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ABSTRACT 2 CONTINUOUS PARAMETER SIMULATION
OPTIMIZATION

We present a review of methods for optimizing stochastic

systems using simulation. The focus is on gradient-based Consider the optimization problem

techniques for optimization with respect to continuous )

decision parameters and on random search methods for Igggf (6), (1)

optimization with respect to discrete decision parameters.
whered is the (possibly vector-valued) decision parameter
consisting of the parameters of the stochastic system of

1 INTRODUCTION interest, the feasible regio® c R? is the set of possible
values of the parametér and the objective function values

Suppose that the performance of a stochastic system of /(f) represent the expected system performance when the
interest depends on the chosen values of the parameters of/@lués of the system parameters are given tby: ©.
this system, and that this system is of such complexity that We assume that the feasible regiénis continuous, and
it is necessary to use simulation to estimate the performance that the objective function valueg(6), where¢ € ©, are
of the system for each set of parameter values. We presentestimated using simulation.
a review of methods that can be used to determine the  In this section we discuss gradient-based techniques
values of the system parameters that will yield optimal for solving the optimization problem (1). We start by
performance of the system. We consider both the case 9iving an overview of gradient estimation techniques in
When the parameters Of the System can take a Continuoussection 2.1. Then we reVieW two Classes Of methOdS fOI’
range of values and the case when the parameter valuessolving the optimization problem (1), namely stochastic
must lie in a discrete set. Our focus is on gradient- approximation and sample path optimization, in Sections
based techniques for continuous parameter optimization 2-2 and 2.3, respectively.
and on random search methods for discrete parameter
optimization. We do not review some other important
classes of methods for simulation optimization, including
response surface methodology and ranking, selection, andin this section we discuss how simulation can be used
multiple comparison procedures; see for example Kleijnen to obtain estimates of the gradient of the expected
(1998) and Goldsman and Nelson (1998) for recent reviews system performancg(6) with respect to the (continuous)
of these topics aimed at simulation practitioners. Additional paramete#. For additional material on gradient estimation,
material on simulation optimization can be found in Fu the reader is referred to LUEcuyer (1991), Fu (1994), Fu
(1994), Pflug (1996), Andrandtir (1998a), and references  and Hu (1997), and references therein.
therein. The most straightforward gradient estimation approach
The organization of this paper is as follows: Section 2 involves approximating the gradient using finite differences.
contains a review of gradient-based techniques for continu- Let ¢; = (0,...,0,1,0,...,0) denote theith coordinate
ous parameter simulation optimization. Section 3 discusses vector (with one in theth position and zeros everywhere
random search methods and other recent developments forelse) for: = 1,...,d, and let ¢ be a small positive
discrete parameter simulation optimization. Finally, some scalar. Then the value of the gradigfi) = Vf(#) can
concluding remarks are given in Section 4. be estimated byj(0) = (91(0),...,34(8))", where, for

2.1 Gradient Estimation
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o) 1O ) = FO)

c

This is the gradient estimator obtained using forward
differences. When central differences are used, then
. f(e+cei)_f(9_cei)

2¢

9i(0) =
for i =1,...,d. Note that the symbolg(6), f(6 + ce;),
and f(0 — ce;) denote estimates of(6), f(0 + ce;), and
f(6—ce;) obtained from simulations at the parameter values
0, 0+ ce;, andf — ce;, respectively, fori =1,...,d. Itis

perturbation analysis (IPA). To illustrate, consider the ex-
ample given in equation (2). Suppose that observations
of the random variableX (9) are generated using inverse
transform; i.e., X(0) = F, '(U) for all § € ©, where

U is a uniform random variable on the intervf, 1]

and F; '(u) = inf{z : Fy(x) > u} for all § € © and

0 <u < 1. Then, we have that

1
g(0) = VE{F\U)} =V / Fy(u) du

| vE wan = pE ),

o . )
clear that when forward differences are used, it is necessary 8ssuming thatF,"" is differentiable with respect td

to conduct simulations af + 1 sets of parameter values,

and that the interchange of the gradient and integra-

whereas when central differences are used, it is necessarytion is valid (throughout this section, all gradients are

to conduct simulations &d parameter values. Thus, when
d > 1, the central differences approach generally involves
more computational effort than the forward differences

taken with respect to the paramet@y. Therefore, we
can generate independent and uniformly distributed ran-
dom variablesU;, ..., Uy on the interval[0, 1] and use

. . . N — . .
approach. On the other hand, estimators obtained using >_;—1 VF, ' (U;)/N as estimate of the gradieg(6). In
central differences usually have smaller bias than those general, when the performance measure of interest depends

obtained using forward differences.

