
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

STRETCHING THE BOUNDARIES OF SIMULATION SOFTWARE

James O. Henriksen

Wolverine Software Corporation
7617 Little River Turnpike, Suite 900
Annandale, VA 22003-2603, U.S.A.

a-
e’s
on
s
l,
es
ific
tain
rs

y.)
 to
lec
ith

re
ted
de

ed

our

we
ide
ths

t
ll

s
g

ed
te
ety
s

er
re
ng
or
e

y
g
or
t
To
ch
y

r
her
s
a

he
ss
l
nt
g
er

e

ABSTRACT

SLX is Wolverine Software’s “next generation” simul
tion language. SLX builds on the strengths of Wolverin
GPSS/H (Crain 1997). It provides powerful simulati
capabilities in a modern framework. SLX is structured a
multiplicity of layers, ranging from its C-like SLX kerne
at the bottom, through traditional simulation languag
e.g., GPSS/H, in the middle, to application-spec
language dialects and extensions at the top. SLX con
powerful extensibility mechanisms for building new laye
atop old ones. (The X in SLX stands for eXtensibilit
SLX also contains innovative features for coupling SLX
other languages and packages. This paper presents se
features of SLX and examples of how SLX is coupled w
other software, including DoD’s High Level Architectu
(HLA). Earlier papers (Henriksen 1995, 1996) presen
key concepts of the architecture of SLX, and a broa
overview than this paper, respectively.

1 INTRODUCTION

The most important characteristic of SLX is its layer
architecture, shown in Figure 1.

Packages for Non-Simulationists
Application-Specific Packages & Extensions

GPSS/H-Like Languages
Statistics & Simulation Support

C-Like Kernel Language

Figure 1: SLX’s Layered Architecture

The efficacy of SLX’s layered approach is hinges on f
key factors:

A. SLX’s layers are well-conceived. In each layer,
have taken a minimalist-generalist approach. Cons
the design of SLX’s kernel. We went to great leng
227
a

,

s

ted

r

r

to minimize the “footprint” of the kernel. As a resul
of our approach, the SLX kernel is surprisingly sma
collection of precisely-defined, general primitive
which support a wide variety of higher-level modelin
approaches. For example, SLX’s kernel-level wait
until statement allows easy specification of state-bas
events, e.g., “wait until State A and State B or Sta
C.” State-based events are the foundation of a vari
of world views, e.g., transaction flow, proces
interaction, activity scan, and Petri nets.

B. SLX’s layers are properly separated. Many oth

modeling tools provide multiple layers, but often the
are wide gulfs between the layers, leading to jarri
transitions as one moves from layer to layer. F
example, a modeling package might provid
flowchart-oriented building blocks as its primar
modeling paradigm, but also provide for “droppin
down” into procedural languages such as C
FORTRAN. The problem with this approach is tha
there are only two layers, and they are too far apart.
be able to add C or FORTRAN extensions to su
software, one must first become familiar with man
details of the software’s C or FORTRAN implemen-
tation. Even worse, virtually none of the erro
checking and other safeguards provided at the hig
level are available in C or FORTRAN. SLX user
almost never find it necessary to drop down to
lower-level, more powerful language, because t
SLX kernel language has an expressivene
approaching that of C. In addition, the SLX kerne
language includes complete checking to preve
“shoot yourself in the foot” errors such as referencin
beyond the end of an array and using invalid point
variables, both of which are all too familiar to C
programmers.

