
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

THREE PHASE SIMULATION IN JAVA

M. Pidd and R.A. Cassel

Department of Management Science
Lancaster University

Lancaster LA1 4YX, U.K.

a
 th
tl
e
s
 T
ua
ig
ns
tio
th
e.

m
ur
ti

an

se

d
n

m
ns
th

ay
 o

h

h

e-
r

,
r

+

a
s
n

l
n
n

s
se
ed
6)
t;
f
 et
 to
r

tive
n
d

a
ch
dd
e
o

d
s

ABSTRACT

Recent years have seen great interest in the use of Jav
language for developing computer simulations and in
development of methods that utilise the inheren
distributed and co-operative nature of the world-wide w
This paper builds on both of these themes and discusse
development of three phase simulation models in Java.
first stage of the work was to use Java simply as a lang
for model development, much as any other language m
be used. The second phase was to use the RMI functio
JDK 1.1 to develop client:server approaches to simula
modelling. Both of these stages are discussed here, wi
indication of the problems that were faced and overcom

1 BACKGROUND

Since its proposal and development by Sun MicroSyste
Java has been accepted as a language for general p
use as well as one that is suitable for distributed compu
on the Internet. Its attractive features are well-known
include the following.

1. Fully object oriented: meaning that it requires the u
to program in terms of:

• class mechanisms: variable types are declare
objects which may inherit part of their definitio
from previously declared object types.

• encapsulation: an extension of progra
modularisation in which data and the functio
which change that data are kept together in
same place.

• polymorphism: in which the same instruction m
be implemented quite differently by members
different classes.

As discussed in more detail in Pidd (1995).
1. Extensive class libraries (known as packages): suc

awt (for user interface design), net (for network based
applications, util (for utility functions, such as has
36
as a
e

y
b.
 the
he
ge
ht
 of
n

 an

s,
pose
ng
d

r

as

e

f

as

tables) and rmi (for remote method invocation). These
packages free the programmer from the need to r
invent the wheel and may be extended for particula
applications.

2. Syntax based on C++: which was itself based on C
meaning that many programmers are already familia
with its keywords. However, as with spoken
languages, there are 'false friends' in which a C+
concept means something rather different in Java.

3. Supports multi-threaded applications: which enables
single server to easily support a number of client
accessing the same software simultaneously in a
economical way.

4. High portability: through the concept of a Java virtua
machine (jvm), in which tokenised code may be run o
any computer that can execute this code through a
interpreter known as the jvm.

Given the now widespread notion that the network i
the computer it clearly makes sense to investigate the u
of Java for discrete simulation. Others have been engag
in this same quest. For example Buss and Stork (199
developed a simple simulation system known as SimKi
Healy and Kilgore (1997) report on the development o
Silk, a Java-based process simulation language; Kreutzer
al (1997) use Java to demonstrate a layered approach
simulation software development; Ferscha and Richte
(1997) discuss aspects of Java use to develop conserva
distributed simulation methods; Page et al (1997) focus o
web-based simulation using Java's remote metho
invocation.

This paper describes the gradual development of
discrete simulation library using the three phase approa
suggested by Tocher (1963) and discussed in detail in Pi
(1995 and 1998). In this approach, a simulation executiv
performs a repeated cycle of three tasks which allow it t
simulate parallelism, whilst avoiding deadlock, as follows.

• A phase: the executive finds the next event, an
advances the clock to the time in which this event i
due;
7

Pidd and Cassel

c
 d

o
ng

s

n
he
 th
o
a
e
er
n

s
a
tio
ar
n

tio

 b
th

an
 t

ed
 b
e
he
,

e
op
h
a

ty
d

f
er
a

.

xt

t.
a

a

d

t,
ot

o

s,

n

e
se
 be
.
re
er

e
d

t
).
:

ed
es

e

• B phase: executes all the B activities (the dire
consequences of the scheduled events). which are
at that time;

• C phase: the executive tries to execute all of the
activities (any actions whose start depends
resources and entities whose states may have cha
in the B phase).