A difficulty in implementing the finite differences
gradient estimation approach is that in order for the bias
to be small, it is necessary to let the scatabe small,
but whenc is small, the estimators obtained usually have
a large variance. One way of addressing this difficulty
involves using common random numbers in the different
simulations required to obtain an estimajé)) of the
value of the gradieny(0) = V £().

We now give very brief illustrations of two gradient
estimation techniques that require only a single simulation
run to obtain an estimate of the gradief¥) = V f(60)
(unlike finite differences). These techniques are perturba-
tion analysis and the likelihood ratio method. We will use
the following extremely simple example to illustrate some
key ideas that these methods are based on:

f(0) = E{X(0)} )

where X (0) is a random variable having the cumulative
distribution function Fy,. We provide references for
additional reading about these techniques, including how

for all 6 € ©,

on a sample path of a stochastic process (and not just
on a single random variable as in equation (2)), then IPA
involves considering how small perturbations in the under-
lying random variables affect the sample path generated
using these random variables.

When IPA is valid (because the interchange of the
gradient and integration is valid), it usually yields good
results (i.e., unbiased estimates of the gradient whose
variance is reasonably small). However, it is unfortunately
not difficult to develop examples where IPA is not valid.
Several other variants of perturbation analysis have been
developed to address this problem. For more material on
IPA and other perturbation analysis techniques, the reader
is referred to the references given at the beginning of this
section, and to Glasserman (1991), Ho and Cao (1991),
and references therein.

Suppose now that the random variab¥gf) has a
density functionfy. Then, assuming that we can exchange
the order of the gradient and integration, we have that

9(0) = V/xfg(x) d = /er(x) da.

to estimate gradients of performance measures that depend

on a sample path of a stochastic process, rather than The likelihood ratio method (also called the score function
only on a single random variable like the example given method) involves expressing the gradiegtd) as an

in equation (2). We will not discuss frequency domain expectation that can be estimated via simulation. This can
experimentation in this paper. This gradient estimation be accomplished by multiplying and dividing by (x) in
approach involves oscillating the value of the paraméter  the above integral, yielding

during a single simulation run. For more details on this

method, see for example Jacobson (1994) and references 4(6) / (mee(x)) folz) dz

therein. Jo(x)
Perturbation analysis is a class of related gradient esti- Vfo(X(9))

mation approaches. The best known variant is infinitesimal EAX® fo(X(9)) ]~
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(We adopt the convention that/0 = 1. It is easy The Robbins-Monro algorithm generally will only
to show that division by zero will not occur in the converge to a local optimal solution of the optimization
above equation; i.e., iffo(z) = 0 then Vfy(z) = 0.) problem (1); see Gelfand and Mitter (1991) for a discussion
Therefore, we can generate independent observationsof the use of stochastic approximation to solve global
X1(6),...,Xn(0) from the distribution Fy and use optimization problems. The sequende,} is usually
Zi]\ilXi(H)VfO(Xi(H))/fG(Xi(H))/N as our estimate of chosen of the forma,, = a/n for all n, wherea is a
q(0). positive scalar. With this choice of the sequefeg}, the

In generaL when the performance measure of interest Robbins-Monro algorithm will, under certain conditions,
depends on a number of random variables (e.g., it involves have the fastest possible asymptotic convergence rate; i.e.,
a sample path of a stochastic process), then the likelihood it Will converge to the optimal solution at the rate /2.
ratio method involves expressing this performance measure Nevertheless, even with this choice of the sequefucg},
as an integral involving the product of the densities of the the behavior of the Robbins-Monro algorithm depends on
underlying random variables. For more material on the how well the scalaw is selected.

likelihood ratio method, see for example Glynn (1990), We now briefly review some other stochastic approxi-
Rubinstein and Shapiro (1993), Andtdtir (1996b), and mation algorithms that have been developed to avoid some
references therein. of the shortcomings of the Robbins-Monro algorithm. For

