until the moment the frame is actually require
thus resulting in tight memory utilization, as opposed
preset stack limits of native stacks.

Another advantage of the stack reconstruction approa
is its ability to support efficient run-time migration of active
processes across heterogeneous platforms. Since mach
independent formats are used to represent the logical st
of procedure calls, it is both easy and efficient to pack
process stack, and move and restore it on the destina
machine, even if the source and the destination machin
use incompatible native stack representations. A furth
advantage is that the stack reconstruction implementation
completely portable, independent of the operating syste
or the native language compiler formats. It also has t
desirable feature of not interfering with other compile
optimizations (such as tail recursion and register allocatio

4.3 Related Schemes

Other parallel simulation systems do implement variatio
on the scheme of usinggoto s (Maisie’s code generator,
IMPORT’s macros, Cilk’s frame-allocator), but do no
allow nested procedure calls. Recent work on fau
tolerance systems (Ramkumar and Strumpen 1997) a
utilizes another variant of this scheme to “walk up an
down the stack” for portably checkpointing the C-runtim
stack.

5 PERFORMANCE

We have incorporated the stack reconstruction techniq
into the implementation of true process-oriented views
theTeD modeling and simulation system (Perumalla et a
464
e
is
s

e

nt

y
n
ss

on
to

ng

m
t
,

o

ch

ine-
ck
a
ion
es
er
is
m
e

r
).

s

t-
lso

ue
n
l.

1998). To test its capabilities and run-time performanc
we have used three different scenarios: (1) to measure
process context switching costs in pure process-orien
models (2) to compare its performance against eve
oriented models (3) to stress-test the approach with resp
to size, using models containing over a million processe

5.1 Context Switching Cost

Theactivedepth of a stack is the depth of the stack (numb
of procedures on the stack) at the moment the proce
is suspended. When the stack reconstruction approach
used, it is clear that the cost of suspending or restoring
process is a function of the active depth of the restored (
suspended) stack, since the active functions are re-invok
(or unrolled) to restore (or free up) the stack. Figure

0

5

10

15

20

25

30

0 5 10 15 20 25 30

T
ot

al
 c

on
te

xt
 s

w
itc

hi
ng

 c
os

t (
m

ic
ro

 s
ec

on
ds

)

Active depth of suspended/restored stack

Figure 3: Variation of Process Context-switching Cos
with Active Depth of Stack

shows the variation of the context switching cost with th
active depth of the stack, measured using a synthetic mo
containing processes having exactly same active depth
stack. The switching cost includes the costs of suspend
a process and resuming another process, and also
cost of building and maintaining runtime information to
reconstruct the stack of process. The benchmarks were
on an SGI Origin multiprocessor withR10000 processors.

From the figure, it is seen that the context switchin
takes less than10µs for processes with relatively small
active depths of stack. In our experience with modelin
large and complex telecommunication network protoco
the processes in our models never exceeded an ac
stack depth of 5, giving a context switching time of les
than 4µs. Figure 3 also serves as a means of locatin
the tradeoff points when the stack reconstruction approa
performs better or worse than other alternative approach
such as using off-the-shelf thread packages.

Efficient Large-Scale Process-Oriented Parallel Simulations

s

s

f
e

n

a

e
nt-
s,

wn
d
he
n
I
tly
el
n
nt-
n
.
t

e

a

h
y,
ss
ed
g
f
es,

e
e
g
el
le

h,
-

o-
s
in
It
r

y

5.2 Comparison with Event Orientation

On certain simpler types of process-oriented models, th
run-time performance of our implementation achieves th
superior performance of equivalent event-oriented model
This is demonstrated in figures 4 (a) and (b), which plo

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Number of processors

Process-oriented PHOLD
Event-oriented PHOLD

(a) PHOLD

100

200

300

400

500

600

700

800

1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Number of processors

Process-oriented PNNI
Event-oriented PNNI

(b) PNNI

Figure 4: Performance of our Implementation on Proces
oriented Models as Compared to Equivalent Event-oriente
Models

the elapsed time of our process-oriented implementatio
versus that of equivalent event-oriented expression of th
same models. We used one synthetic and one real-li
model in this scenario. The figures correspond to th
optimistic parallel simulation of the models, using Time
Warp. The synthetic model is the well-known PHOLD
application containing processes that exchange events
a way that conserves the total number of events in th
model. The second model is the PNNI telecommunicatio
network application (Perumalla et al. 1997) containing
network models capturing the ATM Forum’s standard on
internetwork protocols called the PNNI (Private Network to
Network Interface). Both the models share the feature th
the simulation advance primitives (wait statements) appear
465
e
e
.

t

-
d

n
e
e

in
e

t

only at the outer-most level in the process body. Sinc
such processes can be easily translated into efficient eve
oriented models without any process-orientation overhead
one can reasonably expect to simulate suchquasiprocesses
faster than pure processes. The performance results sho
in figure 4 demonstrate that indeed our process-oriente
view implementation achieves almost the same speed as t
equivalent event-oriented translation of these models. O
the multi-processor runs, the rollback behavior of the PNN
models remained the same, thus making the results direc
comparable. On 5 and 6 processors, the PHOLD mod
experienced 3% and 4% fewer rollbacks respectively o
the process-oriented translation as compared to the eve
oriented translation, making the process-oriented translatio
in fact marginally better than the event-oriented translation
This rollback behavior has been observed to be invarian
across repeated simulation runs.

