Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

THREE PHASE SIMULATION IN JAVA

M. Pidd and R.A. Cassel

Department of Management Science
Lancaster University
Lancaster LA1 4YX, U.K.

ABSTRACT tables) andmi (for remote method invocation). These

packages free the programmer from the need to re-

Recent years have seen great interest in the use of Java as a invent the wheel and may be extended for particular
language for developing computer simulations and in the applications.

development of methods that utilise the inherently
distributed and co-operative nature of the world-wide web.
This paper builds on both of these themes and discusses the
development of three phase simulation models in Java. The
first stage of the work was to use Java simply as a language
for model development, much as any other language might

Syntax based on C++: which was itself based on C,
meaning that many programmers are already familiar
with its keywords. However, as with spoken
languages, there are ‘false friends' in which a C++
concept means something rather different in Java.

be used. The second phase was to use the RMI functions o8. Supports multi-threaded applications: which enables a
JDK 1.1 to develop client:server approaches to simulation single server to easily support a number of clients
modelling. Both of these stages are discussed here, with an accessing the same software simultaneously in an
indication of the problems that were faced and overcome. economical way.

1

Since its proposal and development by Sun MicroSystems,

BACKGROUND

4. High portability: through the concept of a Java virtual
machine (jvm), in which tokenised code may be run on
any computer that can execute this code through an
interpreter known as the jvm.

Java has been accepted as a language for general purpose

use as well as one that is suitable for distributed computing ~ Given the now widespread notion that the network is
on the Internet. Its attractive features are well-known and the computer it clearly makes sense to investigate the use
include the following. of Java for discrete simulation. Others have been engaged

1.

in this same quest. For example Buss and Stork (1996)

Fully object oriented: meaning that it requires the user developed a simple simulation system known as SimKit;

to program in terms of:

Healy and Kilgore (1997) report on the development of
class mechanisms: variable types are declared asSilk, & Java-based process simulation language; Kreutzer et

objects which may inherit part of their definition &l (1997) use Java to demonstrate a layered approach to
from previously declared object types. simulation software development; Ferscha and Richter

(1997) discuss aspects of Java use to develop conservative
encapsulation: an extension of program distributed simulation methods; Page et al (1997) focus on
modularisation in which data and the functions web-based simulation using Java's remote method
which change that data are kept together in the invocation.
same place. This paper describes the gradual development of a
discrete simulation library using the three phase approach
suggested by Tocher (1963) and discussed in detail in Pidd
(1995 and 1998). In this approach, a simulation executive
performs a repeated cycle of three tasks which allow it to

polymorphism: in which the same instruction may
be implemented quite differently by members of
different classes.

As discussed in more detail in Pidd (1995). simulate parallelism, whilst avoiding deadlock, as follows.

Extensive class libraries (known as packages): such as

awt (for user interface desigmet (for network based ~ * A Phase: the executive finds the next event, and
applications,util (for utility functions, such as hash advances the clock to the time in which this event is

due;

367

Pidd and Cassel

+ B phase: executes all the B activities (the direct If required, a furtherTrace class may be added to
consequences of the scheduled events). which are dueenable the provision of traces and run-time reports as text
at that time; files for debugging.

: . The above elements are strictly machine independent.
- C pha}se: the execgnve tries to execute all of the C tpe gimylation can remain machine independent but with a
activities (any actions whose start depends on gy py the use ofiava.awt the abstract windowing tool-
resources and entities whose states may have changeqj; Tpjs provides support for a number of graphical
in the B phase). features that should run on any computer withvia.

These three phases are repeated until the clock reaches theurther refinements may be made to the GUI by using

end of the simulation. application development tools, such as the Borland
JBuilder or Microsoft J++, but this may restrict the use of
2 WRITING SIMPLE SIMULATIONS IN JAVA the software to particular hardware and software

configurations. Two simulations that illustrate this
It is remarkably easy to write discrete simulation Straightforward approach to three phase simulations in Java

applications in Java once familiar with the syntax of the May be downloaded from the following URL:

language and with the ideas of object orientation. Thus, the /www.lancs.ac.uk/staff/'smamp/MPCSMS4.html

first phase of this project was the development of

straightforward three phase simulation libraries that 3 THE JUST SYSTEM

execute much as would a library written in any other

programming language. A number of these libraries were The JUST (Java Ubiquitous Simulation Tool) system was

developed, each with different features but with many developed for simulations to be run in a distributed client-
aspects in common. server mode. Thus, the simulation modeller would define

