
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

ABSTRACT SIMULATORS FOR THE DSDE FORMALISM

Fernando J. Barros

Departamento de Engenharia Informática
Universidade de Coimbra, Pólo II
P-3030 Coimbra, PORTUGAL

for
ctu
ed
ruc
tor
als
els
thu

hei
ing
ms

nts
rro

de
7c
ork
ng
nd

red
sa
om
 a

ual

be
si

 
te

te

ler

ol
or
ere
s to
is
ABSTRACT

We present the DSDE formalism, a methodology 
representing discrete event systems that change stru
dynamically. We prove that the DSDE formalism is clos
under coupling and that it can be used to const
hierarchical and modular models. The abstract simula
necessary to execute dynamic structure models are 
presented. Simulators allow a description of mod
independently of the actual simulation procedure, and 
encourages model reuse.

1 INTRODUCTION

Many real systems have the capability to change t
structure. A growing field of research has been develop
the foundations of a modeling theory of adaptable syste
A comparison of formalisms and simulation environme
that support dynamic structures can be found in Ba
(1997a).

An extension of General Systems Theory to inclu
dynamic structure systems is described by Barros (199
where the concept of Dynamic Structure System Netw
is applied to a variety of systems families, includi
differential equations (DSDQ), discrete time (DSDT), a
discrete event systems (DSDE).

We describe the DSDE formalism, and its structu
version. We present also the abstract simulators neces
to simulate DSDE models. The separation of models fr
simulators were introduced by Zeigler(1984), and allow
description of models independently of the act
simulation procedure, improving model reuse.

2 DISCRETE EVENT SYSTEM SPECIFICATION

The Discrete Event System Specification (DEVS) is a
formalism introduced by Zeigler (1976) to descri
discrete event systems. In the DEVS formalism a ba
model is described by

M = (X,s0,S,Y,δ,λ,τ)
407
re

t
s
o

s

r

.

s

),

ry

c

where
X is the set of input values
S is the set of partial states
s0 is the initial partial state
Y is the set of output values
δ : Q × Xφ → S is the transition function, where

Xφ = X ∪ {φ}
Q = {(s,e)| s ∈ S, 0 ≤ e ≤ τ(s)} is the state set
e is the time elapsed since last transition
q0 = (s0,0) is the initial state
φ is the absence of value
λ: S → Y is the partial output function
τ : S → R+

0 is the time advance function

The output function, Λ: Q → Yφ, is defined by

λ(s) if e = τ(s)
Λ(s,e) =
φ if e < τ(s)

If no event arrives to the system it will stay in partial states
for time τ(s). When e = τ(s) the system changes to the sta
(δ(s,τ(s),φ),0). If an external event, x ∈ X, arrives when the
system is in the state (s,e) the system changes to the sta
(δ(s,e,x),0). If an external event, x ∈ X, arrives when e =
τ(s), the system changes to the state (δ(s,τ(s),x),0). A more
detailed description can be found in Zeigler (1976), Zeig
(1984), Zeigler (1990), Chow (1994) and Barros (1998).

3 STRUCTURED DISCRETE EVENT SYSTEM
SPECIFICATION (SDE)

The Structured Discrete Event System Specification (SDE)
provides a formalism for obtaining a fine-grained contr
over model components. The transition function, f
example, is decomposed into a set of transitions, wh
each one is used in certain conditions. The same applie
the other functions. In the SDE formalism a model 
described by

C = (X,s0,S,Y,κ,I,{δ i | i ∈ I},{ λi | i ∈ I},{ τi | i ∈ I})
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where
κ: S → I, is the index function

EQUIVALENCE 1. A SDE model C = (X,s0,S,Y,κ,I,{δ i},
{ λi},{ τi}), is equivalent to the DEVS model M = (X,s0,S,
Y,δ,λ,τ), where δ(s) = δκ(s)(s), λ(s) = λκ(s)(s), and τ(s) =
τκ(s)(s), for all s ∈ S.

A structured model can be used in some situations wh
dynamic structures used to be helpful. Replace models
change model functions can, in many situations, 
achieved by structured models.

