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ABSTRACT

The simulation community has used metamodels to study
the behavior of computer simulations for over twenty-fiv
years.  The most popular techniques have been base
parametric polynomial response surface approximatio
In this advanced tutorial, we discuss developments in 
area, including alternative metamodel types a
experimental designs.

1 INTRODUCTION

Complex computer simulation models of proposed 
existing real systems are often used to make decisions
changes to the system design. Analysts use the simula
model as a surrogate because it is impractical to const
multiple prototype versions of the real system, or beca
cost or other constraints prohibit experimentation with t
real system.  These models themselves may be q
complex, and so simpler approximations are oft
constructed; models of the model, or metamodels
(Kleijnen, 1987).

The mathematical representation of a simulati
model input - output function will be represented as

y = g(v) . (1)

Here, y and v are vector valued, and will usually
include random components.  The v vector for a
manufacturing simulation might include the followin
components:  the number of machines, machine proces
times, machine breakdown time probability distributio
parameters, and perhaps all the pseudorandom quan
used in the simulation run.  The vector y might include the
average work in process, the average daily throughput, 
the average daily operating expenses.

Metamodels are typically developed separately 
each component of y, that is, for each coordinate functio
of g.  We will restrict out attention to input - output mode
where:  i) y has one component, ii) the random compon
if present, is additive, and iii) the list of parameters 
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restricted to those that will be in the argument list of th
metamodel:

y = g(x) + ε . (2)

The metamodeling task involves finding ways to
model g and ways to model ε.  We will generally denote
the metamodel as f and the predicted output responses a
f(x) or y.

g(x) � f(x) = y (3)

The major issues in metamodeling include:  i) th
choice of a functional form for f, ii) the design of
experiments, i.e., the selection of a set of x points at which
to observe y (run the full model) to adjust the fit of f to g,
the assignment of random number streams, the length
runs, etc., and iii) the assessment of the adequacy of 
fitted metamodel (confidence intervals, hypothesis tes
lack of fit and other model diagnostics).  The functiona
form will generally be described as a linear combination 
basis functions from a parametric family.  So there a
choices for families (e.g. polynomials, sine functions
piecewise polynomials, etc.) and choices for the way 
pick the 'best' representation from within a family (e.g
least squares, maximum likelihood, cross validation, etc
The issues of experiment design and metamod
assessment are related since the selection of an experim
design will be determined in part by its effect on
assessment issues.

This review will draw from earlier papers (Barton
1992, 1993, 1994), with a focus on the most promisin
metamodel and experiment design strategies.  For an 
depth discussion of metamodel fitting and validatio
issues, see Kleijnen and Sargent (1997).

The most popular techniques for constructing f have
been based on parametric polynomial response surfa
approximations.  While we review recent developments f
polynomial metamodels, we also present alternativ
metamodeling approaches:

• splines,
7
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• radial basis functions,
• neural networks,
• spatial correlation models, and
• frequency-domain  approximations.

The paper is organized to cover each of th
metamodeling techniques in sequence, beginning w
traditional response surface methodology.  For mo
background and additional metamodeling techniques, 
Barton (1993).

2 RESPONSE SURFACE METAMODELING

Response surface methods have been used effectively
over thirty years as metamodels.  These methods are
topic of entire texts (Box and Draper 1987, Khuri an
Cornell 1987, Myers 1976), but our review must be brief.

Polynomial regression models were developed for t
'exploitation' of response surfaces (1), that is, f
optimization.  This approach fits first or second orde
polynomial models to y, the system response.  The mod
is of the form (3) with y a scalar and ε a scalar, although
these quantities are often viewed as vectors by conside
multiple observations simultaneously.