These implementations define an abstract class, her simulation entities, resources, activities etc.. and would
usually known asGEntity, which is used to create a be the client that communicates with the simulation
dynamic record of the current states and other information €xecutive that runs on a remote server. This means that,
about entities within the simulation. For a particular once the user has finished creating the model, she does not
simulation, the user creates a separate class for each entitp)ave to upload the model to the server, nor has to
class in the simulation, these classes being specialisationsdownload the simulation executive to her computer. The
(thus, descendents) of the absti@é&ntity classThus, for same executive can then be used to run many simulations,
example, any instance of a simulation entity class may be Simultaneously if required.
scheduled for a future event or released, using the Some class files of the JUST system have to reside in
Schedul® andReleas® methods of thiSEntity class. both computers. Classes lik&Entity, SimListand BEvent

The entity records themselves may be handled in many have to be in the client as well as in the server, because
different ways, but one very convenient approach is to both the executive and the model have to recognise these
collect them into avector as provided by the Jawatil classes. Other classes as Queue and Resource need only be
package. Avectoris a growable array - that is, its size need in the client, since the executive never manipulates them.
not be declared in advance. Thus entity records may beHowever, since these classes are part of the library and are
added to theDetails vector whenever new entities are ready to be used by the user, they are stored in the server
created and may be removed from there (with care) when SO that the user can download them before use.
entities are destroyed. Thector provides direct access, The classes that stay in just one computer are those
thus enab"ng fast entity Schedu”ng_ Axecutiveclass directly related to the executive (On the server SidE) and
controls theDetails vectorand uses it to execute the three those strictly related to the model (on the client side). On
phase cycle, discussed above, in the main simulation loop. the server side, the main class is thtanager The

Countable resources, that is, simulation objects that Manager is responsible for running the three phase
need not be distinguished individually and separately, are €xecutive. It maintains an event list, schedules the next
conveniently represented in &esource class. Thus €vents, runs the A, B and C phases and keeps the clock(s).
simulation resources are represented as classes of type On the client side, there are a few important classes:
Resourceto which members may be added, deleted, InputEvents Simulation CActivitiesand the new entities
occupied and freed as the simulation proceeds. created by the user. ThiputEventsclass creates a

Java comes with thRandompackage as a subset of Wwindow for the user to enter the parameters of the
Java.util and this provides simple random number Simulation. TheSimulationclass is responsible for creating
generation and a few routines for random variate generate.the instances of the basic classes that are going to be used
This can be easily extended int@&leclass to provide by the model. These basic classes are mainly the queues

whatever sampling routines are needed in the simulation. and the resources of the simulation. T®&ctivities class
contains all the methods that describe the C activities of the

368

Three Phase Simulation in Java

model. Finally, the simulation entities are sub-classes of avoids problems that may occur were the simulation to be
the GEntity class that implement the B activities of the paused during any of the three phases.
model.

Some of these classes located in just one of the 4.2 Reflection
computers will be called by the other computer using
Remote Method Invocation. Therefore, they have to The Reflection API is provided in JDK 1.1, though not in
implement an interface to declare the methods to be calledJDK 1.0, and it provides methods to return the fields,
remotely. Though the classes themselves need not bemethods and constructors defined by a class. This makes
downloaded or uploaded, the interfaces that they classes, in effect, self-aware and enables a program to
implement must be, so that the computer which calls the check the members of a class without knowing the class

remote methods can understand them. type in advance. Even more usefully, class methods and
constructors can be invoked at run-time rather than during
4 IMPLEMENTING THE JUST SYSTEM compilation, thus the server need not know the methods of
the client in advance. Reflection provides a way around
4.1 Multi-threading two problems that were present in JDK 1.0.

