
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

COMPONENT-BASED SIMULATION ENVIRONMENTS:
JSIM AS A CASE STUDY USING JAVA BEANS

John A. Miller
Yongfu Ge
Junxiu Tao

Computer Science Department
415 GSRC

University of Georgia
Athens, GA 30602-7404, U.S.A.

l
l-
se
-
is
ts
x
e

f
n

r
t
in
.

e
d
e
d
,
,

s

els.
the
ted

ating
and
dels

the
The
are.
dds
ate
ther
are

may

are
ata

The
or-

and
no
red

ns
ary
ABSTRACT

Component-based software can be used to develop high
modular simulation environments supporting high reusabi
ity of software components. This paper examines a ca
study in which JSIM, a Java-based simulation environ
ment, is extended using Java Beans technology. Th
allows simulation models to be treated as componen
that can be dynamically assembled to build more comple
models. It also allows simulation inputs and outputs to b
dynamically linked to database systems.

1 INTRODUCTION

This paper provides an overview of the latest version o
JSIM, a Java-based simulation and animation environme
(Nair et al., 1996, Miller et al., 1997). This latest
version encorporates the newest approach to softwa
development, component-based technology. If componen
based technology succeeds, the long hoped for gains
software development productivity may finally be realized
Complex software systems will be built by assembling
components, minimizing the amount of low-level coding
required. Systems built with components should b
more extensible and often able to run in distributed an
heterogeneous environments. Typically, component-bas
software will also run on the Web (e.g., Java Beans an
Active X). Since JSIM is built using Java and Java Beans
it can be used for Web-based simulation (Fishwick, 1996
Fishwick, 1998).

JSIM has three foundation packages,queue , stati-
stics and variates , that are generally useful, in and
out of simulation. Built on top of these are two package
implementing the two most popular simulation world
views. Theevent package support the construction of
373
y

t

e
-

d

event-scheduling type models, while theprocess package
support the construction of process-interaction type mod
The jmodel package provides a visual designer for
process package. The design model may be anima
when the simulation is run. Finally, theqds package
provides a convenient means for accessing/gener
simulation data. This package allows simulation inputs
outputs to be stored in databases, and simulation mo
to be launched as a part of query processing.

2 COMPONENT-BASED SOFTWARE

During the 1990’s, simulation software has utilized
advantages of Object-Oriented Programming (OOP).
next step in software development is Component Softw
Component software begins where OOP left off and a
capabilities to maximize software reuse and facilit
rapid development through assembling components ra
than traditional coding. Graphical/visual design tools
typically used in this assembly process.

Component-based software development systems
support some or all the following capabilities.

• Object-Oriented Programming. Under OOP, softw
is developed as objects consisting of attributes (d
members) and methods (member functions).
advantages of encapsulation, inheritance and polym
phism have been well documented.

• Persistence. Mechanisms are provided to save
restore the state of executing objects with little or
programming. Traditionally, these operations requi
a substantial amount of custom coding.

• Introspection. By following certain coding conventio
(design patterns) and by providing supplement



Miller, Ge and Tao

a
le

e
/s

l

h
r

ly
o

n
s
y
t

e
u

n
n
d
s
a
J
im
e

th

e
F
n
th

e
n
a

th
u

s.

t

ata

ts

s,
ce

e

le

er

-
te
in

l,

,

e

st
classes, different software components can be m
to interact without any custom coding. For examp
one class may inquire about properties, methods
events of other classes. Properties are appearanc
behavioral attributes that are exposed (e.g., by get
methods) to other classes or visual tools.

• Distribution. Although not a requirement, it is usefu
to able to have components work together even
they are not executing on the same machine. T
is facilitated by providing high-level mechanisms fo
distributed object to object communication, typical
through remote method calls or remote handling
events.

• Platform Independence. While "Write-Once, Ru
Anywhere" is not a requirement, it certainly simplifie
the developer’s job. If this is fully supported, an
object can be downloaded to any machine and execu
without recoding or even recompiling.

