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ABSTRACT

We present a review of methods for optimizing stochasti
systems using simulation. The focus is on gradient-base
techniques for optimization with respect to continuous
decision parameters and on random search methods
optimization with respect to discrete decision parameter

1 INTRODUCTION

Suppose that the performance of a stochastic system
interest depends on the chosen values of the parameters
this system, and that this system is of such complexity th
it is necessary to use simulation to estimate the performan
of the system for each set of parameter values. We prese
a review of methods that can be used to determine th
values of the system parameters that will yield optima
performance of the system. We consider both the ca
when the parameters of the system can take a continuo
range of values and the case when the parameter valu
must lie in a discrete set. Our focus is on gradient
based techniques for continuous parameter optimizatio
and on random search methods for discrete parame
optimization. We do not review some other importan
classes of methods for simulation optimization, including
response surface methodology and ranking, selection, a
multiple comparison procedures; see for example Kleijne
(1998) and Goldsman and Nelson (1998) for recent review
of these topics aimed at simulation practitioners. Additiona
material on simulation optimization can be found in Fu
(1994), Pflug (1996), Andradóttir (1998a), and references
therein.

The organization of this paper is as follows: Section 2
contains a review of gradient-based techniques for contin
ous parameter simulation optimization. Section 3 discuss
random search methods and other recent developments
discrete parameter simulation optimization. Finally, som
concluding remarks are given in Section 4.
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2 CONTINUOUS PARAMETER SIMULATION
OPTIMIZATION

Consider the optimization problem

min
θ∈Θ

f(θ), (1)

whereθ is the (possibly vector-valued) decision parameter
consisting of the parameters of the stochastic system o
interest, the feasible regionΘ ⊂ IRd is the set of possible
values of the parameterθ, and the objective function values
f(θ) represent the expected system performance when th
values of the system parameters are given byθ ∈ Θ.
We assume that the feasible regionΘ is continuous, and
that the objective function valuesf(θ), whereθ ∈ Θ, are
estimated using simulation.

In this section we discuss gradient-based technique
for solving the optimization problem (1). We start by
giving an overview of gradient estimation techniques in
Section 2.1. Then we review two classes of methods for
solving the optimization problem (1), namely stochastic
approximation and sample path optimization, in Sections
2.2 and 2.3, respectively.

2.1 Gradient Estimation

In this section we discuss how simulation can be used
to obtain estimates of the gradient of the expected
system performancef(θ) with respect to the (continuous)
parameterθ. For additional material on gradient estimation,
the reader is referred to L’Ecuyer (1991), Fu (1994), Fu
and Hu (1997), and references therein.

The most straightforward gradient estimation approach
involves approximating the gradient using finite differences.
Let ei = (0, . . . , 0, 1, 0, . . . , 0) denote theith coordinate
vector (with one in theith position and zeros everywhere
else) for i = 1, . . . , d, and let c be a small positive
scalar. Then the value of the gradientg(θ) = ∇f(θ) can
be estimated bŷg(θ) = (ĝ1(θ), . . . , ĝd(θ))T , where, for
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i = 1, . . . , d,

ĝi(θ) =
f̂(θ + cei) − f̂(θ)

c
.

This is the gradient estimator obtained using forwa
differences. When central differences are used, then

ĝi(θ) =
f̂(θ + cei) − f̂(θ − cei)

2c

for i = 1, . . . , d. Note that the symbolŝf(θ), f̂(θ + cei),
and f̂(θ − cei) denote estimates off(θ), f(θ + cei), and
f(θ−cei) obtained from simulations at the parameter valu
θ, θ + cei, andθ − cei, respectively, fori = 1, . . . , d. It is
clear that when forward differences are used, it is necess
to conduct simulations atd + 1 sets of parameter values
whereas when central differences are used, it is neces
to conduct simulations at2d parameter values. Thus, whe
d > 1, the central differences approach generally involv
more computational effort than the forward difference
approach. On the other hand, estimators obtained us
central differences usually have smaller bias than tho
obtained using forward differences.