2.1 Mathematical Form for RS Models

Let y = (y1, ..., yn)' represent a set of (univariate) outputs o
the simulation model run under input conditions x1, ..., xn ,
respectively.  The εi for the multiple observations are
assumed to be independent, identically distribut
Gaussian quantities with variance σ2.  The basis functions
are usually taken as the products of the power functions
xj, xj

2, ..., giving

f(x) = �βkpk(x) (4)

Here pk(x) is a product of univariate power functions
such as (x1), (x1)2, (x3)2(x4), etc.  Alternatively, the basis
may be orthogonal polynomials, ϕk(x), providing the same
polynomial for f but a different representation:

f(x) = �αkϕk(x) . (5)

The coefficients βk or αk are estimated from observed
(xi, yi) data points, i = 1, ..., n via least squares or maximum
likelihood estimation, which are identical procedures f
Gaussian errors.  The resulting estimates can be though
as random quantities that depend on the rand
observations.  The advantage of (5) over (4) is that 
coefficient estimates for the αk's will be uncorrelated and
will be robust to small changes in the observed data.
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2.2 Design of Experiments for RS Models

The recent developments for polynomial response surface
models have been in the area of experimental design.  To
introduce these advances, we first describe the design
problem.  The coefficient vector β in (4) is determined by

β = (X'X)-1X'y , (6)

where X = (1, x1, ..., xn) for a first degree (linear)
polynomial, and includes products of these columns for
higher order polynomials.  From (2), we see that, since y is
a random vector, β will be random.

Some recent research relates to two properties of β.
First, one would like to minimize the variance of β.  This
will make the approximating function f less sensitive to the
random perturbations introduced by ε.  Second, one may
want to estimate some of the coefficients in the β vector
without making the number of simulation runs needed to
estimate all of the coefficients in β.  By leaving terms out
of the metamodel (4), the fitting process may produce
biased estimates for the remaining coefficients.  Both of
these properties are affected by the choice of the
experimental design strategy.  Each is discussed briefly
below.

With independent εi values the variance-covariance
matrix for the coefficient vector β is

�β = σ2(X'X) -1 . (7)

When the εi values are dependent, with covariance
matrix �ε, the variance-covariance matrix for β is

�β = (X'X)-1X'�εX(X'X) -1 . (8)

Schruben and Margolin (1978) exploited (8) to
produce a reduced variance-covariance matrix for β by
inducing correlation in the εi values.  The Schruben-
Margolin strategy induces positive correlation between
runs within a block, and negative correlations between
blocks.  The usual statistical analysis must be modified for
this strategy, as described by Nozari, Arnold, and Pegden
(1987) and Tew and Wilson (1992).  Tew and Crenshaw
(1990) and Tew (1994) discuss the implications when all
of the random number streams are used as common o
antithetic streams across the experiment (no pure erro
term remains), and Tew and Wilson (1994) discuss
combined variance reduction strategies.

The second experiment design issue receiving
attention in simulation designs is bias.  If there is concern
that higher order terms may be present in (2) that are no
modeled in (4), then simulation runs over the design space
must be chosen differently.  Donohue, Houck and Myers
(1993) develop two-level factorial designs that protect
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against bias in the presence of polynomials of order two
Optimal designs are found for three pseudorandom numb
generation strategies:  independent streams, comm
random numbers, and Schruben/Margolin CRN/ARN in
orthogonal blocks.

Donohue, Houck and Myers (1995) discuss both
variance and bias in fitting quadratic models for respons
surface studies, extending the Schruben and Margolin a
Tew and Wilson work.  They present four types of low
variance and low bias designs for response surfac
estimation:  3k factorials, central composite designs, Box-
Behnken designs, and small composite designs.

Response surface metamodels for discrete eve
simulation models must often contend with
nonhomogeneous variance.  Cheng and Kleijnen (199
develop optimal design of experiments for fitting
metamodels when the response is some output function 
a nearly saturated queue.  Kleijnen and Van Groenenda
(1994) develop sequential experimental designs fo
weighted least squares regression metamodels.

3 SPLINE METAMODELS

Any polynomial approximation represented by (4) can b
constructed from linear combinations of the functions
Π xjk, where the product is over k, and the index jk may take
the same value more than once.  This choice for a basis h
drawbacks, as mentioned earlier.

The high order polynomial achieves a good fit by
adjusting coefficients to achieve cancellation of large
oscillations over most of the range.  This reliance o
cancellation makes high order polynomial fits non-robus
If a quadratic approximation to the function is adequate
then global polynomial basis functions can be used to bui
the approximating metamodel.  If a more accurat
representation is needed, the simulation modeler shou
consider other basis functions from which to build the
metamodel.