At present, software components may be develop
with either ActiveX or Java Beans. Java Beans in o
opinion has the advantages of platform independence a
simplier programming environment (full object-orientatio
automatic garbage collection, safe use of memory an
straightforward approach to multithreading). For the
reasons, we have chosen to develop JSIM in Java
utilize Java Beans technology. Speed disadvantages of
versus C++ are becoming less of an issue as Just-In-T
(JIT) and native-code compilers are becoming availabl

3 JSIM PACKAGES

Before focusing on the use of software components,
JSIM packages are briefly discussed.

3.1 The queue Package

Thequeue package is rooted by theQueueclass which is
defined as an abstract base class, from whichFIFO Queue
(First-In, First-Out), LIFO Queue (Last-In, First-Out),
PriorityQueue and TemporalQueueare derived. Splay
trees are used to implement priority and temporal queu
and simple lists are used to implement the FIFO and LI
queues. Each of these queues has, by default, infi
capacity. However, users have the freedom to set
capacity when constructing a queue object.

Priority and temporal queues may be used for lin
ordered by priority as well as to implement Future Eve
Lists and time advance mechanisms. We first insert
incoming process (or event for event scheduling) into
Future Event List (FEL), implemented as a temporal que
based on the process activation time (ties are broken
374
de
,
or

or
et

if
is

f

ed

d
r

d a
,
a

e
nd
ava

e
.

e

s,
O
ite
e

s
t
n
e
e,
by

priority) and then invoke the process at the front of the
FEL and update the clock to the time of the next proces

3.2 The statistics Package

The statistic package contains classes to collec
statistical information. TheStatistic class is an abstract
base class and contains methods to analyze statistical d
and aid in outputting simulation results.Format is used
for formatted output and has methods similar to theprintf
function in the C language. It was developed by Cay
Horstmann for the Core Java (Book/CD-ROM) published
by SunSoft Press/Prentice Hall.

The SampleStatand TimeStatclasses extend the base
Statistic class. SampleStatis used for collecting sample
statistical data (via itstally method), while theTimeStat
class is used to gather time-persistent statistics (via i
accumulatemethod). TheStatistic class has the ability
to calculate minimums, maximums, means, variance
standard deviations, root mean squares and confiden
interval half widths. The package also contains a
BatchStatisticclass which is derived fromSampleStat.
BatchStatisticis used to collect batch statistics. The batch
size is a parameter to the constructor ofBatchStatistic.
Finally, histograms can be produced using theHistogram
class.

3.3 The variate Package

The variate package provides a wide variety of random
variates. The classVariate is a class which is extended
by all other variates. TheVariate class uses JSIM’s own
Linear Congruential Generator calledLCGRandom, but this
can be changed very easily to use Java’sRandomclass
by modifying the code of theVariate class. It is also a
simple matter to install yet another random generator. Th
LCGRandomnumber generator has a very long period and
has been statistically proven to provide good inter-samp
independence. Thegen method returns the next random
number. For the derived classes, the random numb
returned depends on the type of distribution used.

JSIM has implementations of fourteen continuous ran
dom variate generators and eight discrete random varia
generators. The discrete random variates available
JSIM’s variate package areBernoulli, Binomial, Dis-
creteProb, Geometric, HyperGeometric, NegativeBinomia
Poisson,andRandi. The continuous random variates avail-
able areBeta, Cauchy, ChiSquare, Erlang, Exponential
F Distribution, Gamma, HyperExponential, LogNormal,
Normal, StudentT, Triangular, Uniform, and Weibull. The
algorithms for these random variate generators may b
found in (Law and Kelton, 1982, Pritsker, 1986). The
variate package also contains two classes used to te



Component-Based Simulation Environments: JSIM as a Case Study Using Java Beans

to

es

e

tu

d
tio
Ja

e

e
g
d

si
a
n

io
tto
th

th
ee
t
o
m
0
b

m
fo

t
b

al

se
se
ns
of
e

on
n

the
is
If
nt
e

il

are

he
l

el

e
s
e

he
k
a

al
e
d
e
ly,

ing
is

L
on

is,
o

the random number generators, namelyLCG Test and
KS Test.