A difficulty in implementing the finite differences
gradient estimation approach is that in order for the b
to be small, it is necessary to let the scalarc be small,
but whenc is small, the estimators obtained usually hav
a large variance. One way of addressing this difficul
involves using common random numbers in the differe
simulations required to obtain an estimateĝ(θ) of the
value of the gradientg(θ) = ∇f(θ).

We now give very brief illustrations of two gradien
estimation techniques that require only a single simulati
run to obtain an estimate of the gradientg(θ) = ∇f(θ)
(unlike finite differences). These techniques are perturb
tion analysis and the likelihood ratio method. We will us
the following extremely simple example to illustrate som
key ideas that these methods are based on:

f(θ) = E{X(θ)} for all θ ∈ Θ, (2)

where X(θ) is a random variable having the cumulativ
distribution function Fθ. We provide references for
additional reading about these techniques, including h
to estimate gradients of performance measures that dep
on a sample path of a stochastic process, rather t
only on a single random variable like the example give
in equation (2). We will not discuss frequency doma
experimentation in this paper. This gradient estimati
approach involves oscillating the value of the parameteθ
during a single simulation run. For more details on th
method, see for example Jacobson (1994) and referen
therein.

Perturbation analysis is a class of related gradient e
mation approaches. The best known variant is infinitesim
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perturbation analysis (IPA). To illustrate, consider the ex-
ample given in equation (2). Suppose that observation
of the random variableX(θ) are generated using inverse
transform; i.e.,X(θ) = F−1

θ (U) for all θ ∈ Θ, where
U is a uniform random variable on the interval[0, 1]
and F−1

θ (u) = inf{x : Fθ(x) ≥ u} for all θ ∈ Θ and
0 ≤ u ≤ 1. Then, we have that

g(θ) = ∇E{F−1
θ (U)} = ∇

∫ 1

0
F−1

θ (u) du

=
∫ 1

0
∇F−1

θ (u) du = E{∇F−1
θ (U)},

assuming thatF−1
θ is differentiable with respect toθ

and that the interchange of the gradient and integra
tion is valid (throughout this section, all gradients are
taken with respect to the parameterθ). Therefore, we
can generate independent and uniformly distributed ran
dom variablesU1, . . . , UN on the interval[0, 1] and use∑N

i=1 ∇F−1
θ (Ui)/N as estimate of the gradientg(θ). In

general, when the performance measure of interest depen
on a sample path of a stochastic process (and not ju
on a single random variable as in equation (2)), then IPA
involves considering how small perturbations in the under
lying random variables affect the sample path generate
using these random variables.

When IPA is valid (because the interchange of the
gradient and integration is valid), it usually yields good
results (i.e., unbiased estimates of the gradient whos
variance is reasonably small). However, it is unfortunately
not difficult to develop examples where IPA is not valid.
Several other variants of perturbation analysis have bee
developed to address this problem. For more material o
IPA and other perturbation analysis techniques, the reade
is referred to the references given at the beginning of thi
section, and to Glasserman (1991), Ho and Cao (1991
and references therein.

Suppose now that the random variableX(θ) has a
density functionfθ. Then, assuming that we can exchange
the order of the gradient and integration, we have that

g(θ) = ∇
∫

xfθ(x) dx =
∫

x∇fθ(x) dx.

The likelihood ratio method (also called the score function
method) involves expressing the gradientg(θ) as an
expectation that can be estimated via simulation. This ca
be accomplished by multiplying and dividing byfθ(x) in
the above integral, yielding

g(θ) =
∫ (

x
∇fθ(x)
fθ(x)

)
fθ(x) dx

= E

{
X(θ)

∇fθ(X(θ))
fθ(X(θ))

}
.
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(We adopt the convention that0/0 = 1. It is easy
to show that division by zero will not occur in the
above equation; i.e., iffθ(x) = 0 then ∇fθ(x) = 0.)
Therefore, we can generate independent observatio
X1(θ), . . . , XN (θ) from the distribution Fθ and use∑N

i=1 Xi(θ)∇fθ(Xi(θ))/fθ(Xi(θ))/N as our estimate of
g(θ).