The first is that, for security reasons, Java does not
To support multiple simultaneous use, a distributed have pointers and does not allow pointers arithmetic. This
simulation system needs to be multi-threaded, otherwise ais mainly to avoid the user making serious mistakes when
user may have to wait until the simulation of another is dealing with the memory. However, this can bring some
finished before she can run her own simulation. The use of problems when programming a three-phase simulation
threads allows more than one simulation to be run at the library, because it means that Java does not allow pointers
same time by dividing a computer program into semi- to functions (or methods). When an entity is committed to
independent threads (or lightweight processes) that may bea future event in a simulation, one parameter that must be
separately executed. passed when the event is scheduled, is something to
All versions of the Java Development Kit (JDK) identify the event. In C or C++ this is easily achieved via a
provide a built-inThreadclass to start and stop threads and function pointer. The executive, which handles the
to set priorities amongst competing threads. Any other scheduling, thus need not know the identity of the function
class can extend this class and may thus be run as a threadit compile time. The lack of pointers meant that this had to
However, Java does not permit multiple inheritance, which be ‘programmed round' in JDK 1.0. However, the
means that no user defined class can extendrtiead Reflection API of JDK 1.1 allows the executive to invoke
class whilst also extending another class. As a way round methods that it did not know existed. Therefore, it is
this problem, Java provides tfRunnableinterface which possible to pass the name of a method, find it in a
permits any class to provide the body of a thread, thus particular class, and invoke it.
permitting a class to extend another whilst being The second use for the Reflection API in the JUST
implemented as a thread. system solves a problem about object oriented, three phase
In the JUSTsystem, the executive of the system is run simulation discussed on Pidd (1995). A three phase
as a thread. Hence, thdanager class implements the simulation uses two types of activity as its building block
Runnable interface. This allows thévlanager class to and these are known as As and Bs (sometimes as A and B
extend theUnicastRemoteObjeatiass, which is necessary activities, sometimes as A and B events). Each B may be
for Remote Method Invocation. directly scheduled on an event calendar and occurs as a
All threaded instances of thdanagerclass share the result of an event triggered by an entity (e.g. end of service
same priority, thus, if the instance with control of the in a gqueuing system). Each C is a possible contender for
processor relinquishes this control, this instance will go to action once the Bs have been completed at a clock time
the end of the queue and wait until its turn comes again. (for example, a service may start if the server is now free
However, to make sure that all the instances of Manager and a customer is waiting). Bs depend only on the state of
are running “concurrently”, a call of thgeld() method the entity that triggers its execution, whereas Cs are
was introduced after each of the A, B and C phases. Thisinherently co-operative - that is, they may involve several
means that, after each one of the three phases, the objedtlasses of entity. This is why the three phase approach is so
with control of the processor will always yield to the next effective in the simulation of highly interactive systems.
object in the queue. It is clear, therefore, that Bs should be methods that
Two further controls over thread execution are given belong to the classes representing the entities that trigger
to the user, who may pause the execution of the threadstheir execution. The problem is that in an object oriented
and/or resume it. Any time the user pauses her simulation, simulation, if entity classes descend from an abstract
a flag is set on thManagerand the simulation is paused as GEntity ~class, then this abstract class must contain
soon as the in-progress A, B or C phase is complete. Thismethods to be overloaded in the 'proper' entity classes.

369

Pidd and Cassel

Thus, at worst, the system provider must provide a whole
set of dummy Bs to be overloaded by the application. The
Reflection API tackles this head on by allowing the
Managerto determine the B that is due to be executed. In
this sense, JDK 1.1 is an advance on C++.

It is, however, still the case that the Cs cannot belong
to any particular entity class unless the simulation is
implemented with a single active entity and the rest passive

when a C is executed. Thus, in the JUST system, Cs are

represented by a separ@Activitiesclass.
4.3 Remote Method Invocation
If the simulation executive is to sit on one computer and

the application classes on another, then the simulation
system must provide some way in which the different

classes may communicate with one another. The Java

Remote Method Invocation (RMI) framework of JDK 1.1

provides the layers necessary for Java objects to
communicate with each other using normal method calls,
even if the objects are running in virtual machines on
opposite sides of the world (Hughes et al (1997)). This

enables the development of client-server applications, since

the programmer need not worry about complex
communication protocols between the applications. Thus
RMI is at the heart of the JUST system.

Anecdotal evidence suggests that many people have
found Java RMI rather difficult to implement, though as
more literature appears, this is easing things somewhat.
The JUST system makes use of tfava.rmi.Remote
interface and is implemented in the following classes
which extend thejava.rmi.server.Unicast.RemoteObject
class.

On the server sidédlanagerandGEntity.

On the client sideGEntity and CActivities

The actual entity classes of the simulation application also
implement thejava.rmi.Remoteinterface but are direct
descendent classes (extensions) of3Eatity class.

In addition, the basic simulation classes to represent

3. However, the entities are not bound to the registry by
the Simulationclass. Each time a new instance of an
entity is created, the constructor of tB&ntity class
binds it to the registry.

4. Once this stage is reached the client side already

knows where thdlanageris, and if it needs a method
of the Manager to be executed it merely calls this
method as if it were local. On the server side it is
similar, though with some discrepancies. Since the
executive does not know beforehand what will be the
next event and, therefore, does not know which entity
will execute that activity, it must use threflection
API, as explained earlier.

WHAT WERE THE PROBLEMS FACED?