3.4 The event Package

JSIM provides anevent package which can be used
build event-scheduling simulation models. Theevent
package is composed of the classesEvent, Entity and
Scheduler. The Eventclass is used to code event routin
e.g., what happens at an arrival event. TheEntity class is
used to maintain information about entities (e.g., custom
in the simulation. Finally, theSchedulerclass is used to
schedule future events by putting them into the Fu
Event List.

3.5 The process Package

The process package provides classes that are use
create simulation models following the process-interac
paradigm. A simulation model is encapsulated as a
bean. Such bean objects contain severalDynamicNodes.
Currently, Server, Facility, Signal, Source and Sink are
provided as types ofDynamicNodes. These nodes ar
connected with edges whichTransportentities (SimObjects)
between the nodes. AModel object is used to control th
simulation by starting all of theSources as well as stoppin
the simulation. If animation is to be performed, the mo
creates aModelCanvasobject in which it displays the
animation.

3.6 The jmodel Package

JSIM provides a visual model designer implemented u
the Javaawt package. It is a GUI-based model builder th
supplies simulationists with more direct, intuitive mea
to build a model. It allows users to position a simulat
object on a model-builder canvas by selecting a bu
from the tool-bar and then clicking on a location on
canvas to place the object (e.g., Server node).

3.7 The qds Package

Query Driven Simulation (QDS) is based on the tenet
simulation analysts as well as naive users should s
system based upon QDS as a sophisticated informa
system. One that uniformly enables the retrieval
generation of information about the behavior of syste
under study (Miller and Weyrich, 1989, Miller et al., 199
Miller et al., 1991). This means that the user must
provided with an easy to use environment where s/he
trigger complex actions by entering a simple query,
example, on a form.

QDS suggests using a database to store simula
results as well as simulation models, which might
queried by a user. Simulation is often a computation
37
,

rs)

re

to
n
va

el

ng
t
s
n
n

e

at
a

ion
r
s

,
e
ay
r

ion
e
ly

intensive and costly exercise. Hence, it only makes sen
that simulation results be stored for future use. Databa
Management Systems (DBMSs) provide well defined mea
of storage, manipulation and retrieval of large amounts
data. JSIM can be linked to a variety of DBMSs becaus
of its reliance on Java Database Connectivity (JDBC).

When a user queries a simulation system based
QDS, the system first tries to locate the required informatio
in the database, since it might have been stored as
result of an earlier model execution. If the required data
present, it is simply retrieved and presented to the user.
it is not present, the QDS system instantiates the releva
model (or models), executes it (or them) and shows th
results of the execution to the user.

In the rest of this paper, we focus on theprocess
and jmodel packages and will cover them in more deta
in the next two sections. These along with theqds
package make the most use of component-based softw
technology.

4 PROCESS-ORIENTED SIMULATION

The JSIM library provides for both pseudo-real time
simulation and virtual time simulation.

Virtual time simulation is suitable for fast simulations
where the user does not wish to be constrained by t
speed of a real time clock. Consequently, a virtua
clock is used instead of a real time clock. Virtual time
simulations are also suitable when the simulation mod
requires substantial computation.

Pseudo-real time simulations are useful when th
simulationist wishes to see the results of simulation a
represented by animation. We call this pseudo-real tim
since the clock advance rate is adjusted to make t
animations as visually informative as possible (e.g., ban
customer service times of a few seconds rather than
few minutes). A model builder may also use pseudo-re
time simulation coupled with animation to help test th
validity of a model. Each entity/process is implemente
as a JavaThread. Conversion between a pseudo-real tim
model and a virtual time model can be done quite easi
as they are unified by theClock class which includes a
method to toggle between these alternatives.

The VirtualSchedulerclass is a virtual time simulation
manager. It manages the scheduling of entities generat
events on the basis of the time at which the entity
supposed to cause the event.VirtualSchedulerhas a FEL,
implemented using aTemporalQueuewhich it uses to
schedule entities. The scheduling of entities on the FE
is done on the basis of each entity’s/process’s activati
time. The activation time of an entity is the time at which
it is supposed to generate its next event. To do th
the VirtualSchedulerhas methods that are counterparts t
5



Miller, Ge and Tao

,
,

me
on
.

me

-

ity

ive

ry

e

the

n

-
,

ls
s
.

