
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

WINDOWS-BASED ANIMATION WITH PROOF™

James O. Henriksen

Wolverine Software Corporation
7617 Little River Turnpike

Annandale, Virginia 22003, U.S.A.

g

m
e
s

r
i
-i
n
f

e
a
o
r

o

-i

n
l

c

tr

s
e

 a

tly
t-

es.
n
8),

-
an
re
g
g

n,

ia
y
e

t
d
s

ed
,
ted

ant
at
e.
e

ABSTRACT

Proof Animation™ is a family of products for animatin
discrete event simulations. Proof is available in a variety
versions, including an inexpensive, student version, m
size and unlimited-size commercial versions, a run-ti
version, and a royalty-free, redistributable demo view
Proof is an ASCII-stream-driven, general-purpo
animation system which runs on readily available P
hardware. Its vector-based geometry provides a la
animation canvas and the ability to zoom in or out, wh
maintaining crisp, clear images. Proof includes built
drawing tools and CAD import/export for ease of creati
animation layouts, dynamic bar graphs and plots
displaying statistics, multiple-window display, and
unique presentation-making capability. Proof’s op
architecture makes it ideally suited for serving as
animation engine for models written in a wide variety
simulation and programming languages. Proof’s supe
power and performance assure smooth, realistic motion
animations, regardless of their size, complexity,
application. Proof uses Microsoft’s DirectDraw interface
for accessing video hardware. DirectDraw is a built
component of Windows 98 and Windows NT 5.0, and it
available as an add-on for Windows 95. Proof is able
exploit high-performance MMX hardware.

1 INTRODUCTION

Proof Animation is a general-purpose animator desig
for use with the widest possible variety of simulation too
Every Proof animation requires two ASCII input stream
(1) a layout stream, describing static characteristics of
animation, e.g., the background drawing over whi
objects move, and (2) a trace stream, which is a tim
ordered sequence of commands which create, des
move, and otherwise change objects displayed on
layout, portraying events in a simulation. Both of the
streams are free-format ASCII text, with well document
24
of
id-
e
r.
e
C
ge
le
n
g
or
a
n
n
f

ior
for
r

n
is
to

ed
s.
s,
an
h
e-
oy,
the
e
d

(“open”) architectures which can be generated easily in
variety of ways.

Proof can be used in post-processing mode or direc
driven by another program. When Proof is used in pos
processing mode, its input streams must be stored in fil
Trace files are almost always written using a simulatio
language or package, such as SLX (Henriksen 199
GPSS/H (Crain 1997) , Extend, Slam, Siman,
Simscript II.5, etc. Trace files can be written using non
simulation-languages, such as C, and simple trace files c
even be prepared using a text editor. Layout files a
almost always developed using Proof’s built-in drawin
tools. Proof also includes a CAD import feature, allowin
quick importing of .DXF files. Layout files can also be
generated by a program. While this is not done very ofte
it can and has been done straightforwardly.

When Proof is directly coupled to simulation software,
input streams are transmitted to Proof one line at a time v
subroutine call. Proof can be directly driven by an
program which is capable of constructing C-compatibl
Dynamic Link Library (DLL) calls; i.e., the directly driven
version of Proof is packaged as a Windows DLL.

Proof’s open, simulation-language-independen
architecture is a great strength, both technically an
commercially. From the user’s perspective, Proof provide
the opportunity to add high-quality animation to a
simulation developed using existing tools, with no
requirement to purchase and use simulation tools provid
by Wolverine Software. From Wolverine’s perspective
Proof provides a stream of sales to users already commit
to buying and using simulation tools provided by
Wolverine’s competitors.

Because language independence is such an import
strength of Proof, every effort will be made to ensure th
improvements to Proof will preserve this independenc
However, from time-to-time, improve- ments may be mad
to Proof solely for exploitation by Wolverine Software’s
simulation products, e.g., SLX and GPSS/H.
1

Henriksen

A

is
,
0

s
s
e

i
T
-

n

.

o

l
a

d
o

g

d

l

a

d

ld
he
ed
 to

t
s
ir
e

r
e

o
s

f

on
2 THE PROOF ANIMATION FAMILY

The Proof Animation product family runs on readily
available, inexpensive PC hardware. All versions require
486 or better CPU, a math coprocessor, and a VG
compatible video card. Proof is able to exploit MMX
(multi-media extensions) hardware, but MMX hardware
not required for running Proof. For non-MMX hardware
MMX features are emulated, incurring an overhead of 1
30%.