In general, when the performance measure of intere
depends on a number of random variables (e.g., it involv
a sample path of a stochastic process), then the likeliho
ratio method involves expressing this performance measu
as an integral involving the product of the densities of th
underlying random variables. For more material on th
likelihood ratio method, see for example Glynn (1990)
Rubinstein and Shapiro (1993), Andradóttir (1996b), and
references therein.

Note that both perturbation analysis and the likelihoo
ratio method involve exploiting the structure of the
performance measure of interest. Therefore, these meth
are not as easy to apply as the finite differences approa
However, perturbation analysis and the likelihood rati
method require only a single simulation run and ofte
produce estimators having desirable statistical features su
as unbiasedness and strong consistency (unlike the fin
differences approach). The likelihood ratio method applie
in more generality than IPA (other variants of perturbatio
analysis are frequently needed in order to obtain gradie
estimates with desirable statistical properties) but ofte
yields estimates having a larger variance than the estima
obtained using IPA (when both techniques are applicable

2.2 Stochastic Approximation

Stochastic approximation refers to a class of methods th
can be used to solve continuous parameter simulati
optimization problems of the form given in equation (1)
The best known stochastic approximation algorithm
called the Robbins-Monro algorithm (see Robbins an
Monro, 1951). When this algorithm is applied to solve
optimization problems of the form given in equation (1
with a closed and convex feasible regionΘ, it generates a
sequence{θn} of estimates of the optimal solution, where

θn+1 = πΘ(θn − anĝ(θn)) (3)

for all n ≥ 1. Here {an} is a sequence of positive real
numbers such that

∑∞
n=1 an = ∞ and

∑∞
n=1 a2

n < ∞,
ĝ(θn) is an estimate ofg(θn) = ∇f(θn) for all n, and the
function πΘ projects each element of IRd to the nearest
point in Θ. When finite differences are used to obtain th
gradient estimates in equation (3), the resulting procedu
is called the Kiefer-Wolfowitz algorithm (see Kiefer and
Wolfowitz, 1952).
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The Robbins-Monro algorithm generally will only
converge to a local optimal solution of the optimization
problem (1); see Gelfand and Mitter (1991) for a discussion
of the use of stochastic approximation to solve globa
optimization problems. The sequence{an} is usually
chosen of the forman = a/n for all n, where a is a
positive scalar. With this choice of the sequence{an}, the
Robbins-Monro algorithm will, under certain conditions,
have the fastest possible asymptotic convergence rate; i.e
it will converge to the optimal solution at the raten−1/2.
Nevertheless, even with this choice of the sequence{an},
the behavior of the Robbins-Monro algorithm depends on
how well the scalara is selected.

We now briefly review some other stochastic approxi-
mation algorithms that have been developed to avoid som
of the shortcomings of the Robbins-Monro algorithm. For
more discussion of stochastic approximation, including a
discussion of how stochastic approximation algorithms ca
be used for solving constrained optimization problems with
noisy constraints, the reader is referred to Kushner an
Clark (1978), Benveniste, Ḿetivier, and Priouret (1990),
Ruppert (1991), Ljung, Pflug, and Walk (1992), Kushner
and Yin (1997), and references therein. For a discussio
of the convergence of stochastic approximation algorithm
when applied to solve simulation optimization problems
of the form given in equation (1), see Glynn (1986), Fu
(1990), Chong and Ramadge (1992, 1993), L’Ecuyer an
Glynn (1994), and Andrad́ottir (1996b).

