Proceedings of the 1998 Winter Simulation Conference

D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

EFFICIENT PROCESS INTERACTION WITH THREADS IN PARALLEL DISCRETE
EVENT SIMULATION

Reuben Pasquini
Vernon Rego

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907-1398, U.S.A.

ABSTRACT

simulation events which act upon simulation objects. For
example, a simulation of a grocery store check-out line

Parallel discrete event simulation (PDES) decreases a might definerequest service and completeevents which

simulation’s runtime by splitting the simulation’s work
between multiple processors.
because it is difficult to specify a large and complicated
model using existing PDES tools. In this paper we describe
how the PArRaSoL PDES system uses migrating user level

threads to support the process interaction world view. The
process interaction world view is popular in sequential
simulation languages and is a major departure form the
logical process view supported by most PDES systems.

1 INTRODUCTION

act upon acheck-out object. A requestevent signifies

Many users avoid PDES the arrival of a customer requesting service. Thguest

evente, is placed in a queue if the server is busy;
eventually generates service event when the customer
gets served. Finally, theompleteevent signifies that the
customer has been served.

The active-server world view allows the developer to
express his simulation in terms of active server entities

which exchange typed messages between each other. The

active-server world view and event-scheduling world view
are in some sense duals of each other. In the event-
scheduling world view actions are associated with events

Discrete event simulation (DES) is a technique that exploits Which manipulate data stored in servers. In the active-
a computer to model a system whose state changesServer world view actions are associated with servers
(stochastically) at discrete points in time. A simulation which manipulate local data and data carried in messages

program operates on a mode$tatevariables during each
of a sequence of time-orderezlents It is not enough
for a simulator to process events quickly; a simulation
language must also export an APl with which large models
may be simply specified and modified. Parallel discrete
event simulation (PDES) algorithms attempt to speed
up the execution of a DES by distributing simulation
workload across distinct processors. We believe that
PDES offers great promise for meeting the simulation
needs of developers of increasingly complex systems.

A simulation language presents to a developer a
world view A world view is simply the programming
interface supplied by a language with which a developer
must describe his simulation model. Three world views
which different simulation languages (both sequential and
parallel) support are thevent active server and active
processworld views (Carson 1993).

The event-scheduling world view allows a simulation
developer to describe his model in terms of a set of

451

(which can be viewed as events). For example, in the

check-out line example described above, we would write

a server procedure to describe the actions of the check-out
clerk. The clerk routine waits for the arrival of a message

(customer), then executes some service routine for the
customer message. Finally, the clerk generates a new
message to pass the customer on to another object.

The active-process world view is the most popular
programming interface for specifying many types of models.
In the active-process world view a developer describes his
model in terms of the actions of active processes on
simulation objects. For example, in the check-out line
model described above the simulation would be expressed
in terms of thecustomer'sactions upon the check-out
counter.

This paper outlines the difficulties in implementing
the active-process world view in parallel discrete event
simulation, and describes how tifaraSoL PDES system
addresses these challenges. Section 2 introduces several

Pasquini and Rego

PDES systems, and section 3 presents HwRrASOL
system. We describe how to implement an efficient user
level threads system for PDES in section 4. We go on
to outline the unique demands which PDES places on
our thread system and how we satisfy these demands in
section 5. We present the results of simple experiments
which we conducted to evaluate the performance of our
thread system design in section 6. Finally, we conclude
in section 7.

2 RELATED WORK

2.1 Parallel Simulation Concepts

PDES algorithms attempt to speedup the execution of
a DES program by distributing the simulation workload
across multiple processors. A DES executes a time-ordered
sequence of simulatioevents Each event may access one
or more simulation objects and schedule one or more future
events. The state of the simulated system is defined by the
state of all simulation objects. The order in which events
execute is determined by \drtual time which is defined

by event time—stamps. Events execute in nondecreasing
time—stamp order so thafrtual time always advances.