e

l

e

e
in

e
e

l

s

Java’s Thread methods, namelyvStart, vStop, vSuspend
vResumeand vSleepinstead of thestart, stop, suspend
resume and sleep methods of theThread class. The
state transition diagram for threads in pseudo-real ti
animation is shown in figure 1, while the state transiti
diagram for virtual time animation is shown in figure 2

new

blockedrunnable

dead

start

stop

yield

"wake-up"

sleep

suspend

resume

wait

notify

Figure 1: State Transition Diagram: Pseudo-Real Ti
Simulation

new

runnable

scheduled

blockeddead

"wake-up"

vStart

vStop

vSuspend

vSleep

vResume

Figure 2: State Transition Diagram: Virtual Time Simu
lation

ThevStartmethod is invoked by theSourceclass during
virtual time simulation to schedule a newly created ent
in theVirtualScheduler. During virtual time simulation, we
need to ensure that only one thread is runnable at any g
point in time. This is done by makingVirtualSchedulerthe
singular point of control in the simulation system. Eve
time one of the above mentionedVirtualSchedulermethods
is invoked, control is handed over to theVirtualScheduler
which decides on the next entity to be activated bas
on activation time. ThevStop method is invoked by
an entity/process that has completed its life-cycle in
simulation and is ready to be terminated. ThevSuspendand
vResumemethods are used during virtual time simulatio
instead ofsuspendand resumemethods respectively, in
order to ensure that theVirtualScheduler controls all
scheduling decisions. ThevCurrentTimemethod provides
376
n

d

the current value of the virtual clock and is the virtual time
counterpart to Java’sSystem.currentTimeMillismethod that
is used during the pseudo-real time simulation.

The VirtualSchedulerclass as well as Java’sThread
class provide the foundation for process-oriented simu
lations. JSIM builds several classes on top of these
facilitating concise coding of simulation models as well as
automatic code generation. JSIM process-oriented mode
may be viewed as directed graphs (digraphs) with node
connected by edges and entities flowing through the graph
We discuss JSIM models from this point of view in the
subsequent subsections.

4.1 SimObject Class

A simulation model based on the process-interaction
paradigm needs to define the entities and their life-cycle
within the simulation model. An instance of theSimObject
class represents a single simulation entity or process. Th
simulation model builder should extendSimObjectto create
a useful simulation entity. Precisely, the simulation mode
builder needs to specify the functioning or life-cycle of the
simulation entity as is required by the model.SimObject
extends theThreadclass provided by Java. Hence, every
entity in a JSIM process-interaction model is a separat
thread. ASimObject’s logic (behavior during its lifetime)
is defined by the model builder by coding itsrun method.

4.2 DynamicNode Class

DynamicNodeis an abstract class that encapsulates th
features common to the classes that appear as nodes
a JSIM model, currently,Server, Facility, Signal, Source
and Sink. Every such node collects two different types of
statistics namely duration/time data and occupancy/usag
data. Suitable labels are created using the node’s nam
for display purposes.

4.2.1 Server Class

A Serveracts as a service provider. It initially creates a
certain number of service units as defined by the mode
builder, thus providing servers toSimObjects requesting
service. SimObjects obtain service byrequesting a server
and thenusing the server. If all the service units are busy,
the client entity will be lost. Service may be preempted by
invoking thepreemptmethod. Each server also maintains
statistics regarding the usage of its service units and it
clients’ service times.

4.2.2 Facility Class

A Facility is derived fromServersince it is most similar
to this class. It encapsulates aQueueas a private data
member. Simulation entities (SimObjects) obtain service



Component-Based Simulation Environments: JSIM as a Case Study Using Java Beans

e
n

e
ue

ly
F

n
e

he
ly
e
.

c
I

a

c

e
c
t
t

e
d
e

al

ir
e

e
e
s
a

rt
ad

e
n

te

r,

l

t
f
y

n

s

,

rt
by requesting a facility using therequestmethod. If the
facility is not busy, the simulation entity acquires a serv
anduses it. However, if the facility is busy, the simulatio
entity is enqueued in the facility’sQueue. When the
simulation entity finishes its work, it releases the serv
The queueLengthmethod returns the length of the que
within the facility.