C. SLX’s mechanisms for moving from layer to layer ar
very powerful. These mechanisms are abstraction

Henriksen

ac
el
els
ion
to
ar
tio
re
ge
s

e o
of
gi
al
ch

nd
xt

X
ou
m
 a

e
LX
(.h
x.
oss
 th
DL

 to
ms
e o
de
re.
y
SL
hi

lly,
re

of
is

lity

m

ter
is

 to

 a
nd
iler
for
3,
ion
ded

X
n

re
s,
han
mechanisms. Higher levels provide more abstr
descriptions than a lower levels; i.e., lower-lev
implementation details are hidden at the upper lev
SLX provides both data and procedural abstract
mechanisms. Like C, SLX provides the ability
define new data types, and to build objects which
aggregations of data types. The procedural abstrac
mechanisms of SLX, which go well beyond C, a
extremely powerful. SLX provides a macro langua
and a statement definition capability which allow
introduction of new statements into SLX. (The SLX-
hosted implementation of GPSS/H makes heavy us
the statement definition feature.) The definitions
macros and statements can contain extensive lo
including conditional expansion, looping, option
arguments, lists of arguments, etc. In fact, su
definitions are actually compiled by SLX, allowing use
of virtually all kernel-level statements. Macros a
statement definitions offer far more than simple te
substitution.

D. SLX has excellent mechanisms for coupling SL

programs with other software. For example, if y
have a collection of C functions you’d like to call fro
SLX, all you need to do is (1) place them into
Windows Dynamic Link Library (DLL), and (2)
provide prototypes which tell SLX about th
arguments and values returned by your functions. S
can automatically generate C/C++ header files
files) which define SLX objects using C/C++ synta
Thus the most error-prone step of establishing a cr
language interface, achieving exact agreement on
data structures used, has been automated. SLX’s
interface is described in Section 4.1.

(Henriksen 1997) discusses how SLX was used
build a software package for modeling conveyor syste
(Brill and Whitney 1997) presents an example of the us
SLX for datailed traffic modeling. Both references provi
examples of the exploitation of SLX’s layered architectu

In the sections which follow, SLX’s extensibilit
mechanisms are illustrated; selected features of the
kernel are presented; and examples are presented w
describe the coupling of SLX and other software. Fina
the ramifications of SLX on the teaching of simulation a
discussed.

2 EXTENSIBILITY FEATURES

SLX is an extensible platform on which a wide variety
higher level simulation applications can be built. In th
section we provide an overview of how the extensibi
mechanisms work.
228
t

.

e
n

f

c,

-
e
L

.
f

X
ch

2.1 Unbounded, Executable Compiler Extensions

In a traditional language compiler, elements of a progra
(referred to below as modules) are translated into some
form (referred to below as object code) which can be
executed by a computer or interpreted by an interpre
program. The architecture of a traditional compiler
shown in Figure 2.

 Source Code Object Code

 Module A A’
 Traditional

 Module B B’
 Compiler

 Module C C’

Figure 2: Traditional Compiler Architecture

In SLX, several source language constructs can be used
extend the SLX compiler. This architecture is shown in
Figure 3.

 Source Code Object Code

 Module A A’
 SLX

 Extension B Compiler

 B’
 Module C C’

Figure 3: SLX Compiler Architecture

When the SLX compiler encounters the definition of
compiler extension, it sets aside its current work a
processes the extension in its entirety. When the comp
resumes its work, the compiled extension is available
use throughout the rest of the compilation. In Figure
Module C can make use of extensions defined in Extens
B. This process can be used repeatedly; i.e., the exten
compiler can be further extended, without bound.

2.2 SLX’s Statement Definition Facility

One of the most commonly used forms of SL
compiler extensions is the SLX statement definitio
facility. This facility allows the introduction of new
statements into the SLX language. Such statements a
similar to macros in traditional programming language
except that they operate at the statement level, rather t
at the expression level, as is commonly the case.

Stretching the Boundaries of Simulation Software

e

e

,
th

t
 th

fu
e.

e
ng

th
nd
a

 f
a

he
he
na
t
d
f
uc
no
n

 in
n

n
at
th

rts
r
ar
he

to
.

or
e

s

s

.
st

e
e-

t

”
d
no
r

se
e

y,

ts
a

Its
by
)
e
a
an
sts

ic
r

li
ld

n

d

There are four major components of a statem
definition:

A. a prototype which specifies the syntax of the statem
(informally, “how it looks”);

B. optional logic and looping within the definition
responding to the presence, absence, and o
characteristics of statement components; and

