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ABSTRACT restricted to those that will be in the argument list of the
metamodel:

The simulation community has usetetamodelgo study

the behavior of computer simulations for over twenty-five y=9g(x) +¢. (2)

years. The most popular techniques have been based on

parametric polynomial response surface approximations. The metamodeling task involves finding ways to

In this advanced tutorial, we discuss developments in this modelg and ways to modet. We will generally denote
area, including alternative metamodel types and the metamodel asand the predicted output responses as

experimental designs. f(x) ory.
1 INTRODUCTION 9% = f(x) =y 3)
Complex computer simulation models of proposed or The major issues in metamodeling include: i) the

existing real systems are often used to make decisions onchoice of a functional form forf, ii) the design of
changes to the system design. Analysts use the simulationexperiments, i.e., the selection of a sex gbints at which
model as a surrogate because it is impractical to constructto observey (run the full model) to adjust the fit 6fto g,
multiple prototype versions of the real system, or because the assignment of random number streams, the length of
cost or other constraints prOhlblt experimentation with the runs, etc., and |||) the assessment of the adequacy of the
real system. These models themselves may be quitefited metamodel (confidence intervals, hypothesis tests,
complex, and so simpler approximations are often |ack of fit and other model diagnostics). The functional
constructed; models of the model, anetamodels  form will generally be described as a linear combination of

(Kleijnen, 1987). basis functions from a parametric family. So there are
The mathematical representation of a simulation choices for families (e.g. polynomials, sine functions,
model input - output function will be represented as piecewise polynomials, etc.) and choices for the way to
pick the 'best' representation from within a family (e.g.

y=9(v). (1) least squares, maximum likelihood, cross validation, etc.).

_ The issues of experiment design and metamodel
~ Here,y andv are vector valued, and will usually assessment are related since the selection of an experiment
include random components.  The vector for a design will be determined in part by its effect on
manufacturing simulation might include the following assessment issues.
components: the number of machines, machine processing  This review will draw from earlier papers (Barton
times, machine breakdown time probability distribution 1992 1993, 1994), with a focus on the most promising
parameters, and perhaps all the pseudorandom quantitie$netamodel and experiment design strategies. For an in-
used in the simulation run. The vectomight include the  depth discussion of metamodel fitting and validation
average work in process, the average daily throughput, andjssues, see Kleijnen and Sargent (1997).
the average daily operating expenses. The most popular techniques for constructingave

Metamodels are typically developed separately for peen based on parametric polynomial response surface
each component of, that is, for each coordinate function approximations. While we review recent developments for

of g. We will restrict out attention to input - output models polynomial metamodels, we also present alternative
where: i) y has one component, ii) the random component, metamodeling approaches:

if present, is additive, and iii) the list of parameters is
« splines,
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* radial basis functions, 2.2 Design of Experiments for RS Models

* neural networks,

» spatial correlation models, and The recent developments for polynomial response surface
* frequency-domain approximations. models have been in the area of experimental design. To

introduce these advances, we first describe the design
The paper is organized to cover each of the problem. The coefficient vect@rin (4) is determined by
metamodeling techniques in sequence, beginning with
traditional response surface methodology. For more B:(X'X)‘lX'y, (6)
background and additional metamodeling techniques, see
Barton (1993). where X = (, Xy, ..., X, for a first degree (linear)
polynomial, and includes products of these columns for
2 RESPONSE SURFACE METAMODELING higher order polynomials. From (2), we see that, sjnise