Proof is a Windows 95/98/NT application. Future
improvements to Proof will be made only to the Window
version of Proof. An older version of Proof which run
under DOS, Windows 3.x, and OS/2 as a 32-bit extend
DOS application has been frozen. Running Proof as
Windows 95/98/NT application requires Direct Draw
driver support for the video hardware used. DirectDraw
an integral component of Windows 98 and Windows N
5.0. DirectDraw run-time support is available free-of
charge as an add-on to Windows 95. A set of Window
icons is supplied with each of the Proof Animatio
products to provide single-click launching. The following
products comprise the Proof Animation family:

• PROOF ANIMATION

Proof Animation is an entry-level version of Proof
Memory size is fixed and limited. It includes built-in
CAD import/export feature. It is adequate for small t
mid-sized animations.

• PROOF PROFESSIONAL

Proof Professional exploits all available virtua
memory for animating large systems. It includes
built-in CAD import/export feature.

• RUN-TIME PROOF PROFESSIONAL

Run-time Proof Professional runs develope
animations or presentations, but has no animati
development capabilities. It provides a low cost way to
run scenarios with a fixed layout file prepared usin
Proof Professional or Proof Animation.

• STUDENT PROOF ANIMATION

The student version of Proof Animation is include
with the Using Proof Animation text. Size and playing
time limitations are imposed; otherwise it is identica
to Proof Animation.
242
 a
-

-

d
a

s

s

n

• PROOF ANIMATION DEMO MAKER

Demo versions of animations can be prepared under
licensed copy of Proof Animation or Proof
Professional containing the Demo-Maker add-on.
Copies of the executable demo files can be reproduce
and distributed free of charge and viewed by anyone.

• PROOF ANIMATION DEMO VIEWER

The Proof Demo Viewer, which is available free-of-
charge, is used to view a demos prepared with the
Demo Maker.

3 THE GENERAL-PURPOSE APPROACH

3.1 Loosely-Coupled Interface

While built to work easily with Wolverine's SLX and
GPSS/H simulation software, Proof Animation also
provides affordable and powerful animation software to
users who develop models in other simulation and
programming languages. Most animation software from
other vendors is directly coupled to their simulation
software. In other words, one cannot use their animation
software without also using their simulation software. In
some cases, the simulation and animation software are so
only as a pair, so both must be purchased regardless of t
needs of the user. The suggested advantage of the coupl
approach is that because the animator has direct access
the simulation events, development of the animation is
supposedly simplified. However, the real advantage is fel
by the vendors. They sell more software since their user
do not have an option to pick and choose based on the
needs. Moreover, a user of the coupled software has littl
or no control over what information is passed to the
animation; therefore, he or she may actually have to alte
the modeling approach used in the simulation to achiev
the desired appearance and level of detail for the
animation.

Another disadvantage of the tightly coupled
simulation/animation package is cost. Sole sources tend t
be expensive. Vendors of these tightly coupled package
often claim that their approach is the only way to add
animation to a simulation. Proof Animation has proved that
wrong. The number of success stories using Proo
Animation with other software continues to grow.
Furthermore, a benefit of the mix-and-match strategy for
software purchases is that the selection can be based
optimal functionality and price.

Windows-Based Animation With Proof™

d

s
i

s

t

o

c
r

g

-

e-

d
ld
h is
ith

re
to
d
ts

at
rd
g
he
of

D
se
g

r
o
All
ate
d

o
d
 the
t a
 at
 to
er
0

ion
g
e
ly
3.1.1 ASCII Input Streams

Proof Animation is driven by ASCII streams. Therefore,
any software capable of formatting ASCII text can be use
with Proof Animation. Proof requires two ASCII input
streams, a layout stream and a trace stream. The layo
stream describes the geometric details of the backgroun
over which objects move, provides geometric definitions
and properties for such objects, and defines logical path
along which the objects move.

Ordinarily, layout streams are produced at least in par
by using Proof Animation's drawing tools; however, the
layout stream command set specifications are published s
programs can easily be written to generate layout stream
For example, some users have written front ends for the
simulation models that allow different system design
parameters to be specified for each run. Based on the
parameters, different geometric configurations are written
and incorporated into a layout stream. The new layou
appears on screen when Proof Animation is invoked.

