
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

EFFICIENT PROCESS INTERACTION WITH THREADS IN PARALLEL DISCRETE
EVENT SIMULATION

Reuben Pasquini
Vernon Rego

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398, U.S.A.

a

S

e
l
e
l
e

s
es

s
e
d

t

a

r
s
d

f

r

s
he

t-
s
-
s
s

e

ut

e
w

.
is
n

d

t

ral
ABSTRACT

Parallel discrete event simulation (PDES) decreases
simulation’s runtime by splitting the simulation’s work
between multiple processors. Many users avoid PDE
because it is difficult to specify a large and complicated
model using existing PDES tools. In this paper we describ
how theParaSol PDES system uses migrating user leve
threads to support the process interaction world view. Th
process interaction world view is popular in sequentia
simulation languages and is a major departure form th
logical process view supported by most PDES systems.

1 INTRODUCTION

Discrete event simulation (DES) is a technique that exploit
a computer to model a system whose state chang
(stochastically) at discrete points in time. A simulation
program operates on a model’sstatevariables during each
of a sequence of time-orderedevents. It is not enough
for a simulator to process events quickly; a simulation
language must also export an API with which large model
may be simply specified and modified. Parallel discret
event simulation (PDES) algorithms attempt to spee
up the execution of a DES by distributing simulation
workload across distinct processors. We believe tha
PDES offers great promise for meeting the simulation
needs of developers of increasingly complex systems.

A simulation language presents to a developer
world view. A world view is simply the programming
interface supplied by a language with which a develope
must describe his simulation model. Three world view
which different simulation languages (both sequential an
parallel) support are theevent, active server, and active
processworld views (Carson 1993).

The event-scheduling world view allows a simulation
developer to describe his model in terms of a set o
451
simulation events which act upon simulation objects. Fo
example, a simulation of a grocery store check-out line
might definerequest, service, and completeevents which
act upon acheck-out object. A requestevent signifies
the arrival of a customer requesting service. Therequest
event er is placed in a queue if the server is busy;er

eventually generates aservice event when the customer
gets served. Finally, thecompleteevent signifies that the
customer has been served.

The active-server world view allows the developer to
express his simulation in terms of active server entitie
which exchange typed messages between each other. T
active-server world view and event-scheduling world view
are in some sense duals of each other. In the even
scheduling world view actions are associated with event
which manipulate data stored in servers. In the active
server world view actions are associated with server
which manipulate local data and data carried in message
(which can be viewed as events). For example, in th
check-out line example described above, we would write
a server procedure to describe the actions of the check-o
clerk. The clerk routine waits for the arrival of a message
(customer), then executes some service routine for th
customer message. Finally, the clerk generates a ne
message to pass the customer on to another object.

The active-process world view is the most popular
programming interface for specifying many types of models
In the active-process world view a developer describes h
model in terms of the actions of active processes o
simulation objects. For example, in the check-out line
model described above the simulation would be expresse
in terms of thecustomer’sactions upon the check-out
counter.

This paper outlines the difficulties in implementing
the active-process world view in parallel discrete even
simulation, and describes how theParaSol PDES system
addresses these challenges. Section 2 introduces seve

Pasquini and Rego

o

n
u
d

d
r
e

t
t

le

s
o
e

a

o

a

v

t

f
s
,

-

g

.

t

h

.

d

l

PDES systems, and section 3 presents theParaSol
system. We describe how to implement an efficient us
level threads system for PDES in section 4. We go o
to outline the unique demands which PDES places
our thread system and how we satisfy these demands
section 5. We present the results of simple experime
which we conducted to evaluate the performance of o
thread system design in section 6. Finally, we conclu
in section 7.

2 RELATED WORK

2.1 Parallel Simulation Concepts

PDES algorithms attempt to speedup the execution
a DES program by distributing the simulation workloa
across multiple processors. A DES executes a time-orde
sequence of simulationevents. Each event may access on
or more simulation objects and schedule one or more futu
events. The state of the simulated system is defined by
state of all simulation objects. The order in which even
execute is determined by avirtual time which is defined
by event time–stamps. Events execute in nondecreas
time–stamp order so thatvirtual time always advances.