) a random vectof} will be random.
Response surface methods have been used effectively for  gome recent research relates to two propertieB. of

over thirty years as metamodels. These methods are thq:irst, one would like to minimize the varianceff This

topic of entire texts (Box and Draper 1987, Khuri and i make the approximating functidiless sensitive to the
Cornell 1987, Myers 1976), but our review must be brief. random perturbations introduced by Second, one may

ex IF(; ?tg/t?grr]p|aéfre?£iszlggem(;clijerzflzcvg§re(f)evetlt?gtedisfor ;[gre want to estimate some of the coefficients in fheector
p P ' ' without making the number of simulation runs needed to

optimization. This approach fits first or second order estimate all of the coefficients i By leaving terms out
polynomial models tg, the system response. The model of the metamodel (4), the fiting process may produce

lieosfethe ;;rpe(se’)ar\gltg?tean sc_::laé dagg aeitcoarfrg aggg:%gr.n biased estimates for the remaining coefficients. Both of
quantit View v y 10€MNYese properties are affected by the choice of the

multiple observations simultaneously. experimental design strategy. Each is discussed briefly
below.
With independents; values the variance-covariance
f matrix for the coefficient vect@ is

2.1 Mathematical Form for RS Models

Lety = (y1, ---,Yn)' represent a set of (univariate) outputs o
the simulation model run under input conditioqs..., X, ,
respectively. Theg for the multiple observations are
assumed to be independent, identically distributed ) )
Gaussian quantities with variancg The basis functions When thee; values are dependent, with covariance
are usually taken as the products of the power functions, 1, Matrix Y, the variance-covariance matrix is

X, X7, ..., giving

f(x) = X 4
() = LA0LA) “) Schruben and Margolin (1978) exploited (8) to
Herepy(x) is a product of univariate power functions, Produce a reduced variance-covariance matrix ooy
such as X)), (%)% (x)%(x), etc. Alternatively, the basis mducm_g correlat|or_1 in thes vques. The _Schruben—

Yp=0(XX)". (7)

Vg = X)X LX(XX) . 8

polynomial forf but a different representation: runs within a block, and negative correlations between
blocks. The usual statistical analysis must be modified for
f(x) = Y i) - (5) this strategy, as described by Nozari, Arnold, and Pegden

(1987) and Tew and Wilson (1992). Tew and Crenshaw
(1990) and Tew (1994) discuss the implications whkn
(x,, i) data pointsi = 1, ...,n via least squares or maximum of the random number streams are used as common or

likelihood estimation, which are identical procedures for antithetic streams across the experiment (no pure error

Gaussian errors. The resulting estimates can be thought Oitermb.rer;alns), and dTeyv and W_|Ison (1994) discuss
as random quantities that depend on the random comTlhne varlange re ucpon stra;egles. . .
observations. The advantage of (5) over (4) is that the e second experiment design issue receiving

coefficient estimates for the,'s will be uncorrelated and ?ﬁinﬁioué? g;:jn;le:gmsdif;gnsés ?ézzmlznth(zr)et;]saf C;rr]ger:gt
will be robust to small changes in the observed data. 9 Y P

modeled in (4), then simulation runs over the design space
must be chosen differently. Donohue, Houck and Myers
(1993) develop two-level factorial designs that protect

The coefficients3, or a, are estimated from observed
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against bias in the presence of polynomials of order two. where the B are the quadratic or cubic piecewise
Optimal designs are found for three pseudorandom numberpolynomial basis functions. The basis functions can be
generation strategies:  independent streams, commondescribed most simply for the univariate case. The domain
random numbers, and Schruben/Margolin CRN/ARN in is divided into intervalst], t,), [t;, t3)...[tn.1, tn) whose
orthogonal blocks. endpoints are called knots. Two sets of spline basis
Donohue, Houck and Myers (1995) discuss both functions are commonly used, the truncated power function
variance and bias in fitting quadratic models for response basis and the B-spline basis (deBoor 1978).
surface studies, extending the Schruben and Margolin and Since most simulation model output functions will not
Tew and Wilson work. They present four types of low be deterministic, interpolating splines will not be
variance and low bias designs for response surface satisfactory. The motivation forsmoothing spliness
estimation: % factorials, central composite designs, Box- based on an explicit tradeoff between the fit/accuracy of
Behnken designs, and small composite designs. the approximation at known points and smoothness of the
Response surface metamodels for discrete eventresulting metamodel. The fit term is represented as a sum
simulation models must often contend with of squared differences of the metamodel and simulation
nonhomogeneous variance. Cheng and Kleijnen (1994) model responses at each of the experimental runs. The
develop optimal design of experiments for fitting smoothness is represented by an integral of the square of
metamodels when the response is some output function ofsome derivative over the region of validity of the
a nearly saturated queue. Kleijnen and Van Groenendaalmetamodel. The relative weight of these objectives is
(1994) develop sequential experimental designs for captured by the smoothing paramet&r, A = O provides

weighted least squares regression metamodels. interpolation with no constraint on smoothness. The
function that minimizes this quantity will be a spline of
3 SPLINE METAMODELS orderk, which is in &2 (continuous derivatives up to the