One problem with the Robbins-Monro algorithm is
that when it is applied to solve optimization problems of
the form given in equation (1) with an unbounded feasible
set Θ (e.g., when Θ = IRd), the convergence of the
algorithm is not guaranteed when the objective functionf
grows faster than quadratically in the decision parameterθ.
Andrad́ottir (1996a) has proposed an alternative approac
that addresses this problem using scaling. Moreover, Che
and Zhu (1986), Yin and Zhu (1989), and Andradóttir
(1995a) have proposed addressing this problem usin
projections onto an increasing sequence of sets.

From the discussion in Section 2.1, it is clear that
when the Kiefer-Wolfowitz algorithm is applied to solve the
optimization problem (1), then it is necessary to conduc
simulations at a mininum ofd + 1 different parameter
values in each iteration of the algorithm, whered is
the dimension of the underlying optimization problem.
This obviously means that whend is large, the Kiefer-
Wolfowitz algorithm requires substantial computational
effort per iteration, which could lead to slow convergence
To address this problem, Spall (1992) has proposed the u
simultaneous perturbations (requiring only two simulations
per iteration, regardless of the dimensiond) to estimate the
gradient in equation (3). Similar ideas have been propose
by Kushner and Clark (1978) and Ermoliev (1983).
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A considerable amount of research has explored t
choice of the sequence{an} in equation (3). For sequences
of the forman = a/n for all n, wherea is a positive scalar,
several researchers have developed adaptive proced
where the value of the scalara is updated as the number
of iterations grows. For more details, see Venter (1967
Nevel’son and Has’minskii (1973), Lai and Robbins (1979
Ruppert (1985), and Wei (1987). For situations where th
sequence{an} approaches zero too rapidly, the empirica
convergence rate can sometimes be improved by on
decreasing the value of this sequence when there is rea
to believe that the current estimate of the solution is ne
the optimal solution. This idea has been studied by Kest
(1958) and Delyon and Juditsky (1993). Another approa
is to use ideas from deterministic optimization to select th
sequence{an}; see Wardi (1990), Yan and Mukai (1993)
and Shapiro and Wardi (1996a). Finally, the use of
sequence{an} that decreases at a slower rate than1/n,
together with the use of averages of the sequence{θn} to
estimate the optimal solution, has received much attenti
in the past few years. See Polyak (1990), Yin (1991
Polyak and Juditsky (1992), and Kushner and Yang (199
for more discussion of this approach.

2.3 Sample Path Optimization

In this section, we discuss methods for continuous param
ter simulation optimization that involve approximating th
original simulation optimization problem (1) with a deter
ministic optimization problem. To illustrate, suppose tha
the objective function in equation (1) is of the form given in
equation (2). LetN be a positive integer and assume tha
there exist independent random variablesY1, . . . , YN and
a functionh : Θ× IR → IR such thatXi(θ) = h(θ, Yi) has
the cumulative distribution functionFθ for i = 1, . . . , N
and all θ ∈ Θ. Then we can approximate the objective
function with

f̂N (θ) =
1
N

N∑
i=1

h(θ, Yi) for all θ ∈ Θ.

Once the random variablesY1, . . . , YN have been generated,
the approximate objective function̂fN (θ) is a deterministic
function of the parameterθ. Therefore, we can approximate
the original simulation optimization problem (1) with the
deterministic optimization problem

min
θ∈Θ

f̂N (θ). (4)

Now a standard mathematical programming algorithm c
be applied to solve this approximate deterministic opt
mization problem.
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It remains to demonstrate how one can obtain rando
variablesY1, . . . , YN and a functionh : Θ × IR → IR for
which Xi(θ) = h(θ, Yi) has the cumulative distribution
function Fθ for i = 1, . . . , N and all θ ∈ Θ. We
briefly illustrate two approaches for accomplishing this
for the above example, using IPA and likelihood ratios
respectively.