C. one or more expand statements which injec
“generated” text into the source stream seen by
SLX compiler.

D. optional diagnose statements which issue meaning
messages when errors in statement usage are mad

SLX statement prototypes are described using a m
language which permits specification of the followi
kinds of statement components:

A. User-supplied expressions
B. User-defined keywords
C. Optional components
D. Repeated components; e.g., lists of items
E. Punctuation characters

Perhaps the most striking feature of all of SLX is
vehicle by which the logic, looping, expansion, a
issuance of diagnostics are expressed. Most langu
which have macros employ special sublanguages
defining macros. Typically such sublanguages are radic
different from, and weaker in expressive power than, t
host languages. For example, #if, #else, and #endif in t
language offer very weak capabilities for conditio
expansion of macros, and their syntax differs from tha
C itself. In SLX, there is no separate sublanguage use
statement definitions; rather, the SLX language itsel
used. The only limitation is that simulation constructs s
as time delays, fork, and wait until, which have
meaningful interpretation during program compilatio
cannot be used.

The ability to use (almost) all of the SLX language
statement definitions permits tremendous flexibility a
complexity in statement definitions. For example,
statement definition can read information from a file a
store the information in user-defined, compile-time d
structures which are interrogated and manipulated by o
statement definitions.

In addition to statement definitions, SLX suppo
more traditional macros and precursor modules. Precurso
modules are “large” SLX compiler extensions. They
not limited to just macros and statement definitions; rat
22
nt

nt

er

e

l

ta-

e

ges
or
lly
ir
 C
l
of
for
is
h

,

d
a
d
a
er

e
r,

they can contain a host of functions and data which are
be made available at compile-time, run-time, or both
Finally, note that all three forms of SLX compiler
extensions (statement definitions, macros, and precurs
modules) are compiled into executable machin
instructions by SLX. Thus, SLX fulfills the promise of
unbounded, executable user extension of SLX itself.

3 SLX KERNEL FEATURES

The number of primitives required to support simulation i
surprisingly small. Implementing some of these primitives
in a general form, however, can be very difficult. Feature
such as SLX’s generalized wait until are extremely
difficult to implement. Not surprisingly, this feature has
rarely appeared in other simulation software
Paradoxically, some of the features which are the mo
difficult to implement are the most easily understood. In
the remainder of this section, we will present som
representative features, to illustrate the functionality, eas
of-of-use, and ease-of-learning of SLX.

3.1 Objects and Pointers to Objects

In SLX, two kinds of objects are used to represen
components of systems being modeled. Passive objects are
used for modeling entities which have no “executable
behavior. In a model of a factory, widgets being produce
would be modeled as passive objects, since they have
self-determined, executable behavior. Their behavio
results from being acted upon by other objects. (For tho
readers familiar with C, passive objects are very much lik
C structs.) Active objects have executable, at least partially
self-determined behavior patterns. In a model of a factor
a foreman would be modeled as an active object.

Some entities can be modeled either as active objec
or passive objects. For example, a simple server with
FIFO queue can be modeled as a passive object.
behavior depends solely on the requests made for it
active objects. (This is the way Facilities work in GPSS/H.
For more complicated servers, an active object may b
more appropriate. Consider a butcher in a model of
supermarket. In a simple queueing model, the butcher c
be represented as a passive object, responding to reque
for service one customer at a time. In a more realist
model, a butcher would have a more complex behavio
pattern, cycling through activities of cutting meat,
arranging products in refrigerators, interacting with the de
department, taking breaks, etc. Such behavior wou
require modeling the butcher as an active object.

Objects are created by using the new operator, which
returns a pointer to the newly created object. When a
activate operator is applied to a pointer to an object, a puck
(defined in Section 3.2) is created for the object and place
9

Henriksen

n

m

h
e
a
a

-
,

e

ld
e

o
r
e
c
4

o
u

o

d
g

h

n
e
-
e
g

d

 by
re
for

as
 as
ect
h
, is
ct
 for

ory,
ble

me
ree
t be
 of
ject
nts.
on the Current Events Chain; i.e., the puck is placed i
ready-to-execute state. The new and activate operators
almost always used in a single statement:

activate new butcher;

The manipulation of pucks is the basic mechanism
which a collection of objects experiences events over ti
By rapidly switching from puck to puck, the SLX
simulator creates the illusion of parallelism among t
activities of the objects to which the pucks are attach
Scheduled time delays, e.g., service times, and state-b
delays, e.g., waiting for a server to become available,
operations performed on pucks.