It is natural to think of parallelizing DES programs
by distributing all the simulation events across multiple
processors. Givem processors andn events, each
processor would ideally handle:/n events, suggesting
an ideal speedup of. Unfortunately, distributed events
typically don't access simulation objects in time—stamp
order. For example, processpi may execute an event
ey with time—stampt; = 1 after processop, executes an
evente, with time—stampts = 2. If es happens to access
a shared simulation object (i.e., an object sharedpby
andp,) beforee; is able to access the object (say, because
of processor or network delay), then the parallel execution
witnessese; and e, access the shared object in an order
that is different from the order in which these events access
the object in a sequential executiosy (followed by e5).

A PDES must employ an algorithm which ensures that
events execute in eausally consistentvay. A simulation
is causally consistent if each simulation object is accessed
by events in nondecreasing time—stamp order. The time
warp algorithm (Jefferson 1985) is an example of an
optimisticalgorithm for PDES. It is optimistic in the sense

point, and the straggler is processed in the right time—
stamp order. A successful optimistic PDES system must
minimize the runtime costs dftate-saving(for potential
rollback), rollback (to recover state)global virtual time
(gvt) computation (to determine the actual simulation time)
and interprocessor communicationin order to deliver
speedup relative to a sequential simulation.

2.2 PDES Systems

A traditional PDES system expresses a model in terms of
communicating logical processes. The PDES system maps
each logical process (LP) to a node of a multiprocessor,
and uses interprocessor communication to allow LP’s on
different processors to communicate with each other.

Several LP based PDES systems have been imple-
mented. TheGeorgia Tech Time WargGTW) PDES Ii-
brary simulates models described with the event-scheduling
world view on shared memory parallel computers (Fuji-
moto 1989). TheWARPED(Martin and McBrayer 1997)
PDES system also uses the event-scheduling world view.
Maisie is a parallel simulation language that supports the
active-server world viewMaisie improves uponGTW by
making constructs for parallel execution more transparent
to the user (Bagrodia 1991). TheIMKIT language is
another system that supports an active-server world view
(Gomes et al. 1995).

To the best of our knowledgd?ArASoL and APOS-
TLE are the only two PDES systems which support the
active-process world view. Th®POSTLEsystem manages
simulation process state as continuations constructed with
compile time transformation of simulation cod&POS-
TLE employs the semi-conservative breathing time-buckets
algorithm to enforce the causality constraint on shared
memory architectures (Booth and Bruce 199PhrRASOL
implements simulation processes as user level threads.
ParaSoL uses the optimistic time warp synchronization
algorithm on distributed memory architectures.

3 PARASOL BACKGROUND

PARASOL is a process- and object-oriented parallel simula-
tion language developed for distributed-memory multipro-
cessors and workstation clusters (Mascarenhas, Knop, and

that each processor executes every event it knows aboutRego 1995).PARASOL’S user interface is an object-oriented

in time—stamp order under the optimistic assumption that
causality is not being violated. At any point, however, a
processor may receive an event (from another processor)
whose time—stamp indicates that it should already have
been processed; such an event is callesfraggler After
detecting a straggler, a processotls back to a system
state that corresponds to a time—stamp which is less than
the straggler’s time—stamp. Execution continues from this

452

derivative of the user interface for the popular sequential
simulation languag€SIM (Schwetman 1986)PARASOL'S
sequential runtime performance is competitive Vilt8IM’s
performance on equivalent models; this makes it easy to
relate PARASOL's performance with the performance of
commercial sequential simulators.

PArASoL has a simple layered design (see figure 1).
The bottomsystemlayer of the PARASOL architecture is

Efficient Process Interaction with Threads in Parallel Discrete Event Simulation

shared by a threads system and a message passing systeme void th _create(void (*f)()) — create a new
ParASoL’s kernellayer manages the time warp mechanism thread context
and exports basic simulation primitives to tlmain
and application layers. Thedomain layer implements
domain specific simulation objects whose state can be When a running thread:, calls th _create() , the
transparently saved and restored by the simulation kernel. scheduler creates a thread context object for a new thread
Finally, the user application defines thgplication layer. hy and placesh,’s context onto a scheduling queue. In a
Application code should not have to take into account simulation system, the simulation calendar is responsible
special mechanisms needed for parallel simulation. for scheduling simulation processes in time-stamp order.
Therefore, the thread scheduling queue is actually the
simulation calendar in a thread based simulation system.
When threadh, yields control of the processor (by
calling th _yield()), the scheduler placek,’s context
onto the the scheduling queue, removgsfrom the front