4 PARALLEL DYNAMIC STRUCTURE
DISCRETE EVENT SYSTEM SPECIFICATION

The problem of representing discrete event systems 
undergo structural changes has been subject of research (Z
and Praehofer 1989), (Barros (1997a). Some application
dynamic structure models can be found in (Zeigler 199
(Barros 1996; Barros 1997b). A rigorous approach w
accomplished by the DSDEVS formalism (Barros 1995; Bar
1996a). This formalism was implemented in the DELTA

simulation environment (Barros 1997).
The Parallel Dynamic Structure Discrete Even

System Specification (DSDE) is a generalization of the
DSDEVS formalism, and allows the specification of bas
or dynamic structure networks of discrete event systems
Parallel Dynamic Structure Discrete Event Syste
Network is a 4-tuple

DSDENN = (XN,YN,χ,Mχ)
where

N is the network name

XN is the network input values set

YN is the network output values set
χ is the name of the dynamic network executive

Mχ is the model of the executive χ

The model of the executive, is a modified basic model a
is defined by the 9-tuple

Mχ = (Xχ,s0,χ,Sχ,Yχ,γ,Σ*,δχ,λχ,τχ)

where
γ : Sχ → Σ∗ is the structure function

Σ* is the set of network structures
A structure Σα ∈ Σ* associated with the executive partia
state sα,χ ∈ Sχ, is given by

Σα = γ(sα,χ) = (Dα,{Mi,α},{ Ii,α},{ Zi,α})

where
Dα is the set of component names associated with 

executive partial state sα,χ

for all i ∈ Dα

Mi,α is the model of component i
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for all i ∈ Dα ∪ {χ,N}
Ii,α is set of components influencers of i

for all i ∈ Dα ∪ {χ}
Zi,α is the input function of component i

ZN,α is the network output function

These variables are subject to the following constraints: fo
every sα,χ ∈ Sχ:

χ ∉ Dα

N ∉ IN,α
for all i ∈ Dα

Mi,α = (Xi,α,s0,i,Si,Yi,α,δi,α,τi,λi,α)
is a basic model, with δi,α: Qi × Xφ

i,α → Si

for all i ∈ Dα ∪ {χ,N}

Zi,α: 
j
×
∈Ii ,α

 Vj,α → Xi,α

where

Yj,α if j ≠ N

Vj,α =
XN if j = N

Zi,α(
|
×
Ii ,α|

 φ) = φ, for all i ∈ Dα ∪ {χ,Ν}

For construct models in a hierarchical and modular form
we need to prove the DSDE formalism is closed unde
coupling, that is a DSDE network model is equivalent to a
basic model.

EQUIVALENCE 2. The DSDE network DSDENN =
(XN,YN,χ,Mχ) is equivalent to the structured model C =
(X,s0,S,Y,κ,I,{δ i},{ λi},{ τi}). The equivalence between the
structured model C and the basic model M =
(X,s0,S,Y,δ ,λ,τ) is guaranteed by Equivalence 1.

We show how to construct a structured model from the
network DSDENN = (XN,YN,χ,Mχ). The input set is given by

X = XN

We define Cα, the set of all the components, including the
executive, associated with a state sα,χ ∈ Sχ, by

Cα = Dα ∪ {χ}
The initial partial state s0 is given by

s0 = 
i
×
∈C0

q0,i

The partial state S is given by

S = 
s
∪
α∈Sχ

 (
i
×
∈Cα

 Qi)

Let the state of the executive be given by Sχ = {s0,χ, s1,χ,
s2,χ, …, sj,χ,…}, then the set of indexes I is given by

I = {0,1,2,…, j,…}
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The index function, κ : S → I, is defined by

κ(s) = κ((sα,χ,eχ), …) = α
The output set is given by

Y = YN

We define ri the time component i must still remain in the
current partial state, by

ri = τi(si) − ei

The time advance function at every index α is given by

τα: S → R+
0

and is defined by

τα(s) = min{ri | i ∈ Cα}

The partial output function at index α is defined by

λα(s) = ZN,α(
i∈
×
IN,α

 Λi,α(si,ei + τα(s)))

The output function at index α is defined by

Λα(s,e) = ZN,α(
i∈
×
IN,α

Λi,α(si,ei + e))

The set of states Q is given by

Q = {(s,e) | s ∈ S, 0 ≤ e ≤ τ(s)}

The transition function at index α, δα: Q × Xφ → S, is given
by

δα(
i
×
∈Cα

qi,e,x) = 
j
×
∈Cβ

 qj

To define the transition δα we will now show how to obtain
the new partial executive state sβ,χ from the previous state
sα,χ. The next executive state qβ,χ is given by

(sα,χ,eχ + e) if xχ = φ  ∧ rχ > e (1)
qβ,χ  =

(δχ(sα,χ,eχ + e,xχ),0) if xχ ≠ φ ∨ rχ = e (2)

where

xχ = Zα,χ(
i∈
×
Iχ,α

vi)

with
Λχ(si,ei + e) if i ≠ N
vi =
x if i = N

The new structure associated with the partial state sβ,χ is
given by

Σβ = γ(sβ,χ) = (Dβ,{Mi,β},{ Ii,β},{ Zi,β})