It is natural to think of parallelizing DES programs
by distributing all the simulation events across multip
processors. Givenn processors andm events, each
processor would ideally handlem/n events, suggesting
an ideal speedup ofn. Unfortunately, distributed events
typically don’t access simulation objects in time–stam
order. For example, processorp1 may execute an event
e1 with time–stampt1 = 1 after processorp2 executes an
evente2 with time–stampt2 = 2. If e2 happens to access
a shared simulation object (i.e., an object shared byp1
andp2) beforee1 is able to access the object (say, becau
of processor or network delay), then the parallel executi
witnessese1 and e2 access the shared object in an ord
that is different from the order in which these events acce
the object in a sequential execution (e1 followed by e2).

A PDES must employ an algorithm which ensures th
events execute in acausally consistentway. A simulation
is causally consistent if each simulation object is access
by events in nondecreasing time–stamp order. The tim
warp algorithm (Jefferson 1985) is an example of a
optimisticalgorithm for PDES. It is optimistic in the sense
that each processor executes every event it knows ab
in time–stamp order under the optimistic assumption th
causality is not being violated. At any point, however,
processor may receive an event (from another process
whose time–stamp indicates that it should already ha
been processed; such an event is called astraggler. After
detecting a straggler, a processorrolls back to a system
state that corresponds to a time–stamp which is less th
the straggler’s time–stamp. Execution continues from th
452
er
n
n
in
ts
r
e

of

ed

re
he
s

ing

p

e
n
r
ss

t

ed
e

n

ut
at

or)
e

an
is

point, and the straggler is processed in the right time–
stamp order. A successful optimistic PDES system mus
minimize the runtime costs ofstate-saving(for potential
rollback), rollback (to recover state),global virtual time
(gvt) computation (to determine the actual simulation time)
and interprocessor communication, in order to deliver
speedup relative to a sequential simulation.

2.2 PDES Systems

A traditional PDES system expresses a model in terms o
communicating logical processes. The PDES system map
each logical process (LP) to a node of a multiprocessor
and uses interprocessor communication to allow LP’s on
different processors to communicate with each other.

Several LP based PDES systems have been imple
mented. TheGeorgia Tech Time Warp(GTW) PDES li-
brary simulates models described with the event-schedulin
world view on shared memory parallel computers (Fuji-
moto 1989). TheWARPED(Martin and McBrayer 1997)
PDES system also uses the event-scheduling world view
Maisie is a parallel simulation language that supports the
active-server world view.Maisie improves uponGTW by
making constructs for parallel execution more transparen
to the user (Bagrodia 1991). TheSIMKIT language is
another system that supports an active-server world view
(Gomes et al. 1995).

To the best of our knowledge,ParaSol and APOS-
TLE are the only two PDES systems which support the
active-process world view. TheAPOSTLEsystem manages
simulation process state as continuations constructed wit
compile time transformation of simulation code.APOS-
TLE employs the semi-conservative breathing time-buckets
algorithm to enforce the causality constraint on shared
memory architectures (Booth and Bruce 1997).ParaSol
implements simulation processes as user level threads
ParaSol uses the optimistic time warp synchronization
algorithm on distributed memory architectures.

3 PARASOL BACKGROUND

ParaSol is a process- and object-oriented parallel simula-
tion language developed for distributed-memory multipro-
cessors and workstation clusters (Mascarenhas, Knop, an
Rego 1995).ParaSol’s user interface is an object-oriented
derivative of the user interface for the popular sequentia
simulation languageCSIM (Schwetman 1986).ParaSol’s
sequential runtime performance is competitive withCSIM’s
performance on equivalent models; this makes it easy to
relate ParaSol’s performance with the performance of
commercial sequential simulators.

ParaSol has a simple layered design (see figure 1).
The bottomsystemlayer of theParaSol architecture is

Efficient Process Interaction with Threads in Parallel Discrete Event Simulation

t
m

b
e

n

d
tly

o
n

st
la
w
a

lle
h
u

o
ly
io

d

d

g

ad

le
r.
e
.

to
)

or

e
t

p
t

t
xt

t
or
re

d
)
)

e
e

es
d,
shared by a threads system and a message passing sys
ParaSol’s kernellayer manages the time warp mechanis
and exports basic simulation primitives to thedomain
and application layers. Thedomain layer implements
domain specific simulation objects whose state can
transparently saved and restored by the simulation kern
Finally, the user application defines theapplication layer.
Application code should not have to take into accou
special mechanisms needed for parallel simulation.

Domain 1 Domain 2 . . .