void th _yield() = — yield control to the scheduler

Application Layer

Domain 1| Domain 2

Kernel Layer of the queue, and transfers control of the processor to
hy. In a simulation system, a thread (simulation process)
grst":'f Cons"{/nslt«'griﬁaﬂ on yields whenever the thread executebald operation or
suspends itself (to be placed on a server’s wait queue for
example).

Figure 1: PARASOL's Software Architecture SAM uses the C-languagsetjmp and longjmp

functions to context switch between user level threads. The

setjimp function saves the transient executing environment
4 THREADS AS SIMULATION PROCESSES of the currently executing thread intoj@amp bufferj. The

. _ _ scheduler can later resunig’s execution by calling the

PArASoL implements each simulation process as a thread. |ongjmp function to restore the environment saved;jin
Since a simulation may involve thousands of concurrently |n order to force the processor to execute a new thiead
executing threadsParaSoL requires a fast and efficient on a new stack, the scheduler constructs an “artificial” jump
thread system to achieve good runtime performance. Al- puffer j. The scheduler sets the jump buffer's environment
though user level threads take less time to create and con-variables so that when it callsngjmp on j, the processor
text switch than operating system kernel threads (Kleiman, js tricked into starting:.’s execution on a new stack. This
Shah, and Smalders 1996), user thread manipulation is still simple setjmp andlongjmp context switching scheme
expensive when compared to event handling in simula- works well on some architectures (including the PC), but

tion systems supporting the event-scheduling world view. others (like the SPARC) require an assembly code context
We have developed a high performance user level thread switch routine.

system for managing simulation process state in parallel

and sequential_ discre'_[e event_ simulation systems. '_I'his 4.2 Threaded Applications

thread system is specially designed to support the unique

demands (checkpointing, rollback, thread migration) of The two most important overheads in SAM are context

parallel simulation systems in a way that significantly Sswitching and stack management. The best method for

reduces the cost of using threads to implement simulation minimizing these overheads depends upon the the nature

processes. of the application. We consider two types of threaded

applications — applications employing few (less than 100)

threads and applications employing many (100 or more)

threads.

Let's consider the implementation of a user level thread A simple application which uses few threads is the

library for the C programming language. In this system, network talk application. This is a simple tool which

when a thread,, yields control of the processor, a thread allows two persons to communicate in (near) real time

scheduler routine selects the next thrégdo run. Thread over the Internet through a keyboard—screen interface. We

hy keeps control of the processor uniil, either yields can imagine a simple two threaalk implementation. One

control back to the scheduler @, completes execution. thread monitors the network, and prints received messages

We call this threads system tH&AM system. Although to the screen. The other thread monitors the keyboard,

SAM is very simple, it's a good starting point for designing and sends typed keys over the network.

more complicated systems. Since thistalk application has only two threads, SAM
SAM has a simple two routine API. can optimize context switching time by allocating a large

4.1 Thread Library Implementation

453

Pasquini and Rego

(100 kilobyte to 1 megabyte) stack for each thread. During
a context switch from threadl, to threadh;, the scheduler
simply flushes the processor’s register state onto thread
hy's stack (withsetimp), and moves the stack pointer
to threadhy’s stack (withlongjmp).

An important overhead of allocating a personal stack

the stack on average. If this thread has its own stack,
then SAM must allocate (at leasi)0 KB of memory for

the thread’s stack. Suppose a simulation requires4

of these threads to exist in the system, then SAM must
dedicate (approximately500 MB of memory to thread
stacks alone. However, if thE)24 threads share a single

to each thread is the large amount of memory each thread’s stack, then SAM only allocateS00 KB of memory for

stack requires. A large stack allows a thread to allocate
objects on its stack, and have a deep function call path.
Unfortunately, if a thread has a small execution footprint,
then most of the stack is wasted.

