
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

MODELING WITH EXTEND 

Jim Rivera

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119, USA.

n
se
u
g
re

n

y
n
rf
-
e

ib

l

s

ng
r

ild
n

 a

n

s
s
el

e

.
h
et

s

ts
e

m

ABSTRACT

This document presents an overview of the Exte
modeling environment. Extend is a general-purpo
graphically-oriented, discrete event, and continuo
simulation application with an integrated authorin
environment and development system. Extend’s featu
will be demonstrated by examining a simple model of
single server, single queue system to which detail a
enhancements will be added.

1 INTRODUCTION

For many years there has been a perceived dichotom
simulation software between simulation languages a
simulators. The languages were viewed as more powe
and general purpose, while simulators focused on ease
use and were generally industry specific. Extend bridg
these two types of programs in one easy-to-use yet flex
software program. It exists as:

• A stand-alone simulation tool which can be used to
create complex discrete event and continuous mode
without programming

• A simulation authoring package where model
interfaces can be easily created, without
programming, to enhance productivity and ease of u

• A development environment for building customized
models of unique types of systems. The programmi
environment allows the modeler to create a simulato
for a specific industry.

2 EXTEND’S MODELING ENVIRONMENT

Before looking into how Extend can be used to bu
models, it is helpful to understand the Extend modeli
environment.
257
d
,

s

s
a
d

in
d
ul
of-
s
le

s

e

g

Extend models are constructed with library-based
iconic blocks. Each block describes a step in a process or
calculation. The dialogs associated with each block allow
you to define the behavior of the block as well as report o
block results. Blocks reside in libraries. Each library
represents a grouping of blocks with similar characteristic
such as Discrete Event, Plotters, Electronics, or Busines
Process Reengineering. Blocks are placed on the mod
worksheet by dragging them from the library window onto
the worksheet. The flow is then established between th
blocks.

There are two types of logical flows between the
Extend blocks. The first type of flow is that of “items,"
which represent the objects that move through the system
Items can have attributes and priorities associated wit
them. Examples of items include parts, patients, or a pack
of information. The second type of logical flow is “values,"
which will change over time during the simulation run.
Values represent a single number. Examples of value
include the number of items in queue, the result of a
random sample, and the level of fluid in a tank.

Each block has connectors that are the interface poin
of the block. Figure 1 shows the connector symbols for th
value and item connectors.

Item InputValue Input

Value Output Item Output

Figure 1: Value and Item Connectors

Connections are lines used to specify the logical flow
from one connector to another. Double lines represent ite
connections and single lines represent value connections.

Rivera

t

ic
on
e
s

n

y,

e
a
d

n
e
a

e
k.
3 CAR WASH EXAMPLE

In the following example, we will consider a single server
single queue system. For the purpose of illustration, w
will model a car wash with one wash bay and one waitin
line. The model for this car wash is shown in Figure 2.

Figure 2: A Single Server Single Queue Model

The block on the far left is a Generator block an
periodically creates items (in this case dirty cars
Following this is a Queue, FIFO block that holds the ca
until requested by the next block. The Activity Delay has
limited capacity of one processing unit and delays the c
for a fixed amount of time. This block represents the was
bay. The last block in the model is an Exit block tha
removes the cars from the system.

3.1 Random Processing Time

Suppose that the processing time for the wash bay is b
represented by a specific random distribution. This can
modeled by connecting the output of an Input Rando
Number block to the delay connector (labeled "D") on th
Activity Delay block as in Figure 3. Every time a car
enters the wash bay, a new processing time is reques
from the Input Random Number block. For each reques
the Input Random Number block generates a ne
processing time from the specific random distributio
defined in the block’s dialog.

Figure 3: A Model with Random Process Times

3.2 Graphical Output

To graphically display model metrics, you can add
Discrete Event Plotter. In this example (Figure 4), th
Plotter will graph the contents of the Queue, or the numb
25
,
e
g

d
).
rs
a
ar
h
t

est
be
m
e

ted
t,
w
n

a
e
er

of dirty cars waiting in line, over time. To accomplish this,
the Discrete Event Plotter value input connector is
connected to the Queue's length (labeled "L") value outpu
connector as follows:

Figure 4: Discrete Event Plotter Added to Model

3.3 Attributes

Assume that our car wash offers two types of washes, bas
and deluxe, and that the processing time is dependent up
the type of wash requested. To differentiate between th
two different types of wash requests, we can add attribute
to the dirty cars. Using a Set Attribute Block we can add a
attribute called “type” to each car and randomly set the
value of this attribute to 0 (basic) or 1 (deluxe) using
another Input Random Number Block as shown in Figure
5. As the dirty cars leave the queue and enter the wash ba
we can read the “type” attribute using a Get Attribute
block, and convert this number to a value representing th
mean processing time for washes of that type using
Conversion Table block. The mean value can then be fe
into the Input Random Number Block that is already
connected to the delay connector of the Activity Delay
(Figure 5).