First, as in Section 2.1, assume that observations of t
random variablesXi(θ) can be generated using the inverse
transform technique. Then letY1, . . . , YN be independent
and uniformly distributed on the interval[0, 1] and let
h(θ, y) = F−1

θ (y) for all y ∈ [0, 1] and θ ∈ Θ. Note that
the gradient of the functionh with respect toθ coincides
with the IPA gradient estimates discussed in Section 2.1

Now assume that for allθ ∈ Θ, the random variable
X(θ) has density functionfθ and that there existsθ0 ∈ Θ
such thatfθ0(x) = 0 implies fθ(x) = 0 for all x and
θ ∈ Θ. Then we have that

f(θ) =
∫

xfθ(x) dx

=
∫ (

x
fθ(x)
fθ0(x)

)
fθ0(x) dx

for all θ ∈ Θ (recall our convention that0/0 = 1).
The termfθ(x)/fθ0(x) is called the likelihood ratio. The
second approach involves lettingY1, . . . , YN be independent
observations drawn from the distributionFθ0 and letting
h(θ, y) = yfθ(y)/fθ0(y) for all y and θ ∈ Θ. Note that
the gradient of the functionh with respect toθ evaluated
at θ = θ0 coincides with the likelihood ratio gradient
estimates ofg(θ0) discussed in Section 2.1.

The simulation optimization approach described in thi
section is called sample path optimization because it on
uses simulation to generate one sample pathY1, . . . , YN ,
and it yields an estimated optimal solution that depend
on the sample path that the approximate determinist
optimization problem (4) is based on. Generally, the
integerN needs to be large in order for the approximating
optimization problem (4) to be close to the original op-
timization problem (1). Several researchers have studie
simulation optimization approaches of this form. Rubin
stein and Shapiro (1993) have analyzed this approach usi
likelihood ratios to obtain the approximate optimization
problem; their approach is called the stochastic counterpa
method. Plambeck et al. (1996) have used this metho
with IPA gradient estimates. Healy and Schruben (1991
and Healy and Xu (1994) have also studied this metho
they call it retrospective optimization. Additional research
on the convergence of the sample path optimization metho
can be found in Robinson (1996) and Shapiro and War
(1996b).
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3 DISCRETE PARAMETER SIMULATION
OPTIMIZATION

In this section, we provide a brief review of random sea
methods for solving the optimization problem (1) when t
feasible regionΘ is discrete. We will also briefly describ
some other recent advances to the field of discrete param
simulation optimization. Related approaches that will n
be discussed here include ranking, selection, and mult
comparison methods, methods for solving the multi-arm
bandit problem, and learning automata procedures

3.1 Random Search

The random search methods discussed in this section
involve moving successively between neighboring feas
points in search of the optimal solution. For allθ ∈ Θ,
let N(θ) ⊂ Θ \ {θ} denote the set of all the neighbors
θ. The neighborhood structure{N(θ) : θ ∈ Θ} must be
connected, in the sense that for allθ, θ′ ∈ Θ, θ 6= θ′, there
exist an integerl and θ0, . . . , θl ∈ Θ, such thatθ0 = θ,
θl = θ′, andθi+1 ∈ N(θi) for i = 0, . . . , l − 1 (otherwise,
a random search method may not converge for all star
points).

Andrad́ottir (1995b, 1996c) has developed two rando
search methods for discrete parameter simulation optim
tion. In each iteration of these methods, the values of
objective function at two neighboring feasible points a
estimated via simulation, and the alternative that yie
the better estimate is passed on to the next iteration. B
algorithms use the feasible alternative that has been vis
most often in this process to estimate the optimal soluti
The two methods differ primarily in the choice of th
neighborhood structure used. One of the methods is loc
convergent, while the other one is globally convergent

Yan and Mukai (1992) have proposed a random sea
method called the stochastic ruler algorithm. This meth
compares observations of the objective function val
with observations of a uniform random variable, call
the “stochastic ruler,” whose range covers the range of
observed objective function values. The number of su
comparisons grows with the number of iterations. Yan a
Mukai use the current element of the sequence gener
by their algorithm to estimate the optimal solution.