Application Layer

Threads Communication
SystemSystem

Kernel Layer

Figure 1: ParaSol’s Software Architecture

4 THREADS AS SIMULATION PROCESSES

ParaSol implements each simulation process as a threa
Since a simulation may involve thousands of concurren
executing threads,ParaSol requires a fast and efficient
thread system to achieve good runtime performance. A
though user level threads take less time to create and c
text switch than operating system kernel threads (Kleima
Shah, and Smalders 1996), user thread manipulation is
expensive when compared to event handling in simu
tion systems supporting the event-scheduling world vie
We have developed a high performance user level thre
system for managing simulation process state in para
and sequential discrete event simulation systems. T
thread system is specially designed to support the uniq
demands (checkpointing, rollback, thread migration)
parallel simulation systems in a way that significant
reduces the cost of using threads to implement simulat
processes.

4.1 Thread Library Implementation

Let’s consider the implementation of a user level threa
library for the C programming language. In this system
when a threadha yields control of the processor, a threa
scheduler routine selects the next threadhb to run. Thread
hb keeps control of the processor untilhb either yields
control back to the scheduler orhb completes execution.
We call this threads system theSAM system. Although
SAM is very simple, it’s a good starting point for designin
more complicated systems.

SAM has a simple two routine API.
453
em.

e
l.

t

.

l-
n-
,
ill
-
.
d
l

is
e

f

n

,

• void th create(void (*f)()) – create a new
thread context

• void th yield() – yield control to the scheduler

When a running threadha calls th create() , the
scheduler creates a thread context object for a new thre
hb and placeshb’s context onto a scheduling queue. In a
simulation system, the simulation calendar is responsib
for scheduling simulation processes in time-stamp orde
Therefore, the thread scheduling queue is actually th
simulation calendar in a thread based simulation system

When threadha yields control of the processor (by
calling th yield()), the scheduler placesha’s context
onto the the scheduling queue, removeshb from the front
of the queue, and transfers control of the processor
hb. In a simulation system, a thread (simulation process
yields whenever the thread executes ahold operation or
suspends itself (to be placed on a server’s wait queue f
example).

SAM uses the C-languagesetjmp and longjmp
functions to context switch between user level threads. Th
setjmp function saves the transient executing environmen
of the currently executing thread into ajump bufferj. The
scheduler can later resumeha’s execution by calling the
longjmp function to restore the environment saved inj.
In order to force the processor to execute a new threadhc

on a new stack, the scheduler constructs an “artificial” jum
buffer j. The scheduler sets the jump buffer’s environmen
variables so that when it callslongjmp on j, the processor
is tricked into startinghc’s execution on a new stack. This
simple setjmp and longjmp context switching scheme
works well on some architectures (including the PC), bu
others (like the SPARC) require an assembly code conte
switch routine.

4.2 Threaded Applications

The two most important overheads in SAM are contex
switching and stack management. The best method f
minimizing these overheads depends upon the the natu
of the application. We consider two types of threade
applications – applications employing few (less than 100
threads and applications employing many (100 or more
threads.

A simple application which uses few threads is the
network talk application. This is a simple tool which
allows two persons to communicate in (near) real tim
over the Internet through a keyboard–screen interface. W
can imagine a simple two threadtalk implementation. One
thread monitors the network, and prints received messag
to the screen. The other thread monitors the keyboar
and sends typed keys over the network.

Since thistalk application has only two threads, SAM
can optimize context switching time by allocating a large

Pasquini and Rego

g

ea
r

ck
ad
ate
th

nt,

an
lle
y
hi
ing
to

es
le
’s

the
en

r

ve
on
ad

ow

a
of

,

t

lly

h
.

r.

n

e

k
in
d

t

e
te
(100 kilobyte to1 megabyte) stack for each thread. Durin
a context switch from threadha to threadhb, the scheduler
simply flushes the processor’s register state onto thr
ha’s stack (with setjmp), and moves the stack pointe
to threadhb’s stack (with longjmp).

An important overhead of allocating a personal sta
to each thread is the large amount of memory each thre
stack requires. A large stack allows a thread to alloc
objects on its stack, and have a deep function call pa
Unfortunately, if a thread has a small execution footpri
then most of the stack is wasted.

4.3 Supporting Applications with Many Threads

Discrete event simulations are applications which c
require thousands of threads. For example, a para
discrete event simulation of a large ATM network ma
allocate a thread to route each simulated packet. T
simulation involves several thousand concurrently execut
threads. SAM can not afford to allocate a large stack
each thread in such an application.