Figure 5: Setting "Type" Attribute

3.4 Resources

When the dirty cars are ready to be washed, they are drive
through the wash by one of the car wash attendants. W
can model the attendants as resources by adding
Resource Pool block. Within this block we can specify
how many attendants are on shift. We must also replac
the Queue, FIFO block with a Queue, Resource Pool bloc
8

Modeling With Extend

th
ma
wil
 a
 th
ts
 c

the
y
as

a
t o
ai
.2
as

 th
t o
y

ted
re
 to
uc
ta
Co
os

cos
a

th
ata
te

els
 a
fte
t

Ed
eld

ll

.

n

Within the Queue, Resource Pool Block we can specify
type and number of resources required before the item
be released to the next block. Therefore, dirty cars
enter the Queue, Resource Pool block and wait until
attendant is available. If an attendant is available and
wash can accept another car, the number of attendan
the Resource Pool block is decremented by one and the
is allowed to proceed into the wash bay. Upon exiting
wash bay, the attendant is no longer needed and ma
release back to the Resource Pool with the Rele
Resource block as shown in Figure 6.

Figure 6: Modeling Resources

3.5 Activity Based Costing

Now that we have a basic model of our car wash, we m
decide that we would like to calculate the average cos
washing the cars. We know that each attendant is p
$8.50 an hour. We also know that each car will use $1
in soap and that the electricity and water used by the w
bay cost $1.50 per minute. We can define the cost of
attendant within the Resource Pool block and the cos
the soap, water and electricity into the Activity Dela
block (Figure 7). As we run the model, the accumula
cost of each vehicle is automatically calculated and sto
in an attribute. The Cost By Item Block can be added
read the cost attribute, sort the items by an attribute, s
as the “type” attribute, and report on the throughput, to
cost and average cost by type of wash requested. The
Stats Block can also be added to report the total c
generated in each of the blocks, for example the total
generated by the attendants (Resource Pool) or the w
bay (Activity Delay).

3.6 Interprocess Communication

The term interprocess communication (IPC) describes
act of two applications communicating and sharing d
with one another. This feature allows you to integra
external data and applications into your Extend mod
For example, suppose we would like to use data from
Excel spreadsheet as inputs to our car wash model. A
copying data from the spreadsheet, you can selec
parameter in Extend and choose Paste Link from the
menu. The data will be copied into the parameter’s fi
259
e
y

l
n
e
in
ar

be
e

y
f
d
5
h
e
f

d

h
l
st
t
t

sh

e

.
n
r
a
it

and a dynamic link between that parameter and the specific
cells from the Excel spreadsheet will be created. If the
values change in the spreadsheet, the parameters wi
automatically be updated in Extend. A link of this type can
be created for both input parameters and output data
Blocks and functions are also provided for additional
interprocess communication capabilities such as running
macros, using spreadsheets as lookup tables, or eve
controlling Extend from another application.

Figure 7: Cost Tab of Activity Delay Block

3.7 Model Results

Once the simulation run has completed, the results of the
simulation are reported within the blocks. Double clicking
on each block reveals the information collected from the
simulation run. For example, double clicking on the Queue,
Resource Pool block opens a dialog showing the
information illustrated in Figure 8 about the state of the
Queue, Resource Pool block:

Figure 8: Dialog of Queue FIFO

The Plotter block shows the number of items stored in
the Queue, Resource Pool over time in both graphical and
tabular format as illustrated in Figure 9.

Rivera

d

a

u

o

b
h

w

n

nd
so

,
e

r

l

a

,
r

t

n

s
e

f
s

s
s

Figure 9: Plot of Queue Length

Simulation results may be stored in a table, plotte
cloned to a different area of the worksheet, exported
another program such as a spreadsheet or datab
displayed in an animation, or used to control some asp
of the outside world via external device drivers.