These three phases are repeated until the clock reache
end of the simulation.

2 WRITING SIMPLE SIMULATIONS IN JAVA

It is remarkably easy to write discrete simulatio
applications in Java once familiar with the syntax of t
language and with the ideas of object orientation. Thus,
first phase of this project was the development
straightforward three phase simulation libraries th
execute much as would a library written in any oth
programming language. A number of these libraries w
developed, each with different features but with ma
aspects in common.

These implementations define an abstract cla
usually known as GEntity, which is used to create
dynamic record of the current states and other informa
about entities within the simulation. For a particul
simulation, the user creates a separate class for each e
class in the simulation, these classes being specialisa
(thus, descendents) of the abstract GEntity class. Thus, for
example, any instance of a simulation entity class may
scheduled for a future event or released, using
Schedule() and Release() methods of this GEntity class.

The entity records themselves may be handled in m
different ways, but one very convenient approach is
collect them into a vector as provided by the Java util
package. A vector is a growable array - that is, its size ne
not be declared in advance. Thus entity records may
added to the Details vector whenever new entities ar
created and may be removed from there (with care) w
entities are destroyed. The vector provides direct access
thus enabling fast entity scheduling. An Executive class
controls the Details vector and uses it to execute the thre
phase cycle, discussed above, in the main simulation lo

Countable resources, that is, simulation objects t
need not be distinguished individually and separately,
conveniently represented in a Resource class. Thus
simulation resources are represented as classes of
Resource to which members may be added, delete
occupied and freed as the simulation proceeds.

Java comes with the Random package as a subset o
Java.util and this provides simple random numb
generation and a few routines for random variate gener
This can be easily extended into a Sample class to provide
whatever sampling routines are needed in the simulation
368
t
ue

C
n
ed

 the

e
f
t
r
e
y

s,

n

tity
ns

e
e

y
o

e

n

.
at
re

pe
,

te.

If required, a further Trace class may be added to
enable the provision of traces and run-time reports as te
files for debugging.

The above elements are strictly machine independen
The simulation can remain machine independent but with
GUI by the use of Java.awt, the abstract windowing tool-
kit. This provides support for a number of graphical
features that should run on any computer with a jvm.
Further refinements may be made to the GUI by using
application development tools, such as the Borland
JBuilder or Microsoft J++, but this may restrict the use of
the software to particular hardware and software
configurations. Two simulations that illustrate this
straightforward approach to three phase simulations in Jav
may be downloaded from the following URL:

 //www.lancs.ac.uk/staff/smamp/MPCSMS4.html

3 THE JUST SYSTEM

The JUST (Java Ubiquitous Simulation Tool) system was
developed for simulations to be run in a distributed client-
server mode. Thus, the simulation modeller would define
her simulation entities, resources, activities etc.. and woul
be the client that communicates with the simulation
executive that runs on a remote server. This means tha
once the user has finished creating the model, she does n
have to upload the model to the server, nor has t
download the simulation executive to her computer. The
same executive can then be used to run many simulation
simultaneously if required.

Some class files of the JUST system have to reside i
both computers. Classes like GEntity, SimList and BEvent
have to be in the client as well as in the server, becaus
both the executive and the model have to recognise the
classes. Other classes as Queue and Resource need only
in the client, since the executive never manipulates them
However, since these classes are part of the library and a
ready to be used by the user, they are stored in the serv
so that the user can download them before use.

The classes that stay in just one computer are thos
directly related to the executive (on the server side) an
those strictly related to the model (on the client side). On
the server side, the main class is the Manager. The
Manager is responsible for running the three phase
executive. It maintains an event list, schedules the nex
events, runs the A, B and C phases and keeps the clock(s

On the client side, there are a few important classes
InputEvents, Simulation, CActivities and the new entities
created by the user. The InputEvents class creates a
window for the user to enter the parameters of the
simulation. The Simulation class is responsible for creating
the instances of the basic classes that are going to be us
by the model. These basic classes are mainly the queu
and the resources of the simulation. The CActivities class
contains all the methods that describe the C activities of th

Three Phase Simulation in Java

o

g

l

i

h
i

d
e
e

n

u
g

t
i

h

t

n

h

be

,
es

 to
ss
nd
ng
 of
d

ot
is

en
e
n

ers
o
be
to

a
e
n
to
e

s
a

T
ase
se
k
d B
be
s a
ce
for

e
e

 of
re
al
 so

at
ger
d
ct
in
s.
model. Finally, the simulation entities are sub-classes
the GEntity class that implement the B activities of the
model.