Note that both perturbation analysis and the likelihood more discussion of stochastic approximation, including a
ratio method involve exploiting the structure of the discussion of how stochastic approximation algorithms can
performance measure of interest. Therefore, these methodsbe used for solving constrained optimization problems with
are not as easy to apply as the finite differences approach.noisy constraints, the reader is referred to Kushner and
However, perturbation analysis and the likelihood ratio Clark (1978), Benveniste, Btivier, and Priouret (1990),
method require only a single simulation run and often Ruppert (1991), Ljung, Pflug, and Walk (1992), Kushner
produce estimators having desirable statistical features suchand Yin (1997), and references therein. For a discussion
as unbiasedness and strong consistency (unlike the finite of the convergence of stochastic approximation algorithms
differences approach). The likelihood ratio method applies when applied to solve simulation optimization problems
in more generality than IPA (other variants of perturbation of the form given in equation (1), see Glynn (1986), Fu
analysis are frequently needed in order to obtain gradient (1990), Chong and Ramadge (1992, 1993), L'Ecuyer and
estimates with desirable statistical properties) but often Glynn (1994), and Andrdiitir (1996b).

yields estimates having a larger variance than the estimates One problem with the Robbins-Monro algorithm is
obtained using IPA (when both techniques are applicable). that when it is applied to solve optimization problems of
the form given in equation (1) with an unbounded feasible
set © (e.g., when® = RY), the convergence of the
algorithm is not guaranteed when the objective functfon
Stochastic approximation refers to a class of methods that 9"oWs faster than quadratically in the decision paramtter
can be used to solve continuous parameter simulation Andracttir (19962) has proposed an alternative approach
optimization problems of the form given in equation (1). that addresses this problem using scaling. Moreov,er_, Chen
The best known stochastic approximation algorithm is @nd Zhu (1986), Yin and Zhu (1989), and Ando#tif
called the Robbins-Monro algorithm (see Robbins and (1995&) have proposed addressing this problem using
Monro, 1951). When this algorithm is applied to solve projections onto an increasing sequence of sets.
optimization problems of the form given in equation (1) From the discussion in Section 2.1, it is clear that
with a closed and convex feasible regién it generates a when the Kiefer-Wolfowitz algorithm is applied to solve the
sequencef,,} of estimates of the optimal solution, where optimization problem (1), then it is necessary to conduct

simulations at a mininum ofl + 1 different parameter

Oni1 =7mo0(0n — ang(0y)) 3 values in each iteration of the algorithm, whedeis

the dimension of the underlying optimization problem.

for all n > 1. Here {a,} is a sequence of positive real This obviously means that whe is large, the Kiefer-

2.2 Stochastic Approximation

numbers such thap >, a, = oo and > 77 | a2 < oo, Wolfowitz algorithm requires substantial computational
§(0,,) is an estimate o§(0,,) = Vf(9,) for all n, and the effort per iteration, which could lead to slow convergence.

function 7o projects each element of 9Rto the nearest To address this problem, Spall (1992) has proposed the use
point in ©. When finite differences are used to obtain the simultaneous perturbations (requiring only two simulations
gradient estimates in equation (3), the resulting procedure per iteration, regardless of the dimensidro estimate the

is called the Kiefer-Wolfowitz algorithm (see Kiefer and gradient in equation (3). Similar ideas have been proposed
Wolfowitz, 1952). by Kushner and Clark (1978) and Ermoliev (1983).
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A considerable amount of research has explored the

choice of the sequende.,, } in equation (3). For sequences
of the forma,, = a/n for all n, wherea is a positive scalar,

It remains to demonstrate how one can obtain random
variablesYi, ..., Yy and a functionh : © x R — R for
which X;(6) = h(6,Y;) has the cumulative distribution

several researchers have developed adaptive proceduresunction Fy for ¢ = 1,...,N and all 9 € 6. We

where the value of the scalaris updated as the number

of iterations grows. For more details, see Venter (1967),
Nevel'son and Has’minskii (1973), Lai and Robbins (1979),
Ruppert (1985), and Wei (1987). For situations where the
sequence€{a,, } approaches zero too rapidly, the empirical

convergence rate can sometimes be improved by only transform technique. Then Ié&f;, ..

briefly illustrate two approaches for accomplishing this
for the above example, using IPA and likelihood ratios,
respectively.

First, as in Section 2.1, assume that observations of the
random variables{;(#) can be generated using the inverse
., Yy be independent

decreasing the value of this sequence when there is reasonand uniformly distributed on the intervdD, 1] and let
to believe that the current estimate of the solution is near h(6,y) = F, '(y) for all y € [0,1] and@ € ©. Note that
the optimal solution. This idea has been studied by Kesten the gradient of the functioh with respect tod coincides

(1958) and Delyon and Juditsky (1993). Another approach
is to use ideas from deterministic optimization to select the
sequence€a, }; see Wardi (1990), Yan and Mukai (1993),
and Shapiro and Wardi (1996a). Finally, the use of a
sequence{a, } that decreases at a slower rate tham,
together with the use of averages of the sequdiigée to

estimate the optimal solution, has received much attention

in the past few years. See Polyak (1990), Yin (1991),

Polyak and Juditsky (1992), and Kushner and Yang (1993)

for more discussion of this approach.