SAM can support thousands of threads if it conserv
memory by allowing multiple threads to share a sing
stack. Many threads can share a single stack if SAM
context switch routine copies thread state on and off of
shared stack at context switch time. For example, wh
a threadha yields control of the processor to threadhb,
SAM copiesha’s state off of the shared stack to a buffe
for safe keeping. Next, SAM copieshb’s state onto the
shared stack, and resumeshb’s execution (see figure 2).

Execution Stack (grows down)

Start User Thread

Next
Thread’s
Saved
State

Current
Thread’s
Running
State

User Thread Yield

Copy Onto
Stack

Copy Off
Stack

Figure 2: Common Stack Memory Layout

Sharing a single stack between multiple threads sa
memory by eliminating the memory wasted in the porti
of a stack allocated to a thread but not used by the thre
For example, during a thread’s lifetime its state may gr
to a maximum size of500 KB for brief periods of time
when making calls to specific procedures. However,
context switch time (when the thread yields control
the processor), the thread may only be using10 KB of
454
d

’s

.

l

s

s

.

t

the stack on average. If this thread has its own stack
then SAM must allocate (at least)500 KB of memory for
the thread’s stack. Suppose a simulation requires1024
of these threads to exist in the system, then SAM mus
dedicate (approximately)500 MB of memory to thread
stacks alone. However, if the1024 threads share a single
stack, then SAM only allocates500 KB of memory for
the single stack plus1024 ∗ 10 KB = 10 MB of memory
for buffers.

We can see that the stack sharing scheme is especia
useful in applications with threads which periodically grow
to a large size, but usually remain small. With the shared
stack scheme SAM can allocate a buffer at context switc
time just large enough to save the running thread’s state
This eliminates the memory fragmentation present in the
large portion of the stack not used by the thread.

5 THREADS AND DISTRIBUTED SIMULATION

ParaSol places two unique demands upon its thread
system to implement an optimistic simulation algorithm.
First, SAM must be able to checkpoint and rollback a
thread’s state. Second, SAM must have the ability to
migrate a thread from one processor to another processo

5.1 Checkpointing Thread State

ParaSol implements an optimistic PDES algorithm which
requires each processor participating in a parallel simulatio
to periodically checkpoint its local state. A processor
checkpoints its local state by copying the read-write stat
of simulation objects and the stack of simulation threads
to backup buffers.

In section 4.3 we describe how sharing a common stac
between multiple threads reduces memory requirements
applications using many threads. When a running threa
ha yields processor control to another thread, SAM copies
ha’s state off of the shared stack to a temporary buffer
ba. To checkpoint threadha’s state, SAM copiesba to a
checkpoint bufferca. Before the next timeha runs, SAM
copiesha’s state fromba onto the shared stack and frees
ba back to the memory pool.

The thread checkpointing algorithm described above
is very inefficient. SAM can avoid copyingba to ca at
checkpoint time by simply incrementing a reference coun
to ba and usingba as a checkpoint. This simple trick
virtually eliminates the cost of checkpointing threads in
ParaSol. Figure 3 compares the runtime of aParaSol
simulation whose threads share a single stack with th
runtime of a simulation whose threads each have a separa
stack.

Efficient Process Interaction with Threads in Parallel Discrete Event Simulation

c
ne)

a)
ry
gra
en
ion

to
is

tion
ct
ch

h

e
sso
ss

th
ing
urc
ss

AM
user

ess
read
reads
every
more

em-
jects
essor
s
f a
utine
pro-

d,
s

oxy
0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200

ru
n
tim

e
 in

 s
e
co

n
d
s

number of facilities = 2*number of threads

11/03/1997 - ParaSol torus model with and without common stack threds

"aria_pvm1.data"
"common_mpi1.data"

x-axis: objects in torus = N2

y-axis: runtime in seconds

Figure 3: ParaSol’s Runtimes for the Torus on a Spar
20 with State Saving Using a Shared Stack (dashed li
and Individual Stacks (solid line)

5.2 Thread Migration

ParaSol uses the SPMD (single program, multiple dat
model to run parallel simulations over distributed memo
multiprocessors. Each processor executes the same pro
code (executable), but each processor follows a differ
path of execution through that code as the simulat
progresses. ParaSol implements a simple distributed
shared memory system based on thread migration
manage interprocessor communication in a way that
hidden from the simulation user.