Spline models have been used widely for
approximation of deterministic simulation responses
Myers et al. (1996) describe the use of splines for linkin
submodels for system-level design, using the  aerospa
design software ASTROS (Neill et al. 1990).

3.1 Mathematical Form for Spline Models

The difficulties with polynomial basis functions are
avoided if:  i) they are applied to a small region and, ii
only low order polynomials are used.  This is the
motivation for metamodels based on piecewise polynomia
basis functions.  When continuity restrictions are applied t
adjacent pieces, the piecewise polynomials are calle
splines.  The (univariate) metamodel can be written as

f(x) = � cjBj(x) (9)
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where the Bj are the quadratic or cubic piecewise
polynomial basis functions.  The basis functions can b
described most simply for the univariate case.  The doma
is divided into intervals [t1, t2), [t2, t3)...[tn-1, tn) whose
endpoints are called knots.  Two sets of spline bas
functions are commonly used, the truncated power functio
basis and the B-spline basis (deBoor 1978).

Since most simulation model output functions will not
be deterministic, interpolating splines will not be
satisfactory.  The motivation for  smoothing splines is
based on an explicit tradeoff between the fit/accuracy o
the approximation at known points and smoothness of th
resulting metamodel.  The fit term is represented as a su
of squared differences of the metamodel and simulatio
model responses at each of the experimental runs.  T
smoothness is represented by an integral of the square
some derivative over the region of validity of the
metamodel.  The relative weight of these objectives i
captured by the smoothing parameter, λ:  λ = 0 provides
interpolation with no constraint on smoothness.  The
function that minimizes this quantity will be a spline of
order k, which is in Ck-2 (continuous derivatives up to the
(k–2)th derivative) and is a piecewise polynomial with
terms up to xk-1.  The knots will occur at points in x
corresponding to the observed data, xj.

An important issue is the selection of the value for the
smoothing parameter λ.  The value may be chosen by
visual examination of the fit, or by minimizing cross
validation (like residual sum of squares), or generalize
cross validation (GCV) (an adjusted residual sum o
squares).  Eubank (1988) and Craven and Wahba (197
discuss these approaches.

Three classes of spline metamodels can be describ
as solutions to special cases of this smoothness vs. 
tradeoff:  spline smoothing, spline interpolation (described
earlier), and least squares or regression splines.  The k
differences are summarized below.

Smoothing Splines:  k is chosen by the user, knots are
not pre-specified, but they will occur at the xj values in the
optimal solution (i.e., tj = xj), λ can be chosen based on the
user's preference or by generalized cross validation.

Spline Interpolation:  k is chosen by the user, knots are
not pre-specified, but they will occur at the xj values in the
optimal solution, λ = 0.

Regression Splines:  k is chosen by the use
preferably near local maxima/minima and inflection points
knots are chosen by the user, λ = 0.

3.2 Multivariate Splines

The extension of the univariate spline metamodels t
multivariate situations has been an active area of rece
research.  Tensor products of univariate splines can be us
for multivariate metamodels (deBoor 1978).  Tenso
product approximation requires a full factorial experimen
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design to estimate the parameters of the metamod
Univariate splines are fit for each factor, for each level o
every other factor.  There is no requirement for either equ
numbers of levels across all design factors, or equ
spacing within one factor.   Because tensor product splin
require many experimental runs on a complete rectangu
grid, and because there are numerical difficulties 
calculating the spline coefficients for metamodels wit
many input parameters, several alternative multivaria
spline models have been proposed.  Interaction splin
were presented by Wahba (1986).  These models are lin
combinations of products of at most two univariate spline

Multivariate Adaptive Regression Spline (MARS)
models (Friedman 1990) use a stepwise procedure 
recursively partition the simulation input parameter spac
The univariate product degree and the knot sequences 
determined in a stepwise fashion based on the GCV sco
The Π model (Breiman 1991) also uses a stepwis
procedure for selecting a linear combination of products 
univariate spline functions to be included in the
metamodel.  For all of these regression spline methods, 
authors assume that the set of data values {(xi, yi)} to be fit
are given.  There is no discussion about the design of 
simulation experiment to provide the best fit of f to g over
some region of interest.