5.3 Large Scale Process Orientation

Using the stack reconstruction implementation, we ar
able to perform optimistic parallel simulations of models
containing processes in excess of one million. We used
simple model, written in theTeD language, of a wireless
Personal Communication Services (PCS) network, in whic
each sector in the PCS network is modeled as an entit
while each mobile inside a sector is modeled as a proce
that accesses the state of the sector entity. We us
sample network configurations of a square grid containin
225 sectors along each side of the grid, giving a total o
50,625 sectors. Each sector contains 20 mobile process
giving a total of more than a million processes. The
mobile behavior is expressed as a random walk over th
sector grid, superimposed by a call initiation sequenc
modeled using inter-call generation times and call holdin
times. This demonstrates that large-scale optimistic parall
simulation of process-oriented models is indeed feasib
to implement efficiently.

6 CONCLUSIONS

Based on the results of our stack reconstruction approac
we observe that process-oriented views can be imple
mented in optimistic parallel simulations as efficiently as
in conservative parallel simulations. This is possible by
carefully reducing the state-saving operations to the abs
lute minimum. The stack reconstruction approach allow
us to capture the modifications to the process-state
order to transparently support incremental state-saving.
also results in very efficient process context switches fo
processes with relatively smallactive stack depths. In
addition, it brings with it the added benefits of reduced
memory overheads, portability, and process-migratabilit

Perumalla and Fujimoto

b
or

ck
h

he

ul

-

s-

-
.

-
e

e

a
n.

t

l

te

l

d

across heterogeneous platforms. This approach can
easily implemented using a preprocessor or can be inc
porated into existing simulation languages.

In models containing processes with large active sta
depths, we intend to explore the tradeoff points at whic
other alternative implementations perform better than t
stack reconstruction approach.

ACKNOWLEDGMENTS

The authors thank Christopher Carothers for helpf
discussions. This work is partially supported by DARPA
Contract N66001-96-C-8530 and by NSF Grant NCR
9527163.

REFERENCES

Appel A. W. 1992. Compiling with Continuations. Cam-
bridge University Press.

Bagrodia R. L., Liao W. 1994. Maisie: A Language for the
Design of Efficient Discrete-Event Simulations. IEEE
Transactions on Software Engineering, Vol. 20(4).

Booth C. J. M., Bruce D. I. 1996. Stack-free Proces
oriented Simulation. InProceedings of 11th Workshop
on Parallel & Distributed Simulation.

Frigo M., Leiserson C. E., Randall K. H. 1998. The Im
plementation of the Cilk-5 Multithreaded Language
ACM SIGPLAN Conference on Programming Lan
guage Design and Implementation (PLDI’98), Jun
17-19, Montreal, Canada.

Koopman P. J. Stack Computers: The New Wave. On-lin
book athttp://www.cs.cmu.edu/˜koopman
/stack_computers/ .

Mascarenhas E., Rego V. 1996. Ariadne: Architecture of
Portable Threads System Supporting Thread Migratio
Software — Practice and Experience, Vol. 26(3).

Mitrani I. 1982.Simulation Techniques for Discrete Even
Systems. Cambridge University Press.

Nicol D. M., editor, Special Issue on theTeD. 1998.
SIGMETRICS Performance Evaluation Review, Vol
25, No 4.

Perumalla K. S., Andrews M., Bhatt S. 1997. A Virtua
PNNI Network Testbed. InProceedings of the 1997
Winter Simulation Conference, ed. C. Andradottir,
K. Healy, D. H. Withers, B. L. Nelson, 1057–1064.

Perumalla K. S., Fujimoto R. M., Ogielski A. T. 1998.
The TeD Language Manual. Available on-line via
http://www.cc.gatech.edu/computing
/pads/ted.html .

Poplawski A., Nicol D. M. 1998. Nops — A Conservative
Parallel Simulation Engine forTeD. In Proceedings
of the 12th Workshop on Parallel & Distributed
Simulation.
466
e
-

Ramkumar B., Strumpen V. 1997. Portable Checkpointing
for Heterogeneous Architectures. In27th International
Symposium on Fault-Tolerant Computing (FTCS-27),
58–67.

Ronngren R., et al. 1996. Transparent Incremental Sta
Saving in Time Warp. InProceedings of 10th Workshop
on Parallel & Distributed Simulation.

Tanenbaum A. 1995.Distributed Operating Systems. Chap-
ter 4, Prentice Hall.

Whitehurst R. A., Brutocao J. 1998. Parallel Execution of
Process-based Simulation Models. InProceedings of
SCS Multiconference.

AUTHOR BIOGRAPHIES

KALYAN S. PERUMALLA is a Research Scientist at the
College of Computing at Georgia Institute of Technology,
working towards the Ph.D. degree in the area of paralle
simulation techniques for large-scale telecommunication
networks.

RICHARD M. FUJIMOTO is a professor at the College
of Computing at Georgia Institute of Technology. He has
been an active researcher in the parallel and distribute
simulation community since 1985.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