The trace stream contains a time-ordered sequence
commands such as CREATE, DESTROY, PLACE, PLOT,
MOVE, SET SPEED, SET COLOR and many more. This
stream provides Proof Animation with information on
when, where, and what to create, destroy, place, plot, et
Trace streams are free-format, and the commands a
easily learned and used. They provide exactly the kind o
flexibility necessary to easily be integrated with the
simulation model logic. Any language that can produce
formatted ASCII output can write a trace stream.

3.1.2 Using Proof as a Post-Processor

Proof is most commonly used as a post-processor, i.e
Proof runs after a simulation has run to completion. In
post-processing mode, both the layout and trace stream
must exist as files before invoking Proof Animation.

Two great advantages result from the post-processin
approach. First, PC hardware is not shared between th
simulation and the animation. This leaves the entire CPU
for running the animation. Second, it provides the abilities
to jump back and forth in time during the animation
playback, to speed up or slow down the viewing speed, o
show all or a specific portion of an animation. These
features make it easy to investigate unusual system
behavior or highlight points of interest.

3.1.3 Driving Proof Directly

A user-callable version of Proof is available in the
form of a Dynamic Link Library (DLL). Any software
which can format ASCII text commands and generate C
compatible subroutine calls can exploit the DLL version of
243
ut
d

s

t

o
.

r

e

f

.
e
f

.,

s

e

r

Proof. Since trace stream information is generated “on-th
fly,” concurrent animation is possible with the DLL
version of Proof.

4 GEOMETRY, MOTION, COLOR, AND
RESOLUTION

4.1 Vector-Based Geometry

In the Proof Animation product family, all layout and trace
information is based on vector geometry. Vector-base
descriptions are automatically mapped into pixels to bui
a screen image. One of the advantages of this approac
that layouts can be much larger than a single screen. W
the ability to zoom in or out and pan, larger layouts a
easily navigated to show the overall layout or zoomed in
whatever level of detail is necessary. Vector-base
geometry also provides the ability to have moving objec
realistically rotate around corners instead of the sliding
effect to which other animation packages are limited.

Another advantage of vector-based geometry is th
most CAD packages are capable of producing standa
vector-based .DXF files. In many cases, a CAD drawin
already exists for the system to be animated. If so, t
effort of redrawing an entire layout can be avoided. Pro
Animation's built-in CAD Import/Export feature provides
the capability to convert industry-standard .DXF files into
Proof Animation layout files, and vice versa. Credibility of
the study is enhanced when viewers see a familiar CA
drawing of the system integrated into the animation. The
advantages maximize the power of the animation by givin
a user total flexibility on the detail and complexity of the
drawing.

4.2 Smooth Motion

Proof Animation is able to achieve very smooth motion fo
large numbers of objects. At all times, Proof maintains tw
images, the visible screen image and a hidden image.
updating is done using the hidden image. When an upd
is completed, the hidden and visible images are flippe
instantaneously. Flipping is triggered by the vide
hardware’s vertical retrace interrupt, which is generate
each time the electron beam painting the screen reaches
lower right corner of the screen. Vertical retraces occur a
rate of 60-70 times per second. By updating the screen
the hardware’s native screen refresh rate, Proof is able
achieve very smooth motion of hundreds of objects. Oth
software can often sustain refresh rates of only 5-1
updates per second. The ultimate purpose of an animat
is to achieve a realistic depiction of the system bein
studied, allowing the audience to gain confidence in th
results of the simulation study. Objects that move smooth

Henriksen

u

n
o
8

o
e

 u

m
o
d
to
a

e
f

r
r
a
v
e
b
s
a
s
ls

o
s

e

g
re
o
i

y
n
 a

ls

ct

r
.

o-

h
.
r

d
e
d
in

l
 of

a
f

e

r
re
d
ed
d

across the screen are more realistic than those that j
across the screen.

4.3 Color and Resolution Options

All versions of Proof, including the student versio
provide for operation in 256-color mode in a variety
screen resolutions. Proof supports 640x400, 640x4
800x600, 1024x768, and 1280x1024 screen resolutio
Higher resolutions are available only if sufficient vide
memory exists for storing at least two full screen imag
For example, 1024x768 resolution cannot be used
hardware which has only 1MB of video memory, since
least 1.5MB is required to store two screen images. We
the phrase “at least,” because the ways in which vid
driver software manages video memory may in so
instances impose additional overhead, requiring m
video memory than would normally be expecte
1024x768 resolution is now commonplace on desk
computers. Most new laptop computers support at le
800x600 resolution.