To finish the definition of the transition function we nee
to show how the remaining components are changed. T
set of new components is given by A = Cβ − Cα, and the set
409
e

of kept components is given by K = Cα ∩ Cβ. The state qi

∈ Qi of each component i ∈ Cβ is given by

(si,ei + e) if i ∈ K ∧ (xi = φ  ∧ ri > e) (1)

qi = (δi,α(si,ei + e,xi),0) if i ∈ K ∧ (xi ≠ φ ∨ ri = e) (2)

q0,i if i ∈ A (3)

where

xi = Zi,α(
i
×
∈Ii,α

vi)

with
Λi,α(si,ei + e) if i ≠ N
vi =
x if i = N

Line 1 of the definition computes the next state of th
unchanged components. These models only update th
elapsed time. Line 2 computes the next state of the mod
that either receive an external input or are scheduled
change.

All the outputs are taken simultaneously and th
current network structure  (Dα,{Mi,α},{ Ii,α},{ Zi,α}), is used
with these values. The new structure (Dβ,{Mi,β},
{ Ii,β},{ Zi,β}), will only be used at the next transition (Barro
1998). Line 3 of the definition defines the state of th
added components.

EXAMPLE. Consider the network of Figure 1. This mode
represents a buffered server, in its initial structure, when
composed of the buffer Q and the single server A. When
the number of clients in the queue is very high th
executive receives an order to hire a new server. T
server can be fired when clients decrease below a cer
limit. The buffered server 6 is defined by

6 = (X
C
,Y

C
,χ,Mχ)

where
Y
C
 = J*

J = {c0,c1,…,cj,…} is a set of clients
J* is a sequence of jobs

X
C
 = J* × {change,null} − {(< >,null)}

Mχ = (Xχ,s0,χ,Sχ,δχ,τχ)
with

Xχ = {change}

Sχ = {s0,χ,s1,χ}

τχ(s0,χ) = τχ(s1,χ) = ∞
δχ(s0,χ,e,change) = s1,χ

δχ(s1,χ,e,change) = s0,χ

γ(s0,χ) = (D0,{Mi,0},{ Ii,0},{ Zi,0})

γ(s1,χ) = (D1,{Mi,1},{ Ii,1},{ Zi,1})
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where
D0 = {Q,A}
D1 = {Q,A,B}
MQ,0 = MQ,1 = (XQ,s0,Q,SQ,YQ,δQ,λQ,τQ)
MA,0 = MA,1 = (XA,s0,A,SA,YA,δA,λA,τA)
MB,1 = (XB,s0,B,SB,YB,δB,λB,τB)
IA,0 = IA,1 = IA = {Q}
Iχ,0 = Iχ,1 = Iχ = {6}
IQ,0 = {6,A},  I

C,0 = {A}

ZQ,0: XC
 × XA → XQ

ZA,0 = ZA,1 = ZA, and ZA: XQ → XA

Zχ,0 = Zχ,1 = Zχ, and Zχ: XC
 → Xχ

Z
C,0: YA → Y

C

IB,1 = {Q}, I
C,1 = {A,B},

IQ,1 = {6,A,B}

ZQ,1: XC
 × XA × XB → XQ

ZB: XQ → XB

Z
C,1: YA  × YB → Y

C

The network initial structure is associated with partial 
s0,χ, and is represented in Figure 1.

ZQ,0 Q ZA

χ

S

Zχ

A ZS,0

Figure 1: One Server Network

When the executive receives an order to hire a new 
it changes to state s1,χ, where the associated structur
represented in Figure 2. The network can return 
initial structure after firing server B.

ZQ,1 Q

ZA

χ

S

Zχ

A

ZS,1

ZB B

Figure 2: Two Server Network
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5 THE ABSTRACT SIMULATORS

In this section, we describe the abstract simulators
necessary to perform the operations implicit in the DSDE
models. These simulators allow a description of models
independently of the actual simulation procedure, and thus
encourages model reuse. The Simulator is able to perform
simulations using the implicit behavior contained in basic
models, and the NetworkSimulator can simulate dynamic
structure network models. The Synchronizer manages the
simulation time. Separation between models and the
simulation procedure was introduced by Zeigler (1984).

5.1 The Synchronizer

The Synchronizer coordinates the overall simulation.
Its child is the topmost NetworkSimulator (or a Simulator
if there is only an atomic model). The simulation starts
when the Synchronizer receives the (START,t) message
represented in Figure 3, and stops when its child is passive
(tN,child = ∞).