Some of these classes located in just one of th
computers will be called by the other computer usin
Remote Method Invocation. Therefore, they have t
implement an interface to declare the methods to be cal
remotely. Though the classes themselves need not
downloaded or uploaded, the interfaces that the
implement must be, so that the computer which calls th
remote methods can understand them.

4 IMPLEMENTING THE JUST SYSTEM

4.1 Multi-threading

To support multiple simultaneous use, a distribute
simulation system needs to be multi-threaded, otherwise
user may have to wait until the simulation of another
finished before she can run her own simulation. The use
threads allows more than one simulation to be run at t
same time by dividing a computer program into sem
independent threads (or lightweight processes) that may
separately executed.

All versions of the Java Development Kit (JDK)
provide a built-in Thread class to start and stop threads an
to set priorities amongst competing threads. Any oth
class can extend this class and may thus be run as a thr
However, Java does not permit multiple inheritance, whic
means that no user defined class can extend the Thread
class whilst also extending another class. As a way rou
this problem, Java provides the Runnable interface which
permits any class to provide the body of a thread, th
permitting a class to extend another whilst bein
implemented as a thread.

In the JUSTsystem, the executive of the system is ru
as a thread. Hence, the Manager class implements the
Runnable interface. This allows the Manager class to
extend the UnicastRemoteObject class, which is necessary
for Remote Method Invocation.

All threaded instances of the Manager class share the
same priority, thus, if the instance with control of the
processor relinquishes this control, this instance will go
the end of the queue and wait until its turn comes aga
However, to make sure that all the instances of Manag
are running “concurrently”, a call of the yield() method
was introduced after each of the A, B and C phases. T
means that, after each one of the three phases, the ob
with control of the processor will always yield to the nex
object in the queue.

Two further controls over thread execution are give
to the user, who may pause the execution of the threa
and/or resume it. Any time the user pauses her simulatio
a flag is set on the Manager and the simulation is paused as
soon as the in-progress A, B or C phase is complete. T
369
f

e

o
ed
be
y
e

d
 a
s
of
e

-
be

r
ad.
h

d

s

n

o
n.
er

is
ject

ds
n,

is

avoids problems that may occur were the simulation to
paused during any of the three phases.

4.2 Reflection

The Reflection API is provided in JDK 1.1, though not in
JDK 1.0, and it provides methods to return the fields
methods and constructors defined by a class. This mak
classes, in effect, self-aware and enables a program
check the members of a class without knowing the cla
type in advance. Even more usefully, class methods a
constructors can be invoked at run-time rather than duri
compilation, thus the server need not know the methods
the client in advance. Reflection provides a way aroun
two problems that were present in JDK 1.0.

The first is that, for security reasons, Java does n
have pointers and does not allow pointers arithmetic. Th
is mainly to avoid the user making serious mistakes wh
dealing with the memory. However, this can bring som
problems when programming a three-phase simulatio
library, because it means that Java does not allow point
to functions (or methods). When an entity is committed t
a future event in a simulation, one parameter that must
passed when the event is scheduled, is something
identify the event. In C or C++ this is easily achieved via
function pointer. The executive, which handles th
scheduling, thus need not know the identity of the functio
at compile time. The lack of pointers meant that this had
be 'programmed round' in JDK 1.0. However, th
Reflection API of JDK 1.1 allows the executive to invoke
methods that it did not know existed. Therefore, it i
possible to pass the name of a method, find it in
particular class, and invoke it.