3.8 Data Analysis

Extend offers a number of tools for analyzing both inp
and output data. An interface is provided to distribution
fitting programs that aid users in selecting the appropria
statistical distributions based on empirical data collected
the field.

In addition, sensitivity analysis can be performed t
determine how sensitive a system is to changes in spec
input parameters. Suppose we would like to determine h
sensitive our car wash is to changes in the inter-arrival tim
of dirty cars. To accomplish this, we can perform
sensitivity analysis on the inter-arrival mean parameter
the Generator Block. By selecting the inter-arrival tim
dialog item and choosing Sensitize Parameter from the E
menu, we can define how the parameter should chan
from run to run. Simulation parameters such as the num
of runs and simulation end time can be specified in t
Simulation Setup dialog item under the Run menu. B
cycling through different inter-arrival times for the dirty
cars and comparing the results from the different runs,
can get an understanding of how sensitive our car wash
to the arrival rate of dirty cars.

The Statistics library helps users to collect and analy
output data. Blocks from the Statistics library
automatically gather data from the appropriate blocks a
calculate confidence intervals.

4 CUSTOMIZING EXTEND

The above discussion illustrates the highly graphical a
interactive nature of Extend. However, Extend can al
26
,
to
se,

ect

t
-
te
in

o
ific
w
e

of
e
dit
ge
er
e
y

e
 is

ze

d

take the shape of the model application. Interfaces
components, and graphics can be used which tailor th
model to a specific application area.

The most visible aspect of a custom model is the use
interface. By modifying an existing interface or creating a
new one, the simulation modeler is able to create a mode
which can be exercised by someone more familiar with the
system than with the simulation tool. Models can be built
that fit naturally into the conceptual framework of the
person using the model. The following sections will
describe some of the tools provided in Extend that allow
you to customize your model.

4.1 Animation

Animation is a powerful presentation and debugging tool
that can greatly increase model clarity. In Extend,
animation icons moving from block to block represent the
flow of items through the system. Users can choose from
number of icons provided with Extend or create their own
in an external drawing package.

For example, we may want to see cars traveling from
block to block in our car wash model. By selecting the
appropriate icon in the Animate tab of the Generator block
we can define how all of the items created by the Generato
will be represented. In addition, any block that the items
pass through has the capability of changing the item’s
animation icon. For example, we may choose to represen
every item exiting the Generator block with a picture of a
dirty car. As the items pass through the wash bay, we ca
have the Activity Delay block change each item’s
animation picture to a clean car, thus providing visual cue
of how the items are changing as they progress through th
model.

In addition, custom animation can be added to display
pictures and text, level indicators, pixel maps, and
QuickTime movies.

4.2 Hierarchical Modeling

Hierarchy allows models to be subdivided into logical
components or sub-models. A single descriptive icon can
represent each sub-model. Double clicking on the
hierarchical block will open a new window displaying the
sub-model. This can greatly simplify the representation o
a model and allow the user to hide and show model detail
as appropriate for the target audience.

Let us consider our car wash model (Figure 6). As we
have added detail to the model, the number of blocks ha
increased. As a result, the representation of the model ha
become slightly encumbered with model details.
0

Modeling With Extend

th

k
an
ic

b
g
r
a
m
n
h
in
n

u
 t
a
th

e
v
in
to
r

i
 t
 a

g a

r
 to
a
he

 a
l.
an
te

s

,
r

e

lp
y
w

s
r
.

Suppose we would like to represent the model by
system’s most basic elements:

• the arrival of dirty cars

• the queue of dirty cars waiting for availability of the
wash bay

• the wash bay

• the departure of clean cars

By selecting a group of blocks and choosing Ma
Selection Hierarchical from the Model menu, you c
encapsulate a section of the model within a hierarch
block. This block can be saved to a library and re-used
other models. The icon for the hierarchical block can
modified by using the built-in icon editor or by importin
an existing picture. The number of hierarchical laye
allowed in Extend is unlimited. Figure 10 shows the c
wash model with hierarchical blocks representing so
basic elements of our car wash. While the representatio
the model is more intuitive and simple than Figure 6, t
detail of the model can still be accessed by double click
on any of the hierarchical blocks to display the underlyi
sub-model.