When we started work on the JUST system, literature
discussing RMI was rather slight. In addition, the general
Java APl documentation sometimes is confusing. Thus we
learned about RMI by trying things out - tedious, but

fruitful in the end! Some problems that we faced were as
follows, and it is amazing how obvious the answers seem
now!

QUESTION: Why doesn’t the library run when both
the client and the server are implemented on the same
physical computer? ANSWER: Because, even when the
client and the server reside in the same computer, it needs a
network connection.

QUESTION: How to make the system start the
computer’s registry? ANSWER: The JDK has a class
calledLocateRegistryn thejava.rmi.registrylibrary with a
method called¢reateRegistry

QUESTION: Which classes can stay in the client and
which of them must go to the server? ANSWER: This
depends on the application.

QUESTION: Do stubs and skeletons (see Page et al
(1997) for a clear description of these) stay in the client or
in the server? ANSWER: The stubs stay where the call for
the remote method originates and the skeletons stay where
the remote objects are located.

objects such as countable resources, queues and lists

implements thejava.io.Serializable interface so as to

ACKNOWLEDGEMENTS

enable them to be passed as parameters to remote methods.

5 THE OPERATION OF THE JUST SYSTEM

1. Start the server. When this starts, it calls the
Manager.bindManager method, which starts the
server’s registry, and binds thdanagerto it. After
that, the server waits until a client calls it.

2. When a client is started, tf®@mulationclass locates
the server, looks up thElanager class registered in
the server’s registry, starts the client's registry, and

binds theCActivitiesto the client’s registry.

370

Ricardo A. Cassel's research is funded by the Brazilian
Government through CAPES - Fundacao Coordenacao de
Aperfeicoamento de Pessoal de Nivel Superior.

REFERENCES

Buss A.H. and Stork K.A. 1996. Discrete event simulation
and the world-wide web using Java.Rmoceedings of
the 1996 Winter Simulation Conferenced J.M.
Charnes, D.J. Morrice, D.T. Brunner and J.J. Swain,
780-785, Coronado, CA, 8-11 December.

Three Phase Simulation in Java

Ferscha A. and Richter M. 1997. Java based co-operative
distributed simulation. InProceedings of the 1997
Winter Simulation Conferenced. S. Andradbttir, K.J.
Healy, D.H. Withers & B.L. Nelson, 381-388, Atlanta,
GA, 7-10 December.

Healy K.J. and Kilgore R.A. 1997. Sif% a Java-based
process simulation language. Rroceedings of the
1997 Winter Simulation Conferenceed. S.
Andraddttir, K.J. Healy, D.H. Withers & B.L. Nelson,
475-482, Atlanta, GA, 7-10 December.

Hughes M., Hughes C., Shoffner M. and Winslow M. 1997
Java network programming.Manning Publications
Co, Greenwich, CT.

Kreutzer W., Hopkins J and van Mierlo M. 1997.
SImJAVA - a framework for modeling queueing
networks in Java. IfProceedings of the 1997 Winter
Simulation Conferencead. S. Andradottir, K.J. Healy,
D.H. Withers & B.L. Nelson, 483-488, Atlanta, GA, 7-
10 December.

Page E.H., Moose R.L. Jnr and Griffin S.P. 1997. Web-
based simulation in SimJava using remote method
invocation. In Proceedings of the 1997 Winter
Simulation Conferencead. S. Andradottir, K.J. Healy,
D.H. Withers & B.L. Nelson, 468-474, Atlanta, GA, 7-
10 December.

Pidd M. 1995. Object orientation, discrete simulation and
the three-phase approaclournal of the Operational
Research Societ§6: 362-374

Pidd M. 1998. Computer simulation in management
science (4" ed) John Wiley & Sons Ltd, Chichester.

Tocher K.D. 1963.The art of simulation English
Universities Press, London.

AUTHOR BIOGRAPHIES

MIKE PIDD is Head of the Department of Management
Science and Professor of Management Science at Lancaster
University in the UK. He is best known for two books,
Computer simulation in management scietficew in its
fourth edition) and Tools for thinking: modelling in
management sciencboth published by John Wiley. He is
active in researching simulation methods related to
modularity and object orientation. He acts as consultant to
a number of private and public sector organisations in
Europe.

RICARDO A. CASSEL is a Ph.D. student in the
Department of Management Science at Lancaster
University, whose research focuses on distributed
simulation in Java on the world-wide web. He graduated in
electrical and electronic engineering from the Universidade
Federal do Rio Grande do Sul, Brazil, and has experience
of simulation work in logistics and manufacturing systems.

371

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