We must understand the structure of aParaSol
simulation before we can understand howParaSol uses
thread migration. AParaSol simulation consists of
simulation processes (threads) which access simula
objects.ParaSol statically assigns each simulation obje
x to a processor at the beginning of a simulation. Ea
processor which does not host an objectx allocates a proxy
object for x. When a simulation threadha executing on
processorp1 attempts to access an objectx located on
another processorp2, ha accessesx’s local proxy on
processorp1. The proxy object executes code whic
forcesha to migrate to processorp2 whereha can access
x directly (see figure 4).

SAM migrates a threadha from processorp1 to
processorp2 by passingha’s stack as a network messag
between the two processors. At the destination proce
p2, SAM must placeha’s stack at the same memory addre
that the stack resided at onp1. If SAM does not place
the stack at the same address, then SAM must adjust
thread’s recorded stack pointer by an offset correspond
to the difference between the stack’s address at the so
processor and the address at the destination proce
(Mascarenhas and Rego 1996). Furthermore,ha may not
455
m
t

r

e

e
or

Processor 1 Processor 2

Thread

Proxy ObjectMigration

Figure 4: Thread Migration inParaSol

use pointers which refer to objects on its stack since S
can not update these pointers after migration without
intervention.

SAM can avoid the problems with stack addr
alignment by forcing each processor to allocate its th
stack at the same memory address. Therefore, th
execute on a stack located at the same address on
processor (see section 4). Migration safeness is one
benefit of using a shared stack in parallel simulation.

5.3 Accessing Objects After Migration

ParaSol implements a restricted distributed shared m
ory to allow simulation threads to access simulation ob
which are distributed between processors. Each proc
maintains a global block of memoryS at an addres
reserved for simulation objects. At the beginning o
simulation every processor executes a user-written ro
which maps each simulation objects to a particular
cessor. Suppose that a simulation maps aStorage type
object to processorp1 by passingp1’s pid to the object’s
constructor. When processorp1 executes this comman
p1 allocates an object of typeStorage at the next addres
a1 available onS. Every other processor allocates a pr
object at addressa1 (see figure 5).

Processor 1

object a

proxy b

object c

proxy d

Processor 2

object d

proxy c

object b

proxy asame address

same address

same address

same address

Figure 5: Distributed Shared Memory inParaSol

Pasquini and Rego

ns
xy
he
d o
cto
sm
th
at
n.
ry

o
en
se

ery
by
hi

ate
rea
p

tha

ad

se
a

h

am
w

sor
ry
th
ct
be

ro
nc

ly)
ou

r

s
nt
),

e
ot

g.
e

is

n
e
s

es
r

te
e

-
s

t,
e

e
.

on
d

A simulation object and its proxy are both instantiatio
of the same class. A proxy object discovers it’s a pro
by comparing the id of its host processor with the id of t
processor to which the object has been mapped. The i
an object’s processor is passed to the object’s constru

This simple distributed shared memory mechani
places several restrictions on the way a model may use
system’s memory resources. First, a model must alloc
every simulation object at the beginning of its simulatio
Each simulation object (or its proxy) is visible to eve
simulation thread on every processor. Dynamic creation
simulation objects would require synchronization betwe
every processor participating in the simulation. We cho
not to support this expensive operation inParaSol.

The second restriction on memory use is that ev
object (not a simulation object) dynamically allocated
a thread must be allocated on the thread’s stack. T
restriction is necessary becauseParaSol’s thread migration
mechanism can not transparently migrate objects not loc
on the thread’s stack. For example, suppose that a th
ha executing on processorp1 allocates a string on the hea
of processorp1. When ha later migrates to processorp2
the heap allocated string is left behind on processorp1.

Thread objects are the one exception to the rule
a model can not allocate objects on the heap.ParaSol’s
object oriented thread interface is similar to the thre
interface supported by theJavaprogramming language. A
model creates and destroys threads (simulation proces
throughout the life of a simulation. A model creates
new threadha by allocating an object from a class whic
is a subtype ofParaSol’s Thread class. The first time
ha executes, the simulation kernel calls therun method
of the object associated withha. During ha’s execution,
ha may safely access data stored in its thread object.