3.2 What’s a Puck?

The original version of GPSS introduced the transactio
flow modeling world-view in 1962. In the transaction
flow world view, attention is focused on units of traffic
called transactions, which flow through the block diagra
representation of a system, competing for syst
resources. In the 36-year period since GPSS w
introduced, a large number of other languages ha
implemented variations of the transaction-flow wor
view. Implementation of this world view, and th
terminology used to describe it vary widely (Se
(Schriber and Brunner 1997)).

In traditional transaction-flow languages, a transacti
contains two types of data, user-defined data particula
the unit of traffic, and “scheduling” data, needed to ke
track of the state and location (current block in the blo
diagram) of the unit of traffic in a model. Figure
illustrates this architecture. In a GPSS model of
supermarket, a transaction representing a shopper w
have attributes such as probabilities of visiting vario
departments, e.g., the deli, expected number of items to
purchased in each department, etc. Scheduling data w
include priority, next scheduled event time, next mod
statement to be executed, etc. Scheduling data inclu
values which can be modified by a program, e.
transaction priority, and other values which are “interna
values maintained by run-time support routines for t
simulation language. All user-defined transaction data c
be both read and written by user code.

In SLX the functionality of a transaction is broke
down into independent lower-level components, and th
are no transactions, per se. The role of a transaction’s user
defined data is played by an instance of an SLX us
defined object class. The role of a transaction’s schedulin
data is played by an SLX puck. Each SLX object created is
an instance of its object class and has its own copy of
object class’s data. The statements which are execute
the object are contained in the actions property of the
23
 a
are

by
e.

e
d.
sed
re

n-

m
m
as
ve

e

n
 to
p
k

a
uld
s
 be
uld
el
es
.,
l”
e

an

re

r-

the
 by

object’s class and any lower-level procedures invoked
the actions property. In SLX, it is possible to have mo
than one puck for a given object. An object instance
which there are two pucks is shown in Figure 5.

Scheduling
Data

User-Defined
Attribute Data

 Block

 Current Block
 Block

 Block

Figure 4: Traditional Transaction Architecture

 Puck 1 Object Instance Data

class x
 {

 Puck 2 actions
 {
 statement
 statement

 }
 };

Figure 5: An Active Object With Two Pucks

3.3 Inter-Object and Intra-Object Parallelism

In SLX, parallelism can be modeled in two ways:
interactions among objects (inter-object parallelism) and
multiple actions performed on behalf of the same obj
(intra-object parallelism.) Inter-object parallelism, in whic
there is a 1:1 relationship between objects and pucks
functionally equivalent to transaction flow. Intra-obje
parallelism is achieved by creating more than one puck
an active object. This is accomplished by means of a fork
statement. Suppose that in developing a model of a fact
we need to model a complicated machine which is capa
of performing three operations simultaneously. So
components of the machine are common to all th
operations. The data describing such components mus
easily accessible within the portions of the model for each
the three operations. Figure 6 shows how an active ob
can be used to model such a machine, using fork stateme
0

Stretching the Boundaries of Simulation Software

th
th
ith
e
ex
hi
ss
h
n

ly
o
s
d,
 b
th
p
he
en

an
 t
o

or
e
d

 t
tio

e
ta

t

is

n
al
h
e
ly
s

e
rt
d

s
he
,

d
g

ks

,
o

Each fork statement creates a new puck for
machine object. The offspring puck is placed on
Current Events Chain, poised to execute the actions w
the braces (“{…}”) following the fork statement. Th
parent puck continues its execution with the n
statement. After the second fork is executed, the mac
object has three pucks, each of which has direct acce
data common to the entire machine, and each of whic
independently scheduled. Thus our active machine ca
three things at once.