(k=2)" derivative) and is a piecewise polynomial with
Any polynomial approximation represented by (4) can be terms up tox*:. The knots will occur at points i
constructed from linear combinations of the functions corresponding to the observed data,

I %, where the product is oviy and the indek may take An important issue is the selection of the value for the
the same value more than once. This choice for a basis hasmoothing parametek. The value may be chosen by
drawbacks, as mentioned earlier. visual examination of the fit, or by minimizing cross

The high order polynomial achieves a good fit by validation (like residual sum of squares), or generalized
adjusting coefficients to achieve cancellation of large cross validation (GCV) (an adjusted residual sum of
oscillations over most of the range. This reliance on squares). Eubank (1988) and Craven and Wahba (1979)
cancellation makes high order polynomial fits non-robust. discuss these approaches.

If a quadratic approximation to the function is adequate, Three classes of spline metamodels can be described
then global polynomial basis functions can be used to build as solutions to special cases of this smoothness vs. fit
the approximating metamodel. If a more accurate tradeoff: spline smoothing, spline interpolation (described
representation is needed, the simulation modeler shouldearlier), and least squares or regression splines. The key
consider other basis functions from which to build the differences are summarized below.

metamodel. Smoothing Splinesk is chosen by the user, knots are

Spline  models have been used widely for not pre-specified, but they will occur at tkevalues in the
approximation of deterministic simulation responses. optimal solution (i.e.fj = x), A can be chosen based on the
Myers et al. (1996) describe the use of splines for linking user's preference or by generalized cross validation.
submodels for system-level design, using the aerospace  Spline Interpolation:k is chosen by the user, knots are

design software ASTROS (Neill et al. 1990). not pre-specified, but they will occur at thevalues in the
) ) optimal solutionA = 0.
3.1 Mathematical Form for Spline Models Regression Splines: k is chosen by the user,

o ) ) _ ) preferably near local maxima/minima and inflection points,
The difficulties with polynomial basis functions are ynots are chosen by the uskr 0.

avoided if: i) they are applied to a small region and, ii)

only low order polynomials are used. This is the 32 Multivariate Splines

motivation for metamodels based on piecewise polynomial

basis functions. When continuity restrictions are applied to The extension of the univariate spline metamodels to
adjacent pieces, the piecewise polynomials are called myjtivariate situations has been an active area of recent

splines. The (univariate) metamodel can be written as research. Tensor products of univariate splines can be used
for multivariate metamodels (deBoor 1978). Tensor
f) =X ¢Bi(¥) 9 product approximation requires a full factorial experiment
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design to estimate the parameters of the metamodel.simulation metamodeling is limited. Dyn, Levin, and
Univariate splines are fit for each factor, for each level of Rippa (1986) and Dyn (1987) solve both of these problems
every other factor. There is no requirement for either equal by finding effective preconditioners for the linear system,
numbers of levels across all design factors, or equal and by executing only the first few iterative steps in
spacing within one factor. Because tensor product splinessolving the system of equations to provide a smooth fit to
require many experimental runs on a complete rectangular noisy data.
grid, and because there are numerical difficulties in The issue of solvability has been addressed recently
calculating the spline coefficients for metamodels with by Ball et al. (1992) and Sun (1993). Ball et al. provide
many input parameters, several alternative multivariate upper and lower bounds on thenorm of the matrix of
spline models have been proposed. Interaction splinesequation coefficients (Hardy matrix), and Sun gives
were presented by Wahba (1986). These models are lineamecessary and sufficient conditions on the location of the
combinations of products of at most two univariate splines. design points for the Hardy matrix to be nonsingular.
Multivariate Adaptive Regression Spline (MARS) Radial basis functions also arise for a class of spline
models (Friedman 1990) use a stepwise procedure tofunctions. The so called thin plate splines have radial basis
recursively partition the simulation input parameter space. functions of W-xj|Flog|k-x||. Like smoothing splines, the
The univariate product degree and the knot sequences argadial basis functions, as well as their coefficients in the
determined in a stepwise fashion based on the GCV score.metamodel, depend on the location of the observed values
The Tl model (Breiman 1991) also uses a stepwise X;.
procedure for selecting a linear combination of products of
univariate spline functions to be included in the 5 NEURAL NETWORK METAMODELS
metamodel. For all of these regression spline methods, the