Other threads may not accessha’s thread object since
the object’s memory address changes overha’s lifetime.
When ha executes,ParaSol’s kernel mapsha’s object
state to a reserved memory area located at the s
address on every processor. This is the same trick
use to execute migrating threads on different proces
by mapping the thread’s stack to a well known memo
address. Another restriction on a thread object is that
object may not contain pointers to heap allocated obje
(other than simulation objects). Such pointers would
left dangling after the thread migrates.

6 THREADS AND SIMULATION PERFORMANCE

Before accepting threads as a basis for simulation p
cesses we should compare thread runtime performa
with the performance of lighter (but less user-friend
implementation of simulation processes. We can carry
this kind of a comparison by allowingParaSol to im-
456
f
r.

e
e

f

s

d
d

t

s)

e
e
s

e
s

-
e

t

plement simulation processes with either threads or lighte
“agents”.

An agent is a C++ object which exports arun method
(like a thread). The simulation kernel invokes the agent’
run method each time the agent executes. When the age
suspends its execution (to hold on a server for example
then the agent’srun methodreturns (the agent’s stack is
not saved as a thread’s would be). The main differenc
between an agent and a thread is that an agent can n
automatically save its execution state after suspendin
This makes the code for a model written with agents mor
complicated than code written with threads.

The graph in figure 6 shows simulation run times
for ParaSol’s execution of a torus model using either
agents or threads as simulation processes. This model
simply a two dimensional torus ofN × N servers over
which N × N/2 simulation processes randomly migrate.
We can see that a simulation which implements simulatio
processes with agents runs faster than a simulation of th
same size model which implements simulation processe
with threads. We expected this result since an agent do
not collect an expensive checkpoint of its stack state afte
each execution. A thread must checkpoint its stack sta
after each execution to allow another thread to run on th
shared stack.

A

A

A

B

B

B

 0 500 1000 1500 2000 2500 3000
 0

 1000

 2000

 3000

 4000

 5000

A: 4p, c0, t1, ether (carc)
B: 4p, c0, t0, ether (carc)

x-axis: objects in torus = N2

y-axis: runtime in seconds

Figure 6: Runtimes Using Threads (lineB) and Agents
(line A) on 4 Sun Sparc5 Workstations with10 Mb/s
Ethernet

Considering our thread system’s stack copying over
head, it is surprising that the thread based system perform
so well compared to the agent based system. In fac
we can see that for the longest running simulation w
sampled in figure 6, the thread based system had a runtim
only 1.20 times the runtime of the agent based system
Is this a reasonable result? We can answer this questi
by measuring the context switch cost of our agent an

Efficient Process Interaction with Threads in Parallel Discrete Event Simulation

-

r

6
r

d

n

e

e

sors

w
ith

n

on
k.

he
int

r
d
e

thread based systems in isolation. We can measure th
context switch overhead with the following simple test.
We simulate a model which involves only two simula-
tion processes. When each simulation process execute
it simply suspends itself and yields to the other simula
tion process (forcing a context switch). The simulation
continues until100000 context switches complete, then
the simulation exits. We compare the run times of the
thread and agent based systems on thisswitchingmodel to
determine the relative cost of context switching between
agents compared to switching between threads.

The results of our test are shown in table 1. These
measurements tell us that a thread context switch take
1.67 times the time of an agent context switch. The large
1.67 ratio (R1) between thread and agent context switch
times seems more reasonable than the1.20 ratio (R2)
between thread and agent simulation times (see figure
in light of the stack copying overhead associated with ou
thread system. RatiosR1 and R2 are different because
they compare measurements of different quantities. Rati
R1 compares the context switch run times of thread an
agent systems. RatioR2 compares the run times of
actual simulations which perform many operations (such
as calendar management and event execution) in additio
to the context switching.

In other words, although threads may context switch
in 1.67 times the time that agents switch in, a thread
based simulation may finish in1.20 times the time of an
agent based simulation. This is possible since a simulatio
involves other overheads in addition to context switching
between simulation processes. Unfortunately it is difficult
to predict the runtime costs of using threads in any particula
simulation since thread switching overheads are applicatio
dependent. For example, it is more expensive to contex
switch between threads with large runtime stacks tha
between more lightweight threads. On the other hand
if each thread completes a lot of computational work
before suspending (high granularity), then the importanc
of context switching overhead to the overall runtime of a
simulation decreases. Our experiments involve threads wit
shallow runtime stacks and low computation granularity.