Two groups of 32 colors are available for end-us
use, one group for foreground colors and one group
background colors. When two or more objects or layo
elements overlap, the color which appears on the scree
determined by making a color comparison. Highe
numbered colors take precedence over lower-numbe
colors. Backdrop colors have lower color numbers th
foreground colors, so foreground objects will always mo
over backdrop-colored objects. If two foreground-color
objects overlap, the higher color numbers are made visi
The use of color comparisons makes it possible to ea
animate such things as freeway overpasses
underpasses. Color comparisons are performed by u
MMX instructions, which can compare eight 8-bit pixe
simultaneously.

The remaining colors are dedicated for use by Pr
and Windows. Windows reserves 20 colors for its own u

5 CREATING ANIMATIONS AND PRESENTA-
TIONS

5.1 Drawing the Layout

The first step in developing an animation is to draw
layout. If a CAD drawing of the system is available in th
form of a DXF file, a user can begin by importing th
drawing into Proof, using Proof’s built-in CAD
import/export utility. Once imported, the drawing can b
examined by layer or by line style. Large CAD drawin
typically contain layers and line styles which a
inappropriate for inclusion in an animation layout. F
example, one or more layers may be used for display
24
mp

,
f
0,

ns.

s.
on
at
se

eo
e
re
.
p
st

r
or
ut
n is
-
ed
n
e
d
le.
ily
nd
ing

of
e.

a
e

e
s

r
ng

dimensions or annotations. Such layers can be quickl
eliminated, as can line styles used for unwanted hidde
lines and center lines. The resultant drawing is saved as
Proof Animation layout file. The original .DXF file
remains intact.

If a user does not have a CAD drawing or prefers to
draw using a computer, (s)he can use the drawing too
provided in Proof’s Draw Mode. Although it is mouse-
oriented, Draw Mode also allows keyboard input, so if a
user needs to draw a line of a specific length at an exa
angle, (s)he can enter these specifications numerically. To
help in drawing scaled, accurate layouts, a visible grid is
turned on automatically when Draw Mode is entered. Fo
additional aid in drawing, Proof has a Snap-to-Grid option
This option is also on as the default setting. Snap-to-Grid
limits the drawing of layout elements from grid point to
grid point, thus eliminating the chance of small gaps
between the endpoints of seemingly connected lines. Other
snap options which help draw accurate layouts are Snap-t
Endpoint which magnetically attracts the mouse cursor to
the ends of lines and arcs, and Snap-to-Tangent whic
quickly finds points of tangency between lines and arcs
All of these options can be turned on or off by the use
during the drawing session.

5.2 Defining Object Classes

Once the background of the animation is drawn, the secon
step in developing an animation is to define one or mor
object classes. This is done in Class Mode. Objects an
object classes are among the most important constructs
Proof Animation. A class provides the geometric
description of the individual objects that move throughout
the animation. The class definition also includes the initia
properties such as physical clearances, color, and speed
the individual objects. Each animation will usually have a
collection of object classes.

It is helpful to think of an object class as the template
from which the individual objects are made. An individual
object is based on the single geometric description of
particular object class. There can be an arbitrary number o
objects, such as widgets, in the system at once, but ther
need be only one widget object class.

Motion and color-changing commands in the trace
stream operate on objects. The drawn background
components, produced in Draw Mode, cannot be moved o
changed. If dynamic changes in background elements a
required, the appropriate components must first be define
as object classes and can then be created and position
directly in Draw Mode. Objects that are created and place
in the layout while the user is drawing the background are
called layout objects. Layout objects enable a user to scale
and position the objects into the layout while having the
4

Windows-Based Animation With Proof™

t

t

n

c

y

r

-

s

to

s

or

e

background components visible as reference points. Wh
the animation is running, layout objects can be manipulat
using trace stream commands. For example, if an id
machine is shown as green and a busy machine as red,
machine must first be defined as an object class. Obje
from that class can be created and placed as part of
layout stream, and their color can be changed while t
animation is executing.

5.3 Defining Paths

Proof Animation provides two kinds of motion: absolute
and guided. Absolute motion, specified by the MOVE trac
stream command, causes an object to be moved betw
two points. Guided motion always occurs along a fixe
route, called a path. For guided motion, such as travel
conveyors or along guide wires, the next step in th
animation development is to use Path Mode to define o
or more paths.

Paths are comprised of lines and arcs that represent
route that the objects will follow. This underlying
geometry must first be drawn using Draw Mode or b
imported from a CAD drawing. The logical path segmen
are then defined as a logical superstructure imposed on
of existing lines and arcs. A single line or arc can be part
one or more paths. Once defined, paths are saved as pa
a layout file.