authors assume that the set of data valugsy{j} to be fit Neural networks can be thought of as flexible parallel
are given. There is no discussion about the design of thecomputing devices for producing responses that are
simulation experiment to provide the best fitfd g over complex functions of multivariate input information. They
some region of interest. can approximate arbitrary smooth functions and can be
fitted using noisy response values. Neural networks are
4 RADIAL BASIS FUNCTION METAMODELS networks of numerical processors, whose inputs and

outputs are linked according to specific topologies. For an
Radial basis functions (RBF) provide an alternative introduction to neural networks, see Lippman (1987),
approach to multivariate metamodeling. In an empirical Wasserman (1989) or Masson and Wang (1990). There is
comparison, Franke (1982) found radial basis functions to a brief overview by Wilson and Sharda (1992). Networks
be superior to thin plate splines, cubic splines and B- used for function approximation are typically multi-layer
splines, and several others. Tu and Barton (1997) found feedforward networks. Feedforward layered networks
them to provide effective metamodels for electronic circuit have the flexibility to approximate smooth functions

simulation models. arbitrarily well, provided sufficient nodes and layers. This
follows from the work of Kolmogorov (1961) whose
4.1 Mathematical Form for RBF Models results imply that any continuous functiin R" -> R can

be exactly reproduced over a compact subset by a three-
The original development by Hardy (1971) introduced, layer feedforward network.  While there are some

among others, simple 'multiquadric' basis functions approximation schemes using three layers, most
approximations use a two layer network structure, with a
fx) =Y a |Kk-xi|, (10) single output node for models having a univariate

dependent variable.
where the sum is over the observed set of system The overall metamodel is then a linear combination of
responses, {, y)} and ||+|| represents the Euclidean norm. linear or nonlinear functions of the argument vector x.

The coefficients jaare found simply by replacing the left Strictly speaking, neural networks are assumed to use
hand side of (10) witly(x;), i = 1, ...,n, and solving the functions that are threshold functions. It is useful to allow
resulting linear system. more general functions, however and to think of neural

networks as a technique for computing metamodel
4.2 Design of Experiments for RBF Models coefficients and predicted values rather than as

representing a particular class of modeling techniques. All
Unfortunately, the condition number of the linear system Of the metamodels discussed in this paper can be
deteriorates rapidly with increasing dimension and implemented using a neural network structure.
increasing numbers of data values to be fitted. Also, since
this is an interpolation method, its direct application to
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6 SPATIAL CORRELATION METAMODELS strengthr (Owen 1992) are an attractive class of sparse
designs because they provide balanced (full factorial)
Sacks, Welch, Mitchell, and Wynn (1989) and numerous designs for any projection ontdactors.
references therein developspatial correlationparametric Alternative approaches to improve on the coverage of
regression modeling approach that shares some commorlLatin hypercube designs are proposed by Handcock
features with spline smoothing and kernel metamodeling. (1992), Salagame and Barton (1993) and Corsten and Stein
The expected smoothness of the function is captured in a(1994). All are hierarchical designs, in which the design
spatial correlation function. Spatial correlation models, space is first subdivided into regions to maintain balance,
also called kriging models, have recently become popular and sub-designs are constructed for a subset of the regions.
for deterministic simulation metamodels (Simpson et al. Morris et al. (1993) expand the spatial correlation
1998, Trosset and Torczon 1997, Karimi, Booker and model to consider the case where function and derivative

Mong 1996).
6.1 Mathematical Form for Spatial Models
The model assumption is

y(x) =9(x) + Z(x). (11)

information is available. Considered example with Latin
hypercube,D-optimal, and two hybrid design procedures
designed to have the properties of both Latin hypercube
andD-optimality. One of the hybrid methods provided the
smallest prediction error.