class machine
{
“Declarations for variables local to the machine”

actions
{
fork

{
“actions for operation 1”
}

fork
{
“actions for operation 2”
}

“actions for operation 3”
}

};

Figure 6: Intra-Object Parallelism Using Forks

Most transaction-flow simulation languages offer on
inter-object parallelism. Most also offer some form
“cloning” operation which is superficially similar to SLX’
fork statement. When such an operation is performe
new transaction is created. The new transaction,
definition, has its own scheduling data, and usually
user-defined attributes of the parent transaction are co
into the offspring (clone). A new transaction is anot
complete instance of Figure 4. SLX’s fork statem
creates a new puck (scheduling data only) which shares the
user-defined attributes with other pucks, as shown
Figure 5.

If a language has only a transaction-cloning verb,
no fork verb, modeling system components such as
complicated machine discussed above is much m
difficult, although certainly not impossible. Consider, f
example, GPSS/H’s SPLIT block, which creates a clon
an entire transaction. We could use SPLIT blocks to mo
our machine. The difficulty arises in choosing where
store the data that must be shared by all three transac
23
e
e
in

t
ne
 to
 is
do

f

 a
y
e

ied
r
t

in

d
he
re

of
el
o
ns.

If multiple GPSS/H transactions need to share a singl
copy of data describing a component of a system, the da
must be stored in global variables. (In GPSS/H,
transactions can easily change their own attributes, bu
changing the attributes of other transactions is difficult.
Thus, storing the shared data in any given transaction
impractical.) If only one such machine exists, storing the
shared data in global variables is easy. If there is more tha
one such machine, separate collections of shared glob
variables must be used, one collection for each suc
machine. If the collection of machines does not chang
during model execution, the shared data can be statical
allocated. However, if the collection of machines change
during model execution, some form of dynamic data
management must be implemented by the modeler, sinc
GPSS/H global variables are statically allocated at the sta
of model execution; i.e., they cannot be created an
destroyed during model execution.

The fork statement is an extremely handy modeling
tool. In complex modeling situations, intra-object
parallelism can be indispensable. The use of multiple puck
offers easy shared access to object attributes among all t
pucks which belong to any given instance of the object
while preventing access by pucks which belong to a
different instance.

3.4 SLX’s Generalized Wait Until

As units of traffic flow through a model, they are subject to
two forms of delay, scheduled delays, and state-base
delays. In SLX, state-based delays are modeled usin
control variables and the wait until statement. The keyword
“control” is used as a prefix on SLX variable declarations:

control integer count;
control boolean repair_completed;

 The “control” keyword tells the SLX compiler that at
each point at which the value of the control variable is
changed, a check must be made to see whether any puc
in the model are currently waiting for the variable to attain
a particular value or range of values. Such waits are
described using the wait until statement:

wait until (count > 10);
wait until (repair_completed);

Compound conditions are allowed as well:

wait until (count >= 10
or repair_completed
and not repairman_busy);

SLX also supports indefinite (user-managed) waits. Three
steps are required to implement an indefinite wait. First
the puck which is going to wait must be made accessible t
1

Henriksen

 a
n
d

d

r

e

X

if
e

t
 a
d

n

e
n
.
t
rd
ar
 t

k
to

r

en

m
the
ut

e.
he
ns.
he
 a

le

d

s
is
he

tly

is
in
s
d
n,

for
a
 a

r
ve
r
 be
d
of
he
m

other pucks. This is usually done by placing the puck into
set. Second, the puck executes a wait statement with
“until” clause. Finally, at a subsequent point in simulate
time, another puck executes a reactivate statement to
reactivate the waiting puck.

Wait until expressions can include a time-base
condition.

optimistic_event_time = “some expression”
wait until (time == optimistic_event_time

or “some other condtion”);

4 SLX AS A COMPONENT OF YOUR WORLD

Although SLX is extremely powerful and flexible, there
are situations in which it is convenient to use othe
software tools in conjunction with SLX. For example, if
you have a pre-existing collection of C functions, it may b
very handy to be able to call them from SLX. The
remainder of this section provides examples of how SL
can be integrated with the other tools in your world.