The final measure of a PDES system’s performanc
is the amount of speedup the system yields on commo
benchmarks. Figure 7 shows thatParaSol’s runtime on

Table 1: Time for100000 Context Switches with Agents
and Threads

mean variance samples
threads 29.35 12.82 100
agents 17.58 1.14 100
457
e

s,

s

)

o

n

n

r
n
t

,

h

n

the torus benchmark decreases as the number of proces
employed in the simulation increases.

A

A

A

B

B

B

C

C

C

D

D

D

 0 1000 2000 3000 4000 5000
 0

 500

 1000

 1500

 2000

 2500

A (yellow): torus, sp2 1p
B (green): torus, sp2 2p
C (red): torus, sp2 4p
D (blue): torus, sp2 6p

(a) Scalable Speedup with Threads on an IBM SP2
(A - 1 processor, B -2p, C - 4p, D - 6p)

A

A

A

A

B

B

B

 0 1000 2000 3000 4000 5000
 0

 200

 400

 600

 800

 1000

 1200

A (red): torus, 1 PC
B (blue): torus, 3 PCs

(b) Speedup With Threads on3 PC’s & 10 Mb/s
Ethernet, (A - 1p, B - 3p)

x-axis: objects in torus = N2

y-axis: runtime in seconds

Figure 7: Speedup Using Threads

7 CONCLUSIONS

Most PDES systems support the active-server world vie
even though many models are more easily expressed w
the active-process world view.ParaSol supports the
active-process world view by implementing simulatio
processes with user level threads.ParaSol’s single
stack thread system avoids the memory fragmentati
usually present in the unused portion of a thread’s stac
ParaSol uses the copy of a thread’s state made when t
thread is removed from the shared stack as a checkpo
buffer. Finally,ParaSol hides the details of interprocesso
communication from the user through a novel threa
migration mechanism. Efficient use of threads is on

Pasquini and Rego

el
ls.

s.
ce

ul-
er

or
,

-
r

5.
on
r

ss-
p

Sol:
ed
r

ted
r

ture
ra-

r
ude

at
on

itor

ng
reason thatParaSol can speedup the simulation of parall
models that are as simple to code as sequential mode

REFERENCES

Carson, Jim. 1993. Modeling and simulation worldview
Proceedings of the 1993 Winter Simulation Conferen,
18–23.

Jefferson, D. R. 1985. Virtual Time.ACM Transactions on
Programming Languages and System, 7:3:404–425.

Fujimoto, R. 1989. Time warp on a shared memory m
tiprocessor.Transactions of the Society for Comput
Simulation, 6:3:211–239.

Martin, D. E., and T. J. McBrayer. 1997.Warped – a
parallel discrete event simulator (documentation f
version 0.8). Dept. of EECS, University of Cincinnati
OH.

Bagrodia, R. L. 1991. Iterative Design of Efficient Simu
lators Using Maisie.Proceedings of the 1991 Winte
Simulation Conference, 243–247.

Gomes, F., S. Franks, B. Unger, and Z. Xiao. 199
Simkit: a high performance logical process simulati
class library in C++.Proceedings of the 1995 Winte
Simulation Conference, 706–713.

Booth, C. J. M., and D. I. Bruce. 1997. Stack-free proce
oriented simulation,Proceedings of the 11th Worksho
on Parallel and Distributed Simulation, 182–185.

Mascarenhas, E., F. Knop, and V. Rego. 1995. Para
a multi-threaded system for parallel simulation bas
on mobile threads.Proceedings of the 1995 Winte
Simulation Conference, 690–697.

Schwetman, H. D. 1986. CSIM: a C-based process-orien
simulation language.Proceedings of the 1986 Winte
Simulation Conference, 387–396.

Kleiman, D., D. Shah, and B. Smalders. 1996.Programming
with Threads. Englewood Cliffs, NJ: Prentice-Hall.

Mascarenhas, E., and V. Rego. 1996. Ariadne: architec
of a portable threads system supporting thread mig
tion. Software - Practice and Experience, 26:3:327–
356.

AUTHOR BIOGRAPHIES

REUBEN PASQUINI is a graduate student in compute
science at Purdue University. His research interests incl
parallel and distributed simulation.

VERNON REGO is a Professor of Computer Sciences
Purdue University. He was awarded the 1992 IEEE/Gord
Bell Prize in parallel processing research, and is an Ed
of IEEE Transactions on Computers. His research interests
include parallel simulation, parallel processing, modeli
and software engineering.
458

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