4.2.3 Signal Class

A Signal affects the behavior of servers, by alternative
increasing or decreasing the number of service units.
example, a Signal may be used as a traffic light in
simulation of an intersection of streets. When the sig
turns on/green, servers/facilities (representing traffic lan
in its control list will have a service unit added (using t
Serverexpandmethod) so that traffic can flow. Converse
when the signal turns off/red, a service unit will be remov
(using the Servercontractmethod) to stop the traffic flow

4.2.4 Source Class

A Source is a generator or creator ofSimObjects. It
createsSimObjects depending on defined parameters su
as inter-arrival time or the number of entities to create.
the JSIM library,Sourcehas been designed as an abstr
class. This is because different simulation models w
require different types of entities to be created. Hen
the model builder is required to extendSourceto create a
specialized entity generator. This is a very simple proc
and involves only the implementation of the abstra
makeEntitymethod. This is because the decision as
which entities need to be created has to be made by
simulation model builder. The simulation model build
must extendSourceand implement the abstract metho
makeEntity to return whatever entity is required. Th
run method implements the lifetime of theSourceclass.
It has been implemented to create an entity periodic
according to the inter-arrival time distribution.

4.2.5 Sink Class

A Sink is, conceptually, the opposite of aSourcein that
a sink phases out or destroysSimObjects created by a
source.SimObjects go to a sink when they complete the
lifetimes. SimObjects are eliminated at sinks using th
capturemethod.

4.3 Transport Class

Objects from theTransport class form the edges of th
simulation model graph, with each connecting two nod
Simulation entities orSimObjects travel along transport
while moving from one node to another. A transport h
a default constant speed which may be changed using
37
r

r.

,
or
a
al
s)

,
d

h
n
ct
ill
e,

ss
t
o
he
r

ly

s.

s
the

adjustSpeedmethod. After joining a transport, an entity
moves along the transport using themove method. The
movemethod returns false when the end of the transpo
is reached. Transports have been implemented as qu
curves, so that the model builder can flexibly specify the
edge connecting two nodes. Quad curves are part of th
Java 2D API and specify a curve as a quadratic functio
of x and y coordinates.

4.4 Model Class

TheModelclass is derived from (extends)Frame, allowing
multiple models to be run simultaneously, each in a separa
window frame. It also implements theRunnableinterface
and its run method starts off allSourceobjects. Then
until the simulation is over, it periodically wakes up to
repaint the animation canvas. When the simulation is ove
it displays statistical summary results.

5 VISUAL MODEL DEVELOPMENT

Although JSIM is designed to allow models to be rapidly
hand coded utilizing JSIM’s extensive class library, the
easiest way to create a model is to use JSIM’s visua
designer, JMODEL.

JMODEL provides several buttons to control the
construction of a model on a canvas. The following
buttons are currently provided.

• Server. A server node provides service to clien
entities arriving at the node. The default number o
service units (e.g., tellers) is one, but may be easil
changed using the Update button.

• Facility. A facility node inherits from server and adds
a queue to hold waiting client entities.

• Signal. A signal node may alter the number of service
units in a server(s).

• Source. A source node produces entities with a
inter-arrival time given by a random variate.

• Sink. A sink node consumes entities and record
statistics about them.

• Transport. A transport edge connects two nodes (from
to) together. An entity leaving a node probabilistically
chooses one of the node’s outgoing edges to transpo
it to the next node.

• Move. Nodes may be repositioned at any time by
clicking on this button. Edges automatically follow
along with any node movement.
7



Miller, Ge and Tao

ly

a

d

t

o
i
s

e

h

g
-
f
d

nt
r-

r

x

d
d
m

a

y
e

l

e
t
ly

d

s
),
• Delete. Both nodes and edges may be deleted simp
by selecting this button and clicking either on a node
or edge.

• Update. The properties of nodes may be viewed
and/or changed at any time by selecting this button.

• Generate. Once the visual design is complete, Jav
code implementing the model can be produced by
clicking on this button and then anywhere on the
canvas.