4.1 SLX’s DLL Interface

SLX has very powerful facilities for calling C/C++
functions which are contained in a DLL (dynamic link
library). To call functions in a DLL, you must supply to
SLX a function prototype which defines the arguments (
any) of each function, the values returned (if any), and th
name of the DLL file. The SLX development environmen
has a menu item which can be clicked to generate
C/C++-compatible .h file which maps all SLX data passe
to and from DLL functions into C syntax. SLX objects
contain hidden elements which are used for error detectio
debugging and other internal bookkeeping functions. If an
SLX object is to be manipulated by a C function, th
hidden information must be taken into account whe
constructing an analagous C/C++ struct definition
Accordingly, object elements for which there is a direc
counterpart in C/C++ are described using straightforwa
declarations in a generated .h file, and hidden elements
declared as arrays of bytes with the dimension chosen
“pad” the C/C++ struct to achieve agreement with SLX.

When SLX detects the first call of any function in a
given DLL, it checks to see if the DLL has a function
named “connect.” If so, this function is called first, and
SLX passes it a pointer to a vector of pointers to callbac
functions inside SLX. These functions can be used
perform functions that are risky or impossible to perform
from C/C++ subsequently called DLL functions. At the
completion of execution, each DLL used is interrogated fo
the existence of a “disconnect” function. Any such
functions found are called by SLX prior to SLX program
232
o

,

e
o

termination. This allows DLLs to perform any final
“cleanup” operations, e.g., closing open files.

4.2 SLX-Proof Interface

Wolverine Software has developed an interface betwe
SLX and Proof Animation (Henriksen 1998) using SLX’s
statement definition facility. Proof requires an input strea
of ASCII commands that create and destroy objects on
screen, move them, change their colors, etc. A small, b
powerful collection of commands is used for this purpos
SLX statements have been defined for generating t
commonly used Proof commands and command optio
The syntax of the SLX statements matches that of t
corresponding Proof commands. For example, to generate

place 27 on loop

Proof command, one might write

PA_place objectID on “loop”;

In the example shown above, “27” and “loop” are variab
components of the Proof place on command. The SLX
code supplies “27” as the value of a variable name
objectID and supplies “loop” as a string constant.

The current version of the SLX-Proof interface write
Proof command streams to files. A DLL version of Proof
under development. When this version is completed, t
statement definitions in the SLX-Proof interface will be
augmented to allow the transmission of commands direc
to Proof.dll without using files. This concurrent simulation
and animation runs.

A third party has developed an SLX package that
capable of reading entire Proof layout files, storing them
SLX data structures, and rewriting the layout files. Thu
geometric characteristics of layouts drawn or modifie
using Proof are accessible to SLX programs. In additio
Proof layout files can be modified by an SLX program.

4.3 SLX-Prime Interface

Prime (Wagner and Wilson 1997) is a software package
fitting Bézier-curve-based probability distributions to dat
observations. Bézier curves can be fitted to data using
variety of automated algorithms and by visual
manipulation of the control points which define the Bézie
curve. Thus it is possible to take a fitted curve and mo
the mass of the probability distribution around. Fo
example, one might feel that in a real system, data might
a little more skewed to the right than collecte
experimental data would suggest. Visual manipulation
the distribution makes this easy to do, provided that t
resultant curve can be easily incorporated into a rando
variate generator in a simulation package.

Stretching the Boundaries of Simulation Software

l
n
e
ct
ls.
file
ts
ed
.
l
de

to
is

X

d
y

h
d
d
a
e

to
l

g
s.
s
c
y

er
g
p

e’s
gh
-
e
er
l
el

.
is

e

es

e
s

.
,
y

e

e

ve
at

,

e

l
e

l

g

/
o
of

s
f

The output of Prime is a collection of Bézier contro
points stored in a file in a straightforward ASCII format. I
cooperation with the author of Prime, Wolverine Softwar
developed several statement definitions which allow dire
incorporation of Prime-generated curves into SLX mode
The “Bézier_data” statement reads a Prime-generated
(at compile time!) and deposits the defined control poin
into an SLX object. This object can be subsequently us
for generating random variates from the fitted distribution

SLX and Prime work very well together, The initia
integration of the two packages was accomplished in un
24 hours. After the initial integration, a highly tuned
variate generator was written in assembly language,
achieve maximum efficiency in variate generation. Th
required another day’s work.