4.3 Supporting Applications with Many Threads

Discrete event simulations are applications which can
require thousands of threads. For example, a parallel
discrete event simulation of a large ATM network may
allocate a thread to route each simulated packet. This
simulation involves several thousand concurrently executing
threads. SAM can not afford to allocate a large stack to
each thread in such an application.

SAM can support thousands of threads if it conserves
memory by allowing multiple threads to share a single
stack. Many threads can share a single stack if SAM's
context switch routine copies thread state on and off of the
shared stack at context switch time. For example, when
a threadh, yields control of the processor to threag,
SAM copiesh,’s state off of the shared stack to a buffer
for safe keeping. Next, SAM copiek,’s state onto the
shared stack, and resumksgs execution (see figure 2).

Execution Stack (grows down)

Copy Onto

Stack C

Start User Thread

Current
Next Thread's
Thread's Running
Saved

State
State

Copy Off
Stack

Figure 2: Common Stack Memory Layout

User Thread Yield

Sharing a single stack between multiple threads saves
memory by eliminating the memory wasted in the portion
of a stack allocated to a thread but not used by the thread.
For example, during a thread’s lifetime its state may grow
to a maximum size o500 KB for brief periods of time
when making calls to specific procedures. However, at
context switch time (when the thread yields control of
the processor), the thread may only be usitigKB of

454

the single stack plug024 « 10 KB = 10 MB of memory
for buffers.

We can see that the stack sharing scheme is especially
useful in applications with threads which periodically grow
to a large size, but usually remain small. With the shared
stack scheme SAM can allocate a buffer at context switch
time just large enough to save the running thread’s state.
This eliminates the memory fragmentation present in the
large portion of the stack not used by the thread.

5 THREADS AND DISTRIBUTED SIMULATION

ParaSoL places two unique demands upon its thread
system to implement an optimistic simulation algorithm.
First, SAM must be able to checkpoint and rollback a
thread’s state. Second, SAM must have the ability to
migrate a thread from one processor to another processor.

5.1 Checkpointing Thread State

ParaSor implements an optimistic PDES algorithm which
requires each processor participating in a parallel simulation
to periodically checkpoint its local state. A processor
checkpoints its local state by copying the read-write state
of simulation objects and the stack of simulation threads
to backup buffers.

In section 4.3 we describe how sharing a common stack
between multiple threads reduces memory requirements in
applications using many threads. When a running thread
h, yields processor control to another thread, SAM copies
h,'s state off of the shared stack to a temporary buffer
b,. To checkpoint thread,’s state, SAM copied, to a
checkpoint buffetc,. Before the next timé:, runs, SAM
copiesh,’'s state fromb, onto the shared stack and frees
b, back to the memory pool.

The thread checkpointing algorithm described above
is very inefficient. SAM can avoid copying, to ¢, at
checkpoint time by simply incrementing a reference count
to b, and usingb, as a checkpoint. This simple trick
virtually eliminates the cost of checkpointing threads in
ParaSoL. Figure 3 compares the runtime ofEaRASOL
simulation whose threads share a single stack with the
runtime of a simulation whose threads each have a separate
stack.

Efficient Process Interaction with Threads in Parallel Discrete Event Simulation

11/03/1997 - ParaSol torus model with and without common stack threds

6000 "afia i Ldata" = B f’rOXy Migraﬂon% ObJeCt

“common_ mpil. data" -
f
| I

5000 N

4000

5 Thread
% 3000

2000

runtim

Processor 1 Processor 2

1000

el Figure 4: Thread Migration ifPARASOL

0 200 1000 1200

number of facilities = 2*number of threads
x-axis: objects in torus = N2
y-axis: runtime in seconds use pointers which refer to objects on its stack since SAM
can not update these pointers after migration without user
intervention.