When receive (START,t)
send (START,0) to child
while (tN,child ≠ ∞) do

"Computes the output of all the models"
send (OUTPUT,tN,child) to child
"Makes the transition"
send (TRANSITION,tN,child,φ) to child

endWhile
end

Figure 3: Synchronizer Start Message

The message (OUTPUT,tN,child) ensures that every model
keeps a copy of its output just before it changes state. Thus
transitions can be executed in any order. The message
(TRANSITION,tN,child,φ) is sent to the child and changes its
state.

5.2 The NetworkSimulator

NetworkSimulators are attached to network models. The
start message, described in Figure 4, is sent to every child,
tN (time of next event) is set to the minimum of tN,I of
children, and tL (time of last event) is set to the current time
t. This message is sent just before the simulation begins
and sets the component in its initial state.
0
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When receive (START,t)
send (START,t) to {I | I ∈ C}
tL ← t
tN ← min{tN,I | I ∈ C}

end

Figure 4: Network Simulator Start Message

We define vI as the value received from component i. This
value can be the component output, if the component is
the network N, or is the network input otherwise.

YI if I ≠ N
vI =

x if I = N

The simulator transition is handled by th
(TRANSITION,t,x) method shown in Figure 5, where D
represents the current set of network components anC
represents the set D plus the executive. If this message 
sent to the executive, the structure of the network 
change. To guarantee a correct initialization of the ad
components, the (START,t) message is sent to the ne
components after the executive transition.

When receive (TRANSITION,t,x)
1: if t ∉ [tL,tN] then ERROR endIf
2: if t < tN and x = φ then RETURN endIf
3: D' ← D
4: send (TRANSITION,t,ZI(×

j∈ΙI
 vj)) to {I | I ∈ D}

5: send (TRANSITION,t,Zχ(×
j∈Ιχ

vj)) to χ

6: send (START,t) to {I | I ∈ D − D'}
7: tL ← t
8: tN ← min{tN,I | I ∈ C}
end

Figure 5: Network Simulator Transition

Line 1 checks for state validity. In the definition of th
total state set Q, the elapsed time e is constrained to 0 ≤ e ≤
τ(s). Applying the equality e = t − tL, this constraint can be
written as tL ≤ t ≤ tN, that is used to identify errors. Line 
ignores the transition message if the input is null a
component is not schedule to change. Line 3 stores
current set of components on variable D'. Line 4 computes
the transition in all the components excluding t
executive. Thus changes in structure will only affect 
next transition as required by the formalism. Line 
computes the executive transition and the new netw
structure. Line 6 sends  the START message to the 
components. Lines 7 and 8 set the time of the last e
and the time of the next event.

The network output function is defined in Figure 
This function is called before each transition for corr
41
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formalism interpretation, ensuring that the output of a
component does not depend on the transition order.

When receive (OUTPUT,t)
if  t = tN then
send (OUTPUT,t) to {I | I ∈ C}
y ← ZN(×

I∈ΙN
 yI)

else
y ← φ

endIf
end

Figure 6: NetworkSimulator Output Function

The output of a component I can be accessed by variable yi.

5.3 The Simulator

The Simulator is attached to basic models. The messag
(START,t), represented in Figure 7, is called when a new
model is placed in simulation at time t. It guarantees the
updating of the equivalent total set when models are adde
by the initialization of tL and tN variables. The start
message is also executed when the simulation starts a
initializes all the models.

when receive (START,t)
tL ← t
s ← s0

tN ← t + τ(s)
end

Figure 7: Simulator Start Message

When the simulator receives the (TRANSITION,x,t)
message it performs the model transition. Null values se
to a simulator are ignored. Simulator external transition i
described in Figure 8. The time elapsed since the la
transition of element i at time t is computed by e = t − tL.

when receive (TRANSITION,t,x)
if t ∉ [tL,tN] ERROR end
if t < tN and x = φ then RETURN endIf
s ← δ(s,t − tL,x)
tL ← t
tN ← t + τ(s)

end

Figure 8: Simulator Transition

The output function of an atomic component is represente
in Figure 9. This value must be stored before the change 
state caused by the transition function.
1
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when receive (OUTPUT,t)
if  t = tN then

y ← λ(s)
else

y ← φ
endIf

end

Figure 9: Simulator Output Function

Because the (OUTPUT,t) message implements mo
output function, its value is null if time t ≠ tN.

6 CONCLUSIONS

We have presented the DSDE formalism and we h
show that the DSDE formalism is closed under coupli
what permits to build models is a hierarchical and modu
manner. The abstract simulators necessary to run DS
models were also described. Abstract simulators perm
describe models independently from the actual simula
procedure, and are of particular importance to obtain mo
reuse.
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