4 RADIAL BASIS FUNCTION METAMODELS

Radial basis functions (RBF) provide an alternativ
approach to multivariate metamodeling.  In an empiric
comparison, Franke (1982) found radial basis functions 
be superior to thin plate splines, cubic splines and B
splines, and several others.  Tu and Barton (1997) fou
them to provide effective metamodels for electronic circu
simulation models.

4.1 Mathematical Form for RBF Models

The original development by Hardy (1971) introduced
among others, simple 'multiquadric' basis functions

f(x) = � ai ||x-xi|| , (10)

where the sum is over the observed set of syste
responses, {(xi, yi)} and ||•|| represents the Euclidean norm
The coefficients ai are found simply by replacing the left
hand side of (10) with g(xi), i = 1, ..., n, and solving the
resulting linear system.

4.2 Design of Experiments for RBF Models

Unfortunately, the condition number of the linear syste
deteriorates rapidly with increasing dimension an
increasing numbers of data values to be fitted.  Also, sin
this is an interpolation method, its direct application t
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simulation metamodeling is limited.  Dyn, Levin, and
Rippa (1986) and Dyn (1987) solve both of these problem
by finding effective preconditioners for the linear system
and by executing only the first few iterative steps i
solving the system of equations to provide a smooth fit 
noisy data.

The issue of solvability has been  addressed recen
by Ball et al. (1992) and Sun (1993).  Ball et al. provid
upper and lower bounds on the l2 norm of the matrix of
equation coefficients (Hardy matrix), and Sun give
necessary and sufficient conditions on the location of t
design points for the Hardy matrix to be nonsingular.

Radial basis functions also arise for a class  of spli
functions.  The so called thin plate splines have radial ba
functions of ||x-xi||2log||x-xi||.  Like smoothing splines, the
radial basis functions, as well as their coefficients in th
metamodel, depend on the location of the observed valu
xi.

5 NEURAL NETWORK METAMODELS

Neural networks can be thought of as flexible parall
computing devices for producing responses that a
complex functions of multivariate input information.  They
can approximate arbitrary smooth functions and can 
fitted using noisy response values.  Neural networks a
networks of numerical processors, whose inputs a
outputs are linked according to specific topologies.  For 
introduction to neural networks, see Lippman (1987
Wasserman (1989) or Másson and Wang (1990).  There
a brief overview by Wilson and Sharda (1992).  Network
used for function approximation are typically multi-laye
feedforward networks.  Feedforward layered network
have the flexibility to approximate smooth function
arbitrarily well, provided sufficient nodes and layers.  Thi
follows from the work of Kolmogorov (1961) whose
results imply that any continuous function f:  Rn -> R can
be exactly reproduced  over a compact subset by a thr
layer feedforward network.  While there are som
approximation schemes using three layers, mo
approximations use a two layer network structure, with
single output node for models having a univariat
dependent variable.

The overall metamodel is then a linear combination 
linear or nonlinear functions of the argument vector x.

Strictly speaking, neural networks are assumed to u
functions that are threshold functions.  It is useful to allo
more general functions, however and to think of neur
networks as a technique for computing metamod
coefficients and predicted values rather than 
representing a particular class of modeling techniques.  
of the metamodels discussed in this paper can 
implemented using a neural network structure.
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6 SPATIAL CORRELATION METAMODELS

Sacks, Welch, Mitchell, and Wynn (1989) and numero
references therein develop a spatial correlation parametric
regression modeling approach that shares some com
features with spline smoothing and kernel metamodeli
The expected smoothness of the function is captured 
spatial correlation function.  Spatial correlation mode
also called kriging models, have recently become popu
for deterministic simulation metamodels (Simpson et 
1998, Trosset and Torczon 1997, Karimi, Booker a
Mong 1996).