SAM can avoid the problems with stack address
alignment by forcing each processor to allocate its thread
stack at the same memory address. Therefore, threads
execute on a stack located at the same address on every
processor (see section 4). Migration safeness is one more

benefit of using a shared stack in parallel simulation.
ParASoL uses the SPMD (single program, multiple data)

model to run parallel simulations over distributed memory
multiprocessors. Each processor executes the same progranb.3 Accessing Objects After Migration
code (executable), but each processor follows a different
path of execution through that code as the simulation
progresses. ParaSoL implements a simple distributed
shared memory system based on thread migration to
manage interprocessor communication in a way that is
hidden from the simulation user.

We must understand the structure of RaraSoL
simulation before we can understand h&®arASOL uses
thread migration. APARASoOL simulation consists of
simulation processes (threads) which access simulation ,
objects. ParaSor. statically assigns each simulation object constructor. When processpy executes this command,
2 1o a processor at the beginning of a simulation. Each Pt allocates an object of typBtorage at the next address
processor which does not host an objeatlocates a proxy ay _avallable onS. Every o'Fher processor allocates a proxy
object forz. When a simulation thread, executing on OPiect at address, (see figure 5).
processorp; attempts to access an objectlocated on

Figure 3: PArRASOL's Runtimes for the Torus on a Sparc
20 with State Saving Using a Shared Stack (dashed line)
and Individual Stacks (solid line)

5.2 Thread Migration

ParASoL implements a restricted distributed shared mem-
ory to allow simulation threads to access simulation objects
which are distributed between processors. Each processor
maintains a global block of memong at an address
reserved for simulation objects. At the beginning of a
simulation every processor executes a user-written routine
which maps each simulation objects to a particular pro-
cessor. Suppose that a simulation mapStaerage type
object to processop; by passingp;’s pid to the object’s

another processops, h, accessesr’s local proxy on
processorp;. The proxy object executes code which
forcesh, to migrate to processqr, whereh, can access
x directly (see figure 4).

SAM migrates a threadh, from processorp; to
processompsy by passingh,’s stack as a network message
between the two processors. At the destination processor

e addr

p2, SAM must placé:,,’s stack at the same memory address L oyd | | e

that the stack resided at gn. If SAM does not place | lloooooo ol e— ‘
the stack at the same address, then SAM must adjust the

thread’s recorded stack pointer by an offset corresponding Processor 1 Processor 2

to the difference between the stack’s address at the source
processor and the address at the destination processor
(Mascarenhas and Rego 1996). Furtherméremay not

455

Figure 5: Distributed Shared Memory IRARASOL

Pasquini and Rego

A simulation object and its proxy are both instantiations plement simulation processes with either threads or lighter
of the same class. A proxy object discovers it's a proxy “agents”.
by comparing the id of its host processor with the id of the An agent is a C++ object which exports@n method
processor to which the object has been mapped. The id of (like a thread). The simulation kernel invokes the agent's
an object’s processor is passed to the object’'s constructor. run method each time the agent executes. When the agent

This simple distributed shared memory mechanism suspends its execution (to hold on a server for example),
places several restrictions on the way a model may use the then the agent'sun methodreturns (the agent’s stack is
system’s memory resources. First, a model must allocate not saved as a thread’s would be). The main difference
every simulation object at the beginning of its simulation. between an agent and a thread is that an agent can not
Each simulation object (or its proxy) is visible to every automatically save its execution state after suspending.
simulation thread on every processor. Dynamic creation of This makes the code for a model written with agents more
simulation objects would require synchronization between complicated than code written with threads.
every processor participating in the simulation. We chose The graph in figure 6 shows simulation run times
not to support this expensive operation FARASOL. for PArASOL's execution of a torus model using either

The second restriction on memory use is that every agents or threads as simulation processes. This model is
object (not a simulation object) dynamically allocated by simply a two dimensional torus oN x N servers over
a thread must be allocated on the thread's stack. This which N x N/2 simulation processes randomly migrate.
restriction is necessary becal3&rASoOL’s thread migration We can see that a simulation which implements simulation
mechanism can not transparently migrate objects not located processes with agents runs faster than a simulation of the
on the thread’s stack. For example, suppose that a threadsame size model which implements simulation processes
h. executing on processgs allocates a string on the heap with threads. We expected this result since an agent does

of processom,. When h, later migrates to processgs not collect an expensive checkpoint of its stack state after
the heap allocated string is left behind on procegsor each execution. A thread must checkpoint its stack state