Figure 10: Car Wash Model with Hierarchical Blocks

4.3 Dialog Cloning and the Notebook

As noted in the previous section, input and outp
parameters associated with the model can be found in
dialogs of the appropriate blocks. While this provides
intuitive association between system metrics and
constructs used to model them, it can make searching
specific data more difficult when working with larg
models containing many layers of hierarchy. An effecti
way of dealing with this is to use the notebook and clon
feature. With the notebook, you can create a single cus
interface to your model consolidating critical paramete
and results to a central location.

The notebook is a separate window associated w
each model. Initially the notebook is a blank worksheet
which text, pictures, and clones can be added. Clones
direct links to dialog parameters and can be create
selecting the Cloning Tool from the tool bar and draggin
261
e

e

al
in
e

s
r
e
 of
e
g
g

t
he
n
e

for

e
g
m
s

th
o
re

by

dialog parameter from a block dialog to the notebook o
model worksheet. Once a clone is created, any changes
the clone are immediately reflected in the block and vis
versa. Therefore it is no longer necessary to access t
block’s dialog to change an input parameter or view
updated results. Creative use of the notebook can result in
simple yet effective interface for a large, complex mode
Figure 11 shows the notebook for the car wash model as
illustration of how the notebook can be used to consolida
important parameters into one location.

Figure 11: Notebook for Car Wash Model

4.4 Block Development

The block development environment is one of Extend’
most powerful features. While the majority of Extend’s
users find the pre-built constructs sufficient for their needs
the block development environment provides a way fo
users to expand the modeling capabilities to perform
unusual or highly specialized tasks.

Extend’s open architecture allows you to access th
structure of any block that is shipped with Extend. By
opening the structure, you may edit the icon, dialog, he
text, and programming code of the block. You can modif
the interface and functionality of any block or create a ne
block from scratch.

ModL is the powerful and flexible language used to
define the behavior of the block. This language provide
high-level functions and features while having a familia
look and feel for users with experience programming in C
In addition, external XCMDs and DLLs can be called from
within ModL giving you the option of programming in any
language.

Rivera

.
o
l

e

a

et,
n

to

r

l

ic
el

el

),
s

al

in

o

e
 a
l

This level of extensibility has prompted many users to
develop libraries of custom blocks for specific industries
Users and third-party developers have created libraries f
modeling many systems including neural networks, contro
systems, bulk manufacturing systems, chemical process
silicon wafer fabrication, pulp and paper mills, and radio
and microwave communication systems.

4.5 Scripting

Since Extend was created from the ground up as
graphical simulation tool, much of the process of defining
a model was originally dependent on user interaction. Fo
example, the user places blocks on the model workshe
connects blocks together by drawing a connection betwee
the two, defines the block’s behavior by double-clicking
the block to open its dialog and filling the appropriate
parameters, etc. Scripting is a feature that allows models
be created and/or modified through a suite of ModL
functions. With this functionality, users can create thei
own objects that can automatically build and modify
models. With scripting, users can develop their own mode
building “wizards” or self-modifying models. Without
having to rely on general-purpose “wizards” provided by
the software vendor, users can develop “wizards” specif
to their needs and can have complete control over the lev
of detail and accuracy resultant from automated mod
building.

Coupled with Extend’s ability to communicate with
other applications using interprocess communication (IPC
scripting provides an easy way to allow other application
to control every aspect of Extend including building the
model, importing/exporting data, and running the
simulation.

5 SUMMARY

As demonstrated above, the ease-of-use of a graphic
simulator and the power and flexibility of a simulation
language are not mutually exclusive. By providing an
intuitive interface along with an extensive authoring and
development environment, Extend has succeeded
combining the best of both simulation worlds.

REFERENCES

Imagine That, Inc. 1997. Extend Software Manual. San
Jose, CA.

Rivera, Jim. 1997. Modeling with Extend, 1997 Winter
Simulation Conference Proceedings, ed. S.
Andradóttir, K. Healy, D. Withers, B. Nelson, 674-
679. IEEE, Piscataway, NJ.
262
r

s,

r

AUTHOR BIOGRAPHY

JIM RIVERA is a senior software developer with Imagine
That, Inc. whose responsibilities range from the
development of the Extend program and its libraries t
manual writing and technical support. Mr. Rivera received
a BS in 1993 in Electrical Engineering from Michigan
State University. Prior to joining Imagine That, Inc., Mr.
Rivera worked as design and analysis engineer with th
Nuclear Power Department at Wisconsin Electric and as
design engineer with the Powertrain Division of Genera
Motors.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