2.3 Sample Path Optimization

In this section, we discuss methods for continuous parame-

ter simulation optimization that involve approximating the
original simulation optimization problem (1) with a deter-
ministic optimization problem. To illustrate, suppose that
the objective function in equation (1) is of the form given in
equation (2). LetV be a positive integer and assume that
there exist independent random variablés. .., Yy and

a functionh : ©® x R — R such thatX;(0) = h(0,Y;) has
the cumulative distribution functiody for ¢ =1,..., N
and all§ € ©. Then we can approximate the objective
function with

N
. 1
In(0) =+ ;h(a,m) forall #eco.

Once the random variablésg, . .. , Yy have been generated,
the approximate objective functiqf)\;(e) is a deterministic
function of the parameté. Therefore, we can approximate
the original simulation optimization problem (1) with the
deterministic optimization problem

(4)

min £ (6).

Now a standard mathematical programming algorithm can
be applied to solve this approximate deterministic opti-
mization problem.

154

with the IPA gradient estimates discussed in Section 2.1.
Now assume that for ab € ©, the random variable

X (#) has density functiorf, and that there exist%, € ©

such that fy,(x) = 0 implies fy(x) = 0 for all =z and

0 € ©. Then we have that

f(6) /$f9($> dx

[ (#guiey) s

for all 8 € © (recall our convention that/0 = 1).
The term fy(z)/ fo,(x) is called the likelihood ratio. The
second approach involves lettiig, . . ., Yy be independent
observations drawn from the distributiofy, and letting
h(0,v) = yfo(y)/fo,(y) for all y and § € ©. Note that
the gradient of the functioh with respect tofd evaluated
at & = 6, coincides with the likelihood ratio gradient
estimates ofy(6,) discussed in Section 2.1.

The simulation optimization approach described in this
section is called sample path optimization because it only
uses simulation to generate one sample gath .., Yy,
and it yields an estimated optimal solution that depends
on the sample path that the approximate deterministic
optimization problem (4) is based on. Generally, the
integer N needs to be large in order for the approximating
optimization problem (4) to be close to the original op-
timization problem (1). Several researchers have studied
simulation optimization approaches of this form. Rubin-
stein and Shapiro (1993) have analyzed this approach using
likelihood ratios to obtain the approximate optimization
problem; their approach is called the stochastic counterpart
method. Plambeck et al. (1996) have used this method
with IPA gradient estimates. Healy and Schruben (1991)
and Healy and Xu (1994) have also studied this method;
they call it retrospective optimization. Additional research
on the convergence of the sample path optimization method
can be found in Robinson (1996) and Shapiro and Wardi
(1996b).
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3 DISCRETE PARAMETER SIMULATION comparison method. Their method combines ideas from
OPTIMIZATION Andradbttir (1996¢c) and Yan and Mukai (1992). It
resembles the method of Yan and Mukai (1992) in the
In this section, we provide a brief review of random search choice of approach for estimating the optimal solution and
methods for solving the optimization problem (1) when the in that it uses a growing amount of computer effort
feasible regiorP is discrete. We will also briefly describe  per iteration as the number of iterations grows. It
some other recent advances to the field of discrete parameterresembles the method of Andttir (1996c) in the choice
simulation optimization. Related approaches that will not of neighborhood structure and in that it compares estimated
be discussed here include ranking, selection, and multiple objective function values at neighboring points, rather than
comparison methods, methods for solving the multi-armed comparing the estimated objective function values with a

bandit problem, and learning automata procedures stochastic ruler. Andraudtir (1998b) presents a variant
of the stochastic comparison method that uses a different
3.1 Random Search approach for estimating the optimal solution (discussed at

) . ) ) the end of this subsection) and in which the computational
The random search methods discussed in this section all effort per iteration does not grow with the number of

involve moving successively between neighboring feasible iarations.