Models are built visually by clicking on a button to
set the designer mode. Then when the mouse is clicke
an action will be performed at its location in the drawing
canvas. For example, if in "Facility" mode, a new facility
will be drawn at the location (see Figure 3). To connec
two nodes with a transport, enter "Transport" mode and
then click on the two nodes. This will cause a straight
line to be drawn. To produce a curve, click on a point
outside the nodes to serve as a control point.

Figure 3: Screenshot of Visual Designer

The code in thejmodel package was created to be
easily extensible. Each node in the graph is a polygon, s
that adding new shapes to represent new types of nodes
easy. Similarly, each edge in the graph is a quad curve
allowing flexible pathways between nodes.

6 JSIM MODELS AS BEANS

6.1 Atomic Model

An atomic model is built as a connected digraph with a
single source and a single sink. The source is the produc
of entities (e.g., customers) that flow through the graph to
be consumed by the sink. All other nodes must have bot
incoming and outgoing edges.
378
,

s

r

6.2 Model

A model consists of one or more atomic models sharin
a common environment and display frame. Since gen
eral models may have multiple sources, different types o
entities can be created (e.g., McDonald’s customers an
Wendy’s customers). These flows may be independe
(no shared nodes), competing (shared nodes), or inte
acting (one playing client role and other playing serve
role). Allowing digraphs with multiple sources and sinks
introduces complex issues of well-formedness.

6.3 Model Complex

Models can be assembled to form a model comple
without requiring any traditional programming. Complex
models may be built hierarchically and even animate
hierarchically. Each model is represented by an icon an
is implemented as a Java Bean. A designer can select fro
existing models to dynamically build a model complex.
Individual models in the complex are linked via Java
Beans events. When an entity in one model reaches
sink, an event can be triggered which will be handled in
another model. Handling the event will cause an entit
to be created by a source in that model. Effectively, on
model is able to interact with another model (by injecting
an entity). (Currently, we assume that entity injection
occurs "now" in the target model with appropriate method
synchronization to prevent race conditions. If a time,t,
is given for entity injection, it is possiblet could be in
the past for the target model, so techniques for paralle
simulation would be needed.)

Such interactions require that sinks in one model b
linked to sources in another model. This linkage is no
designed or coded in, but rather established dynamical
using the facilities of visual development tools like the
BeanBox in the Beans Development Kit (BDK), Java
Studio or Visual Cafe, etc.

6.4 Example Model I: Bank

The first example model is a simple bank simulation with a
singleFacility feed by a singleSource. The Facility has a
FIFO Queueand one or more service units (tellers). After
receiving service, customers are captured by theSink. A
screenshot of the animation of this model is shown in
Figure 4.

6.5 Example Model II: FoodCourt

The second example model is a little more complicate
and non-atomic. It contains twoSources, threeFacilities
and two Sinks forming two digraphs. The top digraph
represents a fast food establishment in which multiple clerk
are feed by individual queues (as is done at McDonald’s



Component-Based Simulation Environments: JSIM as a Case Study Using Java Beans

i
o

e
e

o

.

ts
ill
be
y a

ty.
s.

lly
ss
e)

.

al
ny

an
el
e
he
ny

gns
ed
n
s
d

Figure 4: Screenshot of Bank Animation

while the bottom digraph represents an establishment
which the multiple clerks are feed by a single queue (as
done at Wendy’s). A screenshot of the animation of th
model is shown in Figure 5. This is a classic comparis
of a G/G/2 queue versus two G/G/1 queues.

Figure 5: Screenshot of FoodCourt Animation

6.6 Assembling Models I and II

As a simple example, we can assemble theFoodCourt
and Bank models into a model complex. Some of th
customers leaving the food-court find that they are in ne
of money, so with probabilitytriggerProb they chose to
enter the bank.