The second use for the Reflection API in the JUS
system solves a problem about object oriented, three ph
simulation discussed on Pidd (1995). A three pha
simulation uses two types of activity as its building bloc
and these are known as As and Bs (sometimes as A an
activities, sometimes as A and B events). Each B may
directly scheduled on an event calendar and occurs a
result of an event triggered by an entity (e.g. end of servi
in a queuing system). Each C is a possible contender
action once the Bs have been completed at a clock tim
(for example, a service may start if the server is now fre
and a customer is waiting). Bs depend only on the state
the entity that triggers its execution, whereas Cs a
inherently co-operative - that is, they may involve sever
classes of entity. This is why the three phase approach is
effective in the simulation of highly interactive systems.

It is clear, therefore, that Bs should be methods th
belong to the classes representing the entities that trig
their execution. The problem is that in an object oriente
simulation, if entity classes descend from an abstra
GEntity class, then this abstract class must conta
methods to be overloaded in the 'proper' entity classe

Pidd and Cassel

o

n
ti
n
a
1

l
o
h
n
e

a

h

e

l

e

h

n

e

 a

l

r
re

e

Thus, at worst, the system provider must provide a wh
set of dummy Bs to be overloaded by the application. T
Reflection API tackles this head on by allowing th
Manager to determine the B that is due to be executed.
this sense, JDK 1.1 is an advance on C++.

It is, however, still the case that the Cs cannot belo
to any particular entity class unless the simulation
implemented with a single active entity and the rest pass
when a C is executed. Thus, in the JUST system, Cs
represented by a separate CActivities class.

4.3 Remote Method Invocation

If the simulation executive is to sit on one computer a
the application classes on another, then the simula
system must provide some way in which the differe
classes may communicate with one another. The J
Remote Method Invocation (RMI) framework of JDK 1.
provides the layers necessary for Java objects
communicate with each other using normal method ca
even if the objects are running in virtual machines
opposite sides of the world (Hughes et al (1997)). T
enables the development of client-server applications, si
the programmer need not worry about compl
communication protocols between the applications. Th
RMI is at the heart of the JUST system.

Anecdotal evidence suggests that many people h
found Java RMI rather difficult to implement, though a
more literature appears, this is easing things somew
The JUST system makes use of the java.rmi.Remote
interface and is implemented in the following class
which extend the java.rmi.server.Unicast.RemoteObjec
class.

• On the server side: Manager and GEntity.

• On the client side: GEntity and CActivities.

The actual entity classes of the simulation application a
implement the java.rmi.Remote interface but are direct
descendent classes (extensions) of the GEntity class.

In addition, the basic simulation classes to repres
objects such as countable resources, queues and
implements the java.io.Serializable interface so as to
enable them to be passed as parameters to remote meth

5 THE OPERATION OF THE JUST SYSTEM

1. Start the server. When this starts, it calls t
Manager.bindManager method, which starts the
server’s registry, and binds the Manager to it. After
that, the server waits until a client calls it.

2. When a client is started, the Simulation class locates
the server, looks up the Manager class registered in
the server’s registry, starts the client’s registry, a
binds the CActivities to the client’s registry.
37
le
he
e
In

ng
is
ive
are

d
on
t
va

to
ls,
n
is
ce
x
us

ve
s
at.

s
t

so

nt
lists

ods.

e

d

3. However, the entities are not bound to the registry by
the Simulation class. Each time a new instance of an
entity is created, the constructor of the GEntity class
binds it to the registry.

4. Once this stage is reached the client side already
knows where the Manager is, and if it needs a method
of the Manager to be executed it merely calls this
method as if it were local. On the server side it is
similar, though with some discrepancies. Since the
executive does not know beforehand what will be the
next event and, therefore, does not know which entity
will execute that activity, it must use the Reflection
API, as explained earlier.

6 WHAT WERE THE PROBLEMS FACED?

When we started work on the JUST system, literature
discussing RMI was rather slight. In addition, the general
Java API documentation sometimes is confusing. Thus we
learned about RMI by trying things out - tedious, but
fruitful in the end! Some problems that we faced were as
follows, and it is amazing how obvious the answers seem
now!