Thread objects are the one exception to the rule that after each execution to allow another thread to run on the
a model can not allocate objects on the heBprASOL'S shared stack.

object oriented thread interface is similar to the thread
interface supported by th#avaprogramming language. A
model creates and destroys threads (simulation processes)
throughout the life of a simulation. A model creates a
new threadh, by allocating an object from a class which
is a subtype ofPArRaSoL’s Thread class. The first time ac0o
h, executes, the simulation kernel calls then method 2000
of the object associated with,. During h,'s execution, i
h, may safely access data stored in its thread object. 2000
Other threads may not accefsg's thread object since 1000 o

the object’s memory address changes okgs lifetime. o

o A

5000 111

When h, executes,PArRASOL's kernel mapsh,’s object o ' 's00' 1000 1500 ' 2000 2500 3000

state to a reserved memory area located at the sames 1 eg i3 stner gearg

address on every processor. This is the same trick we x-axis: objects in torus = N?

use to execute migrating threads on different processors y-axis: runtime in seconds

by mapping the thread’s stack to a well known memory

adgress. Another resjcrictio_n on a thread object is thafc the Figure 6: Runtimes Using Threads (lin@) and Agents
object may not contain pointers to heap allocated objects (line A) on 4 Sun Sparc5 Workstations with0 Mb/s
(other than simulation objects). Such pointers would be Ethernet

left dangling after the thread migrates.

Considering our thread system’s stack copying over-
6 THREADS AND SIMULATION PERFORMANCE head, it is surprising that the thread based system performs
so well compared to the agent based system. In fact,

Before accepting threads as a basis for simulation pro- we can see that for the longest running simulation we
cesses we should compare thread runtime performancesampled in figure 6, the thread based system had a runtime
with the performance of lighter (but less user-friendly) only 1.20 times the runtime of the agent based system.
implementation of simulation processes. We can carry out Is this a reasonable result? We can answer this question
this kind of a comparison by allowind®?ARASOL to im- by measuring the context switch cost of our agent and

456

Efficient Process Interaction with Threads in Parallel Discrete Event Simulation

thread based systems in isolation. We can measure thethe torus benchmark decreases as the number of processors
context switch overhead with the following simple test. employed in the simulation increases.

We simulate a model which involves only two simula-
tion processes. When each simulation process executes,
it simply suspends itself and yields to the other simula-
tion process (forcing a context switch). The simulation
continues until100000 context switches complete, then
the simulation exits. We compare the run times of the 2000
thread and agent based systems on ghigchingmodel to
determine the relative cost of context switching between

2500

1500

-
agents compared to switching between threads. oo oz
The results of our test are shown in table 1. These 500 o
measurements tell us that a thread context switch takes e
1.67 times the time of an agent context switch. The larger b"" "adoo” "2doo” " sdoo’ " adoo ' mdoo.

1.67 ratio (R1) between thread and agent context switch
times seems more reasonable than th2) ratio (R2)
between thread and agent simulation times (see figure 6)
in light of the stack copying overhead associated with our
thread system. Ratio®1 and R2 are different because
they compare measurements of different quantities. Ratio
R1 compares the context switch run times of thread and Lot
agent systems. Ratid?2 compares the run times of o

ellow: torus, sp2_1p
een): torus, sp2 2p
ed): torus, Sp2_ap
Tue): torus, sp2 6p

(a) Scalable Speedup with Threads on an IBM SP2
(A - 1 processor, B 2p, C -4p, D - 6p)

actual simulations which perform many operations (such 000 P
as calendar management and event execution) in addition 300 -
to the context switching. 00— L