Models I (Bank) and II (FoodCourt) can be assembled
into a model complex, for example, using the BDK
bean box: Select theFoodCourt bean from the tool box
and drag-and-drop it into the bean box. Adjust any
properties using the BDK property editor. Do the sam
with the Bankbean. Since Model II will feed Model I, the
379
in
is
s
n

d

f
e

linkage is made graphically by editing Model II’s events
EntityEvents from Model II (FoodCourt) are connected to
Model I (Bank) by clicking on Model I’s icon in the bean
box. This brings an event target dialog box which lis
target methods to select from. The selected method w
be executed when these events occur. The events will
constructed and broadcast when an entity is captured b
Sink in the FoodCourtbean. This will cause theSourcein
the Bankbean to create and start (i.e., inject) a new enti
Figure 6 shows the mechanisms by which this happen

Figure 6: Model Interaction: Entity Injection

Basically,Sink.capturecallsModel.triggerEntity-Event
which constructs and broadcasts anEntityEvent to all
targets. (A target had been specified (linked) dynamica
and graphically using the BeanBox.) The adaptor cla
(which was automatically generated at event linkage tim
listens for anyEntityEvents. When it hears one, it will
call Bank.injectEntity(also established at linkage time)
This method then callsSource.startEntitywhich injects
a new entity into the bank in response to this extern
stimulus. These injected entities are in addition to a
that theSourcewould normally (internally) produce.

Figure 7 depicts the arrangement of theFoodCourt
and Bank beans as well as their relationships in the be
box. A control button is present to initiate each mod
(bean). Clicking on a button will cause the frame for th
model to pop up. The animation actually starts when t
start option in the File menu is selected. To not miss a
events triggered by theFoodCourt, the Bank animation
should be started first.

6.7 Multi-Frame Animation

In Java, animations are very easy to create. JSIM desi
can be animated by reusing much of the code us
for the visual designer. Animation brings the desig
diagram to life. For JSIM, models consists of entitie
flowing through graphs (or networks). Each node an



e and Tao

E
e

ei

ll
in
n.
cs
hi
er
en
is

ss
ck
de
s
th

e
sl
o

dl
de
it
n
w
r

re
a

n
-
y

l

e

r

l

Miller, G

Figure 7: Model Interaction: Entity Injection

edge has fixed coordinates determined by the JMOD
visual designer. (Alternative, coordinates can be giv
in hand-coded constructor calls.) As entities flow, th
coordinates are repeatedly updated. TheModel class has
a displayThreadthat wakes up periodically to repaint a
the nodes, edges and entities. Smooth motion is obta
by updating the coordinates of entities sufficiently ofte

A Model object initially creates an off-screen graphi
buffer of the same size as its actual on-screen grap
buffer. It then paints this off-screen graphics buff
After this, it paints the off-screen buffer onto the scre
by copying it onto the on-screen graphics buffer. Th
technique, referred to asdouble buffering, is a good way
to reduce flicker in animation.

Animation is a useful tool in checking the correctne
of a model. The simulation model builder can tra
the movements of simulation entities through the mo
during its lifetime. It is also useful for clients as well a
model builders, since it is often easiest to understand
simulation model by looking at animations.

Each model is animated in a single frame. At any tim
several model animations may be running simultaneou
each in a different frame. They may run independently
interact through events created by one model being han
by another model. The animation of a very complex mo
is hard to watch in its totality and make any sense of
With multi-frame animation, one can easily focus in o
parts of the simulation by bringing the relevant windo
frames into the foreground of the screen. Furthermo
these multi-frame animations can be quickly reconfigu
using a Java visual development tool, since models
encapsulated in Java beans.
380
L
n
r

ed

cs
.

l

e

,
y,
r
ed
l
.

e,
d
re

Currently, JSIM uses Java’sawt package and the Java
2D API to draw/paint shapes onto the screen.

7 CONCLUSIONS

JSIM is an easy-to-use Java-based simulation and animatio
environment that can be used as a testbed for Web
based simulation as well component-based technology. B
utilizing component-based technology, in this case Java
Beans, the environment is built up from reusable software
components that can be dynamically assembled using visua
development tools. JSIM is available for download at

http://orion.cs.uga.edu:5080/∼jam/jsim.
Besides its use as a research testbed, it can also b
used to teach simulation (it has been used in the CS
421/621 simulation course at the University of Georgia).
In addition, it has been coded in a very modular and
straightforward way, so that it can be readily extended by
others.

In future releases of JSIM, our main focus will be
to exploit the capabilities of new Java APIs, in order to
enrich the visual appearance as well as the distributed
capabilities of the system.