Using paths is very simple because Proof Animatio
does all the work. The most commonly used trace strea
path command is PLACE objectID ON path. Once an
object is placed on a path, it will follow that path until i
comes to rest at the end of the path or until it is PLACE
elsewhere or DESTROYed. All objects traveling on th
same path can be stopped simultaneously and resu
movement at a later time. Paths provide outstandi
animation power in response to a single trace strea
command.

Accumulating paths provide even greater power fo
animating paths on which queuing can take place. O
accumulating paths, Proof Animation reflects physica
reality by visually queuing objects when bottlenecks occur.
This often makes a simulation model of the system mu
simpler to construct, because such queuing need not alw
be explicitly represented in the model code. Most system
contain some accumulation. This property can be used
represent certain types of conveyors, cars at a traffic sign
bank lines, and more. Paths play an especially importa
part in transportation, product flow, and material handlin
animations.
24
ile
ed
le
 the
cts
the
he

e
een
d
on
e

ne

the

e
s
top
of
rt of

n
m

d
e
me
g
m

r
n
l

h
ays

s
 to
al,
nt
g

5.4 Writing the Trace Stream

The next step in the animation development is producing
the animation trace stream. Trace streams consist of ver
readable ASCII commands. Trace streams are time
ordered. Groups of one or more animation events take
place instantaneously between TIME commands. Conside
the following portion of a trace stream:

TIME 34.6
CREATE PLANE 1
PLACE 1 ON RUNWAY3
SET 1 SPEED 75
TIME 52.8

It is very easy to visualize the results of these
commands. At time 34.6, an object with an ID number of 1
is created with geometry and properties inherited from class
PLANE. This object will appear on screen at the beginning
of a path named RUNWAY3 and begin moving along the
path. The speed at which object 1 will move is set to 75 units
of distance per unit of simulated time. These units are user
determined, e.g., feet and seconds. Proof will continue
reading trace stream commands until it reads the TIME 52.8
command, signaling the end of the events that begin at time
34.6. At this point, processing of trace stream commands is
suspended until time 52.8 is reached. The ratio of simulated
time to viewing time is constant, but user-specified.

It is very easy to produce simple trace streams such a
the one shown above with any ASCII editor. However, for
most applications, it is impractical to create trace streams by
hand. Using a simulation model or program to generate the
trace stream is usually the only viable approach. In order to
produce a trace stream, output statements are inserted in
the simulation model to write the appropriately formatted
commands. One should think of this process as building a
model of a model. Just as a model omits certain details of the
system it represents, an animation omits many details
present in a model. One must decide exactly which details
are important enough to warrant their inclusion in an
animation. For each event in the model which needs to be
portrayed on the screen, one or more trace stream command
must be generated. Typically, the number of points at which
trace stream commands must be generated is quite small. F
example, an animation of a small, but complicated prototype
conveyor system shown at the 1997 Winter Simulation
Conference required the introduction of only 14 statements
into the simulation model to produce a high-quality
animation.

The Proof Animation trace stream command set has
been designed to be easily generated. Any language with th
ability to write a formatted ASCII stream is capable of
producing a trace stream.
5

Henriksen

lity
es
ke

ts t
pl
,

ve
re

ing
he
tio
 a
a
es

 “+
d

CX
ols
an
nd
 b
ny
ard
ges
h-

an
t o
he
on
us
ple

os
ng
e

g
an
ns.
be
ll”

d
re
nt

e
f
is
t

of
a
e
e
 a

e
ts
e
e

5.5 Building a Presentation

As an optional final step, one can construct a high-qua
presentation comprised of snippets of animation, slid
text, and sound. Segments of a presentation can be lin
together using fades, dissolves, and other special effec
add polish. Presentations are defined by preparing sim
ASCII presentation script (.PSF) files. As of this writing
one must use a text editor to prepare a .PSF file; howe
a built-in presentation editor is contemplated for futu
versions of Proof.

Most presentations are implemented using group
and subgrouping constructs which allow viewers of t
presentation to navigate their way through the presenta
hierarchically. Navigation is accomplished by means of
Windows “Tree View,” as shown in Figure 1. Within
Tree View, subgroups are prefixed with small box
containing a “+” or “-”. Clicking on a “+” box causes a
compressed subgroup to be expanded and changes the
to a “-”. Clicking on a “-” compresses a displaye
subgroup into a single line.