6.1 Mathematical Form for Spatial Models

The model assumption is

y(x) = g(x) + Z(x). (11)

Z is assumed to be a Gaussian stochastic process 
spatial correlation function

Cov(Z(u), Z(v)) = R(u,v) = exp( -�θj(uj-vj)p). (12)

The value of p is sometimes fixed at 2, and g(x) is
usually approximated by a constant, or a linear function
x.  The values θj are estimated by maximum likelihood
and are used to calculate approximate expected value
(12) to provide the metamodel f(x).  This metamodel
family has been used to model deterministic simulati
models, but Sacks, et al. suggest the addition o
stochastic term for nondeterministic simulatio
metamodeling.  Mitchell and Morris (1992) discuss th
extension, as well as other correlation functions.

6.2 Design of Experiments for Spatial Correlation
Metamodels

Currin et al. (1991) discuss the design of simulati
experiments for estimating the p and θj parameters in (12).
Factorial designs are not appropriate for fitting the
parameters.  In the case of a factorial design on r factors, if
there are fewer than r factors active in the model, the
design will be projected effectively on the remainin
factors, giving duplicate points.  For the spatial correlati
model, this leads to difficulties:  the covariance matrix
will not be full rank, and the likelihood function will be
impossible to maximize.  Latin hypercube designs av
this problem, but often provide a poor coverage of t
space.  Sacks, et al. (1989) consider initial Latin hyperc
experiment designs followed by the sequential addition
points to minimize mean squared error integrated over 
region of interest.

The spatial correlation model provides a very good
with relatively small designs.  Orthogonal arrays 
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strength r (Owen 1992) are an attractive class of sparse
designs because they provide balanced (full factorial)
designs for any projection onto r factors.

Alternative approaches to improve on the coverage of
Latin hypercube designs are proposed by Handcock
(1992), Salagame and Barton (1993) and Corsten and Stein
(1994).  All are hierarchical designs, in which the design
space is first subdivided into regions to maintain balance,
and sub-designs are constructed for a subset of the regions

Morris et al. (1993) expand the spatial correlation
model to consider the case where function and derivative
information is available.  Considered example with Latin
hypercube, D-optimal, and two hybrid design procedures
designed to have the properties of both Latin hypercube
and D-optimality.  One of the hybrid methods provided the
smallest prediction error.

7 FREQUENCY DOMAIN METAMODELS

Viewing variations of g over its domain in terms of spatial
correlation leads naturally to the idea of Fourier basis
functions for representing an approximation to g in (2).
While such an approach is possible, it is prone to
difficulties (as is the global polynomial model) because the
Fourier decomposition is based on basis functions with
global support.  Close approximations of g by a metamodel
using a Fourier basis depends heavily on cancellation to
achieve the desired form, which may result in a lack of
robustness.

This is less of an issue when modeling dynamic
phenomena.  Schruben and Cogliano (1987) use Fourier
decomposition to determine steady state input output
structure by deliberately varying input parameters
sinusoidally.  There have been a series of papers since the
discussing the design of experiments for this class of
metamodels (see for example Morrice 1991, Buss 1990,
Jacobson et al. 1992, and Morrice and Schruben 1993).

For static metamodels, wavelet basis functions provide
a decomposition in both location and frequency, providing
local rather than global basis functions.  The wavelet basis
elements have finite support, and are adjusted by dilation
factors to achieve a good fit (Daubechies 1988).  This
methodology is still in the early stages of development.  At
present, applications of wavelet models have been limited
to functions of one or two variables; in particular, to the
construction of a smoothed visual image from noisy  image
intensity data.

8 CONCLUSION

Developments for both response surface models and
nontraditional models provide increased efficiency and
applicability for these methods.  In particular, recent work
in the areas of spatial correlation and radial basis functions
has clarified the importance of experimental design for



Barton

of
e 

 a
iv

 b
le

er
rte

 by
M

the
ta

ut-
r
.

els
en
tate

78

.

ncy
0

sig
ed
and
nt

 fo
the
ta

not
ing
ns

on

ata

,
f

tly

.
r
se

.
c
del

al

ic

l
y

 in

sts

n

be
er
n,

n
rt
non-traditional models.  While the fitting capability 
these alternative methods is exciting, at the present tim
is based on a small set of examples (see Ilgenstein
Sargent 1994, and Laslett 1994).  A more extens
computational comparison of the methods is needed,
this will have to wait for more generally availab
computer codes for the newer metamodeling methods.
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