4.4 SLX-HLA Interface

SLX’s DLL interface has been used to connect SL
models with the run-time infrastructure (RTI) of HLA
(DoD 1997), DoD’s High Level Architecture for distrib-
uted simulations (Strassburger, Schulze, Klein, an
Henriksen 1998). Integration was accomplished b
building C++ wrapper functions which sit between SLX
and the RTI. The integration of SLX and HLA is highly
synergistic. It brings to SLX an architecture whic
promises to achieve widespread adoption for distribute
interoperable simulations. For people who know HLA an
want to develop such simulations, SLX provides
powerful alternative to developing simulations from th
ground up in a high-level language such as C++ or ADA.

5 TEACHING SLX

The architecture of SLX has potentially profound
implications for teaching simulation. The usual approach
teaching simulation is to “dive in” at an intermediate leve
by providing an easily understood collection of buildin
blocks and exploring some well-motivated example
Students of simulation who tackle real-world application
sooner or later reach a point at which they have to go ba
and build a foundation under their knowledge; i.e., the
have to learn how things really work (Schriber and Brunn
1997). Depending on exactly when the foundation-buildin
process takes place, students may have already develo
usage patterns which ignore some of a languag
capabilities and misuse others. For example, self-tau
users of GPSS/H will almost always favor an “active
object, passive-server” world-view, even though th
language is quite capable of expressing an “active-serv
passive object” world-view. For users of very high-leve
simulation packages, especially graphically based mod
builders, the foundation-building may never take place.
Whether this is good or bad is a matter of religion
Advocates of the very high-level approach think this
233
r

,

k

ed

t

,

-

good, while their more conservative counterparts ar
appalled by the danger of doing too much with too little
knowledge.

In SLX, the number of kernel constructs which
directly support simulation is very small. Depending on
what one counts as a simulation feature, the number rang
from roughly 8 to 12. Our experience with GPSS/H has
proven that this is a small enough number of building
blocks for beginners to readily absorb. For example, w
have seen many times that so-called “9-block GPSS/H” i
easily mastered and quite powerful.

However, even with 9-block GPSS/H, students quickly
reach a point at which foundation-building is necessary
With SLX, a bottom-up approach is feasible. For example
consider modeling a barbershop, a traditional introductor
one-line, single-server queuing model. In a beginner’s
model, the barbershop runs from 9:00-5:00, at which tim
it summarily shuts down, ignoring the customer (if any)
who is in the barber chair at that time and ignoring
customers (if any) in the queue. In a second model, mor
realistic shutdown conditions can be implemented. At 5:00
the door to the shop is closed, and the barber does not lea
until the current customer and all customers in the queue
5:00 have been served. In SLX, this condition is easily
expressed as a compound “wait until” condition, e.g., “wait
until (time >= 5:00 and queue empty and server idle).”
Thus, SLX’s wait until feature is well-motivated and easily
understood at a very early stage of model building. In SLX
wait until is the foundation of all forms of state-based
events. Thus mastery of wait until yields enormous
benefits.

SLX kernel-level simulation primitives are exposed,
i.e., they can be used directly. In most simulation software,
primitives are bound into impenetrable higher-level
features. For example, in GPSS/H there are at least fiv
building blocks which internally utilize the equivalent of
wait until. Some of these blocks have many externa
variations. Thus, students of GPSS/H must master th
external variations and learn how the underlying wait until
mechanism works. In SLX, it’s easier to learn the genera
mechanism first. Wait until is both an SLX primitive and a
fundamental modeling concept. Thus, by teaching/learnin
wait until, we can kill two birds with one stone.