points in search of the optimal solution. For .éllle O, The use of simulated annealing to solve discrete
let N(¢) C ©\ {0} denote the set of all the neighbors of  gjmyation optimization problems has received a signif-
0. The neighborhood structur{aN(a)l 0 6] must be icant amount of attention in recent years. Bulgak and
connected, in the sense that for &lb" € ©, ¢ 7 ¢", there Sanders (1988) and Haddock and Mittenthal (1992) pro-
exist an integert and by, ..., 0, € ©, such thatfy = 0, posed heuristic simulated annealing approaches for discrete
0y =0, andf;y, € N(6;) for i =0,...,1—1 (otherwise,  ginjation optimization. Other versions of the simulated
a random search method may not converge for all starting 5nnealing approach, adapted to solve discrete simulation
points). _ optimization problems, that are built on a rigorous foun-
Andracbttir (1995b, 1996c) has developed two random  yation can be found in Gelfand and Mitter (1989), Gutjahr

search methods for discrete parameter simulation optimiza- ;g Pflug (1996), Fox and Heine (1996), and Alrefaei and
tlon. Ip each |t.erat|on of the_se mthods, the valugs of the Andradbttir (1998c).
objective function at two neighboring feasible points are Finally, Andradttir (1998b) has proposed an approach

estimated via simulation, and the alternative that yields ¢, egtimating the optimal solution that involves averaging
the better estimate is passed on to the next iteration. Both 4| the estimated objective function values at the various

algorithms use the feasible alternative that has been visited feasible points obtained so far by a random search method
most often in this process to estimate the optimal solution. 5.4 then using the point with the best average as the

The two methods differ primarily in the choice of the  ggtimated optimal solution. Numerical evidence presented
neighborhood structure used. One of the methods is locally by Andradbttir (1998b) and by Alrefaei and Andratir

convergent, while _the other one is globally convergent. (1998b, 1998¢) suggests that the use of this approach for
Yan and Mukai (1992) have proposed a random search ggtimating the optimal solution appears to yield improved

method called the s_tochastlc ruler glgo_nthm. Th|s method performance relative to other approaches for estimating
compares observations of the objective function values o optimal solution.

with observations of a uniform random variable, called
the “stochastic ruler,” whose range covers the range of the
observgd objective fulnction values. The nu.mber of such 3.2 Other Recent Developments
comparisons grows with the number of iterations. Yan and
Mukai use the current element of the sequence generatedNorkin, Ermoliev, and Ruszczynski (1994) have proposed
by their algorithm to estimate the optimal solution. a version of the branch-and-bound method (originally
Alrefaei and Andradttir (1998a) have developed a developed for discrete deterministic optimization) that
variant of the stochastic ruler algorithm that appears to is designed for solving discrete simulation optimization
perform better in practice than the original version of Yan problems. Their approach involves partitioning the feasible
and Mukai (1992). This variant requires less computational region® into subsets and estimating bounds on the objective
effort per iteration than the original method. It uses the function values within these subsets. Based on the values
number of visits to the different states to estimate the of these bounds, one (promising) subset is divided into
optimal solution, similar to the approaches of Ancbtiul smaller subsets and other (non-prospective) subsets are
(1995b, 1996¢). removed from consideration.
Gong, Ho, and Zhai (1992) have analyzed a method Pflug (1994) and Futschik and Pflug (1995) have
for discrete simulation optimization called the stochastic discussed the use of confidence sets (having the feature that
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each global solution to the underlying discrete optimization Andradbttir, S. 1995b. A method for discrete stochastic
problem lies in the confidence set with a given amount optimization. Management Sciencél:1946—-1961.

of confidence) to solve discrete simulation optimization Andradbttir, S. 1996a. A scaled stochastic approximation
problems. They discuss how valid confidence sets can be algorithm. Management Sciencé2:475-498.

obtained and how to conduct the simulation in such a way Andradbttir, S. 1996b. Optimization of the transient and

that the resulting confidence set is as small as possible.
Finally, Ho, Sreenivas, and Vakili (1992) suggest that
in situations where the feasible s@tis large, one could
quickly conduct simulations at the various feasible points
to obtain a rough ranking of these points. Then, one could
discard all except a few top points in this rough ranking,
and use a discrete simulation optimization technique to
locate the best point among the points that were not
discarded. Ho, Sreenivas, and Vakili (1992) show that the
probability that the set of points that were not discarded
contains at least one near-optimal solution to the underlying
optimization problem is often surprisingly large.

4 CONCLUSION

We have provided an introduction to simulation optimiza-
tion, with emphasis on gradient-based techniques for con-
tinuous parameter simulation optimization and on random
search methods for discrete parameter simulation opti-
mization. Although simulation optimization has received
a fair amount of attention from the research community
in recent years, the current methods generally require a
considerable amount of technical sophistication on the part
of the user, and they often require a substantial amount
of computer time as well. Therefore, additional research
aimed at increasing the efficiency and ease of application
of simulation optimization techniques would be valuable.
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