7 FREQUENCY DOMAIN METAMODELS

Z is assumed to be a Gaussian stochastic process withViewing variations ofy over its domain in terms of spatial

spatial correlation function
Cov(Z(u), Z(v)) = Ruv) = exp( L (u-v)). (12)

The value ofp is sometimes fixed at 2, arg(x) is

correlation leads naturally to the idea of Fourier basis
functions for representing an approximationgdn (2).

While such an approach is possible, it is prone to
difficulties (as is the global polynomial model) because the
Fourier decomposition is based on basis functions with

usually approximated by a constant, or a linear function of global support. Close approximationsgdfy a metamodel

X. The valuesg are estimated by maximum likelihood,

using a Fourier basis depends heavily on cancellation to

and are used to calculate approximate expected values ofichieve the desired form, which may result in a lack of

(12) to provide the metamodd(x). This metamodel
family has been used to model deterministic simulation

robustness.
This is less of an issue when modeling dynamic

models, but Sacks, et al. suggest the addition of a phenomena. Schruben and Cogliano (1987) use Fourier

stochastic term for nondeterministic  simulation
metamodeling. Mitchell and Morris (1992) discuss this
extension, as well as other correlation functions.

6.2 Design of Experiments for Spatial Correlation
Metamodels

Currin et al. (1991) discuss the design of simulation
experiments for estimating tipeand 8 parameters in (12).
Factorial designs are not appropriate for fitting these
parameters. In the case of a factorial design faators, if
there are fewer than factors active in the model, the
design will be projected effectively on the remaining
factors, giving duplicate points. For the spatial correlation
model, this leads to difficulties: the covariance matrix R
will not be full rank, and the likelihood function will be
impossible to maximize. Latin hypercube designs avoid
this problem, but often provide a poor coverage of the

space. Sacks, et al. (1989) consider initial Latin hypercube

decomposition to determine steady state input output
structure by deliberately varying input parameters
sinusoidally. There have been a series of papers since then
discussing the design of experiments for this class of
metamodels (see for example Morrice 1991, Buss 1990,
Jacobson et al. 1992, and Morrice and Schruben 1993).

For static metamodels, wavelet basis functions provide
a decomposition in both location and frequency, providing
local rather than global basis functions. The wavelet basis
elements have finite support, and are adjusted by dilation
factors to achieve a good fit (Daubechies 1988). This
methodology is still in the early stages of development. At
present, applications of wavelet models have been limited
to functions of one or two variables; in particular, to the
construction of a smoothed visual image from noisy image
intensity data.

8 CONCLUSION

experiment designs followed by the sequential addition of Developments for both response surface models and
points to minimize mean squared error integrated over the Nontraditional models provide increased efficiency and

region of interest.
The spatial correlation model provides a very good fit
with relatively small designs. Orthogonal arrays of

171

applicability for these methods. In particular, recent work
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non-traditional models. While the fitting capability of In Algorithms for Approximation, ll(based on the
these alternative methods is exciting, at the present time it proceedings of the Second International Conference on
is based on a small set of examples (see ligenstein and  Algorithms for Approximation, held at Royal Military
Sargent 1994, and Laslett 1994). A more extensive College of Science, Shrivenham, July 1988), 37-45.
computational comparison of the methods is needed, butCraven, P. and Wahba, G. 1979. Smoothing noisy data

this will have to wait for more generally available with spline functions. Numerische Mathematik31,
computer codes for the newer metamodeling methods. 377-403.
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