In other words, although threads may context switch 400
in 1.67 times the time that agents switch in, a thread 200~ e

based simulation may finish ih.20 times the time of an

agent based simulation. This is possible since a simulation

involves other overheads in addition to context switching & (57 ' ?orie. "™

between simulation processes. Unfortunately it is difficult (b) Speedup With Threads dhPC’s & 10 Mb/s

to predict the runtime costs of using threads in any particular Ethernet, (A - 1pB - 3p)

simulation since thread switching overheads are application x-axis: objects in torus = N?

dependent. For example, it is more expensive to context y-axis: runtime in seconds

switch between threads with large runtime stacks than

between more lightweight threads. On the other hand, Figure 7: Speedup Using Threads

if each thread completes a lot of computational work

before suspending (high granularity), then the importance

of context switching overhead to the overall runtime of a

simulation decreases. Our experiments involve threads with

shallow runtime stacks and low computation granularity.
The final measure of a PDES system’s performance

is the amount of speedup the system yields on common

benchmarks. Figure 7 shows thBARASOL’S runtime on

L I e e s R e e e e T s
o 1000 2000 3000 4000 5000

7 CONCLUSIONS

Most PDES systems support the active-server world view
even though many models are more easily expressed with
the active-process world view.PARASOL supports the
active-process world view by implementing simulation
processes with user level threadsPArRASOL’S single
stack thread system avoids the memory fragmentation
usually present in the unused portion of a thread’s stack.
PArASoL uses the copy of a thread’s state made when the

Table 1: Time for100000 Context Switches with Agents
and Threads

mean | variance| samples thread is removed from the shared stack as a checkpoint
threads| 29.35| 12.82 100 buffer. Finally, PARASOL hides the details of interprocessor
agents| 17.58| 1.14 100 communication from the user through a novel thread

migration mechanism. Efficient use of threads is one

457

Pasquini and Rego

reason thaPARASOL can speedup the simulation of parallel
models that are as simple to code as sequential models.

REFERENCES

Carson, Jim. 1993. Modeling and simulation worldviews.
Proceedings of the 1993 Winter Simulation Conference
18-23.

Jefferson, D. R. 1985. Virtual TiIm&CM Transactions on
Programming Languages and Systeni3:404—-425.
Fujimoto, R. 1989. Time warp on a shared memory mul-
tiprocessor.Transactions of the Society for Computer

Simulation 6:3:211-239.

Martin, D. E., and T. J. McBrayer. 199&Varped — a
parallel discrete event simulator (documentation for
version 0.8) Dept. of EECS, University of Cincinnati,
OH.

Bagrodia, R. L. 1991. Iterative Design of Efficient Simu-
lators Using Maisie Proceedings of the 1991 Winter
Simulation Conferen¢e243-247.

Gomes, F., S. Franks, B. Unger, and Z. Xiao. 1995.
Simkit: a high performance logical process simulation
class library in C++Proceedings of the 1995 Winter
Simulation Conferencer06—713.

Booth, C. J. M., and D. I. Bruce. 1997. Stack-free process-
oriented simulationProceedings of the 11th Workshop
on Parallel and Distributed Simulatior182—-185.

Mascarenhas, E., F. Knop, and V. Rego. 1995. ParaSol:
a multi-threaded system for parallel simulation based
on mobile threadsProceedings of the 1995 Winter
Simulation Conferen¢ge590-697.

Schwetman, H. D. 1986. CSIM: a C-based process-oriented
simulation languageProceedings of the 1986 Winter
Simulation Conference387-396.

Kleiman, D., D. Shah, and B. Smalders. 19Bgramming
with Threads Englewood Cliffs, NJ: Prentice-Hall.

Mascarenhas, E., and V. Rego. 1996. Ariadne: architecture
of a portable threads system supporting thread migra-
tion. Software - Practice and Experienc6:3:327—
356.

AUTHOR BIOGRAPHIES

REUBEN PASQUINI is a graduate student in computer
science at Purdue University. His research interests include
parallel and distributed simulation.

VERNON REGO is a Professor of Computer Sciences at
Purdue University. He was awarded the 1992 IEEE/Gordon
Bell Prize in parallel processing research, and is an Editor
of IEEE Transactions on Computerslis research interests
include parallel simulation, parallel processing, modeling
and software engineering.

458

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