QUESTION: Why doesn’t the library run when both
the client and the server are implemented on the sam
physical computer? ANSWER: Because, even when the
client and the server reside in the same computer, it needs
network connection.

QUESTION: How to make the system start the
computer’s registry? ANSWER: The JDK has a class
called LocateRegistry in the java.rmi.registry library with a
method called createRegistry.

QUESTION: Which classes can stay in the client and
which of them must go to the server? ANSWER: This
depends on the application.

QUESTION: Do stubs and skeletons (see Page et a
(1997) for a clear description of these) stay in the client or
in the server? ANSWER: The stubs stay where the call fo
the remote method originates and the skeletons stay whe
the remote objects are located.

ACKNOWLEDGEMENTS

Ricardo A. Cassel's research is funded by the Brazilian
Government through CAPES - Fundacao Coordenacao d
Aperfeicoamento de Pessoal de Nivel Superior.

REFERENCES

Buss A.H. and Stork K.A. 1996. Discrete event simulation
and the world-wide web using Java. In Proceedings of
the 1996 Winter Simulation Conference. ed J.M.
Charnes, D.J. Morrice, D.T. Brunner and J.J. Swain,
780-785, Coronado, CA, 8-11 December.
0

Three Phase Simulation in Java

ative
7
.
a,

,

97

7.
g
r
,
-

eb-
hod
r
,
-

nd
l

nt

nt
aster
s,

is
to

t to
 in

e
ster
ted
d in
ade
nce
s.
Ferscha A. and Richter M. 1997. Java based co-oper
distributed simulation. In Proceedings of the 199
Winter Simulation Conference. ed. S. Andradôttir, K.J
Healy, D.H. Withers & B.L. Nelson, 381-388, Atlant
GA, 7-10 December.

Healy K.J. and Kilgore R.A. 1997. SilkTM: a Java-based
process simulation language. In Proceedings of the
1997 Winter Simulation Conference. ed. S.
Andradôttir, K.J. Healy, D.H. Withers & B.L. Nelson
475-482, Atlanta, GA, 7-10 December.

Hughes M., Hughes C., Shoffner M. and Winslow M. 19
Java network programming. Manning Publications
Co, Greenwich, CT.

Kreutzer W., Hopkins J and van Mierlo M. 199
SimJAVA - a framework for modeling queuein
networks in Java. In Proceedings of the 1997 Winte
Simulation Conference. ed. S. Andradôttir, K.J. Healy
D.H. Withers & B.L. Nelson, 483-488, Atlanta, GA, 7
10 December.

Page E.H., Moose R.L. Jnr and Griffin S.P. 1997. W
based simulation in SimJava using remote met
invocation. In Proceedings of the 1997 Winte
Simulation Conference. ed. S. Andradôttir, K.J. Healy
D.H. Withers & B.L. Nelson, 468-474, Atlanta, GA, 7
10 December.

Pidd M. 1995. Object orientation, discrete simulation a
the three-phase approach. Journal of the Operationa
Research Society 46: 362-374

Pidd M. 1998. Computer simulation in manageme
science. (4th ed) John Wiley & Sons Ltd, Chichester.

Tocher K.D. 1963. The art of simulation. English
Universities Press, London.

AUTHOR BIOGRAPHIES

MIKE PIDD is Head of the Department of Manageme
Science and Professor of Management Science at Lanc
University in the UK. He is best known for two book
Computer simulation in management science (now in its
fourth edition) and Tools for thinking: modelling in
management science; both published by John Wiley. He
active in researching simulation methods related
modularity and object orientation. He acts as consultan
a number of private and public sector organisations
Europe.

RICARDO A. CASSEL is a Ph.D. student in th
Department of Management Science at Lanca
University, whose research focuses on distribu
simulation in Java on the world-wide web. He graduate
electrical and electronic engineering from the Universid
Federal do Rio Grande do Sul, Brazil, and has experie
of simulation work in logistics and manufacturing system
371

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