Slides used in a presentation can be .BMP files, .P
files, or .RTF files. RTF files can be prepared using to
such as Microsoft WordPad. Using WordPad, one c
quickly prepare textual slides which incorporate color a
a variety of typefaces. Slides can be also be created
using Proof’s built-in screen-grabber or by using a
software package capable of exporting industry-stand
.BMP or .PCX bitmap files. There are many such packa
available, and virtually all of them can produce very hig
quality charts, graphs, and slides.

Presentations can be developed so that slides
animations appear on the screen for a defined amoun
time. The viewer does not have to interact with t
computer for the presentation to continue. Presentati
can also be developed to continue once a key or mo
button is pressed, giving the viewer or presenter am
time to comment on what is currently on the screen.

When developing the presentation, a user can cho
to highlight areas of interest within the animation by usi
different views or sounds (.WAV files) to draw th
viewer’s attention to particular aspects of the animation.

Proof is a well-behaved Windows application. Durin
the course of a presentation, one can switch out of
back into Proof, if necessary, to run other applicatio
Automatic transitions to/from other applications can
incorporated into a presentation by using the “sysca
presentation script command.
246
,
d
o
e

r,

n

”

y

d
f

s
e

e

d

Figure 1: Hierarchical Presentation Navigation

6 IMPROVEMENTS UNDERWAY

Proof’s DLL interface has already greatly enhance
communication between Proof and the simulation softwa
used to drive it. Over the next year, we hope to impleme
a user-callable subroutine interface for Proof. For example,
trace stream commands such as create, place on, etc.
would be implemented as user-callable subroutines. W
plan for Proof to evolve into a broader collection o
graphical tools for use with discrete event simulation. Th
evolution will facilitate more sophisticated control of wha
appears on the screen.

In addition to enhancing Proof’s output capabilities,
we plan to adapt Proof for use as an input medium for
simulation. The initial focus of these efforts will be to
adapt Proof to be a graphical input component
Wolverine’s SLX simulation language. SLX is already
very hierarchical tool. At the highest levels of SLX, on
can utilize powerful, application-specific constructs. At th
lowest levels of SLX, one can, if necessary, program in
powerful, C-like language. Best of all, SLX’s extensibility
mechanisms provide for orderly transition from on
extreme to the other. Adding graphical modeling construc
to the top end of SLX is a very natural extension. Th
forthcoming marriage of Proof and SLX is a match mad
in heaven.

Windows-Based Animation With Proof™

rd
is
n.
on
w

ns,
rs,

a
f
oof
ol

n
n
,

n:

6
,

of

he
.
n
ion
ess
n
tors
7 SUMMARY

Wolverine Software's Proof Animation has set a standa
for maximum power and performance. Proof Animation
not tied to a specific simulation language or applicatio
Proof’s features make it an ideal choice for the animati
of systems such as manufacturing and material-flo
applications, computer networks, health care applicatio
transportation, process reengineering, and many othe
while maintaining ease of use.

An animation benefits a user in every phase of
simulation study: verification, validation, presentation o
results, and the overall system design process. Pr
Animation’s unmatched features make it the perfect to
for each of these phases regardless of the application.

REFERENCES

Crain, R.C. 1997. Simulation Using GPSS/H. I
Proceedings of the 1997 Winter Simulatio
Conference, eds. S. Andradóttir, K. Healy, D. Withers
B. Nelson.

Earle, N.J. and Henriksen, J.O. 1994. Proof animatio
reaching new heights in animation. Proceedings of the
1994 Winter Simulation Conference, eds. J. Tew, S.
Manivannan, D. Sadowski, and A. Seila, 509-51
Institute of Electrical and Electronics Engineers
Piscataway, New Jersey.

Henriksen, J.O. 1998. Stretching the Boundaries
Simulation Software. In Proceedings of the 1998
Winter Simulation Conference, eds. D. Madeiros, E.
Watson, M. Manivannan, J. Carson.

Wolverine Software. 1995. Using Proof Animation
(Second Edition). Annandale, Virginia: Wolverine
Software Corporation.

AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He was the chief developer of t
first version of GPSS/H, of Proof Animation, and of SLX
He is a frequent contributor to the literature on simulatio
and has presented many papers at the Winter Simulat
Conference. Mr. Henriksen has served as the Busin
Chair and General Chair of past Winter Simulatio
Conferences. He has also served on the Board of Direc
of the conference as the ACM/SIGSIM representative.
247

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