The hierarchical architecture of SLX is mirrored by
Windows-based tools in the SLX model development
debugging environment. Windows can be opened t
explore every aspect of puck management. Students
SLX have the ability to see how SLX works.

6 CONCLUSIONS

SLX is a well-conceived, layered simulation system. User
of the upper layers can ignore lower layers. However, i

Henriksen

a

a

,

n.
,

h

d

f
w

.

w

nt
t
n
.
al
.
en.
lf

on.
s,

the
.

on
tion
ess
n
tors
their requirements are not met at a given level, they c
move down one or more levels, without exerting
extraordinary effort and without losing protection agains
potentially disastrous errors. Developers, who are used
working down among the lower layers, have at the
disposal powerful extensibility mechanisms for building
higher layers for use by themselves or others. SLX h
been used in a variety of very large, complex application
Its extensibility mechanisms have been heavily exploite
SLX is easily integrated with other simulation tools
including HLA. If you’re teaching or learning simulation,
or developing simulations, SLX can be an invaluabl
component of your world. SLX stretches the boundaries
simulation software.

REFERENCES

Brill, J.C and D.E. Whitney. Development and Application
of an Intermodal Mass Transit Simulation with
Detailed Traffic Modeling. In Proceedings of the 1997
Winter Simulation Conference, ed. S Andradóttir, K.J.
Healy, D.H. Withers, and B.L. Nelson. 1230-1235
Institute of Electrical and Electronics Engineers
Piscataway, New Jersey.

Crain, R.C. Simulation With GPSS/H. In Proceedings of
the 1998 Winter Simulation Conference, ed. Medeiros,
D.J., E. Watson, M.S. Manivannan, and J. Carso
Institute of Electrical and Electronics Engineers
Piscataway, New Jersey.

Department of Defense (DoD). High Level Architecture
Interface Specification Version 1.2 (1997). Available
on-line at http://hla.dmso.mil.

Henriksen, J.O., 1998 Windows-Based Animation wit
Proof. In Proceedings of the 1998 Winter Simulation
Conference, ed. Medeiros, D.J., E. Watson, M.S.
Manivannan, and J. Carson. Institute of Electrical an
Electronics Engineers, Piscataway, New Jersey.

Henriksen, J.O., 1997 An Introduction to SLX. In
Proceedings of the 1997 Winter Simulation
Conference, ed. S Andradóttir, K.J. Healy, D.H.
Withers, and B.L. Nelson. 559-566. Institute o
Electrical and Electronics Engineers, Piscataway, Ne
Jersey.

Henriksen, J.O. 1996. An Introduction to SLX. In
Proceedings of the 1996 Winter Simulation
Conference, eds. J. Charnes, D. Moore, D. Brunner, J
Swain. 468-475. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Henriksen, J.O., 1995. An Introduction to SLX. In
Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos. 502-509. Institute of
Electrical and Electronics Engineers, Piscataway, Ne
Jersey.
234
n

t
to

ir

s
s.
d.

e
of

.
,

Schriber, T.J. and D.T. Brunner. Inside Discrete-Eve
Simulation Software: How it Works and Why I
Matters. In Proceedings of the 1997 Winter Simulatio
Conference, ed. S Andradóttir, K.J. Healy, D.H
Withers, and B.L. Nelson. 14-22. Institute of Electric
and Electronics Engineers, Piscataway, New Jersey

Strassburger, S., T. Schulze, U. Klein, and J.O. Henriks
1998. Internet-Based Simulation Using Off-the-She
Simulation Tools and HLA. In Proceedings of the
1998 Winter Simulation Conference, ed. Medeiros,
D.J., E. Watson, M.S. Manivannan, and J. Cars
Institute of Electrical and Electronics Engineer
Piscataway, New Jersey.

AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He was the chief developer of
first version of GPSS/H, of Proof Animation, and of SLX
He is a frequent contributor to the literature on simulati
and has presented many papers at the Winter Simula
Conference. Mr. Henriksen has served as the Busin
Chair and General Chair of past Winter Simulatio
Conferences. He has also served on the Board of Direc
of the conference as the ACM/SIGSIM representative.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