• Java 3D. This API will allow models to have in-
creased visual richness. At the same time, we will
introduce additional types of nodes as well as condi-
tional branching between nodes. The visual designe
currently only supports probabilistic branching.

• Enterprise Java Beans (EJB). This API will allow
interacting models to be run on multiple machines
just as easily as they are now run on a single
machine. Furthermore, complete JSIM simulation
environments will be run as a distributed system on
heterogeneous platforms. In addition to EJB, Remote
Method Invocation (RMI), Java IDL (CORBA) and
Servlet technology will be explored.

REFERENCES

Fishwick, P. (1996). Web-Based Simulation: Some Persona
Observations. InProceedings of the 1996 Winter
Simulation Conference, Coronado, California.

Fishwick, P., editor (1998). Proceedings of the 1998
International Conference on Web-Based Simulation
and Modeling. Society for Computer Simulation, San
Diego, CA.
http://www.cise.ufl.edu/ fishwick/webconf/full.

Law, A. and Kelton, W. (1982).Simulation Modeling and
Analysis. McGraw-Hill, Inc., New York, NY.



Component-Based Simulation Environments: JSIM as a Case Study Using Java Beans

.

n
m

.

d

r
ts

as
r

a
.
a

ry.

.
of
has
s
:

ata
s
e

s
in
Miller, J., Kochut, K., Potter, W., Ucar, E., and Keskin,
A. (1991). Query-Driven Simulation Using Active
KDL: A Functional Object-Oriented Database System
International Journal in Computer Simulation, 1(1):1–
30.

Miller, J., Nair, R., Zhang, Z., and Zhao, H. (1997). JSIM: A
Java-Based Simulation and Animation Environment. I
Proceedings of the 30th Annual Simulation Symposiu,
pages 31–42, Atlanta, Georgia.

Miller, J., Potter, W., Kochut, K., and Weyrich, O. (1990)
Model Instantiation for Query Driven Simulation in
Active KDL. In Proceedings of the 23nd Annual
Simulation Symposium, pages 15–32, Nash-ville, Ten-
nessee.

Miller, J. and Weyrich, O. (1989). Query Driven Simulation
Using SIMODULA. In Proceedings of the 22nd
Annual Simulation Symposium, pages 167–181, Tampa,
Florida.

Nair, R., Miller, J., and Zhang, Z. (1996). A Java-Base
Query Driven Simulation Environment. InProceedings
of the 1996 Winter Simulation Conference, pages 786–
793, Coronado, California.

Pritsker, A. (1986).Introduction to Simulation with SLAM
II . Wiley, New York, NY, 3rd edition.

AUTHOR BIOGRAPHIES

JOHN A. MILLER is an Associate Professor and the
Graduate Coordinator in the Department of Compute
Science at the University of Georgia. His research interes
include Database Systems, Simulation and Workflow
well as Parallel and Distributed Systems. Dr. Mille
received the BS degree in Applied Mathematics from
Northwestern University in 1980, and the MS and PhD
in Information and Computer Science from the Georgi
Institute of Technology in 1982 and 1986, respectively
During his undergraduate education, he worked as
programmer at the Princeton Plasma Physics Laborato
Dr. Miller is the author of over 45 technical papers
in the areas of Database, Simulation and Workflow
He has been active in the organizational structures
research conferences in all these three areas. He
served in positions from Track Coordinator to Publication
Chair to General Chair of the following conferences
Annual Simulation Symposium (ASSP), Winter Simulation
Conference (WSC), Workshop on Research Issues in D
Engineering (RIDE), Workshop on Workflow and Proces
Automation in Information Systems, and Conferenc
on Industrial & Engineering Applications of Artificial
Intelligence and Expert Systems (IEA/ AIE). He ha
also been a Guest Editor for the International Journal
Computer Simulation.
381
YONGFU GE is a graduate student in the MS program
in the Department of Computer Science at the University
of Georgia. He has already earned a PhD degree in
Crop and Soil Sciences at the University of Georgia. His
research interests include Simulation, Component Software
and Database Systems.

JUNXIU TAO is a graduate student in the MS program
in the Department of Computer Science at the University
of Georgia. Her research interests include Simulation,
Graphics, Distributed Systems and Database Systems.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search
	Search Results
	Print