Alrefaei and Andrad́ottir (1998a) have developed
variant of the stochastic ruler algorithm that appears
perform better in practice than the original version of Y
and Mukai (1992). This variant requires less computatio
effort per iteration than the original method. It uses t
number of visits to the different states to estimate
optimal solution, similar to the approaches of Andradóttir
(1995b, 1996c).

Gong, Ho, and Zhai (1992) have analyzed a meth
for discrete simulation optimization called the stochas
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comparison method. Their method combines ideas from
Andrad́ottir (1996c) and Yan and Mukai (1992). It
resembles the method of Yan and Mukai (1992) in the
choice of approach for estimating the optimal solution and
in that it uses a growing amount of computer effort
per iteration as the number of iterations grows. It
resembles the method of Andradóttir (1996c) in the choice
of neighborhood structure and in that it compares estimate
objective function values at neighboring points, rather than
comparing the estimated objective function values with a
stochastic ruler. Andrad́ottir (1998b) presents a variant
of the stochastic comparison method that uses a differen
approach for estimating the optimal solution (discussed a
the end of this subsection) and in which the computationa
effort per iteration does not grow with the number of
iterations.

The use of simulated annealing to solve discrete
simulation optimization problems has received a signif-
icant amount of attention in recent years. Bulgak and
Sanders (1988) and Haddock and Mittenthal (1992) pro
posed heuristic simulated annealing approaches for discre
simulation optimization. Other versions of the simulated
annealing approach, adapted to solve discrete simulatio
optimization problems, that are built on a rigorous foun-
dation can be found in Gelfand and Mitter (1989), Gutjahr
and Pflug (1996), Fox and Heine (1996), and Alrefaei and
Andrad́ottir (1998c).

Finally, Andrad́ottir (1998b) has proposed an approach
for estimating the optimal solution that involves averaging
all the estimated objective function values at the various
feasible points obtained so far by a random search metho
and then using the point with the best average as th
estimated optimal solution. Numerical evidence presente
by Andrad́ottir (1998b) and by Alrefaei and Andradóttir
(1998b, 1998c) suggests that the use of this approach fo
estimating the optimal solution appears to yield improved
performance relative to other approaches for estimating
the optimal solution.

3.2 Other Recent Developments

Norkin, Ermoliev, and Ruszczynski (1994) have proposed
a version of the branch-and-bound method (originally
developed for discrete deterministic optimization) that
is designed for solving discrete simulation optimization
problems. Their approach involves partitioning the feasible
regionΘ into subsets and estimating bounds on the objective
function values within these subsets. Based on the value
of these bounds, one (promising) subset is divided into
smaller subsets and other (non-prospective) subsets a
removed from consideration.

Pflug (1994) and Futschik and Pflug (1995) have
discussed the use of confidence sets (having the feature th
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each global solution to the underlying discrete optimizati
problem lies in the confidence set with a given amou
of confidence) to solve discrete simulation optimizati
problems. They discuss how valid confidence sets can
obtained and how to conduct the simulation in such a w
that the resulting confidence set is as small as possib

Finally, Ho, Sreenivas, and Vakili (1992) suggest th
in situations where the feasible setΘ is large, one could
quickly conduct simulations at the various feasible poin
to obtain a rough ranking of these points. Then, one co
discard all except a few top points in this rough rankin
and use a discrete simulation optimization technique
locate the best point among the points that were
discarded. Ho, Sreenivas, and Vakili (1992) show that
probability that the set of points that were not discard
contains at least one near-optimal solution to the underly
optimization problem is often surprisingly large.

4 CONCLUSION

We have provided an introduction to simulation optimiz
tion, with emphasis on gradient-based techniques for c
tinuous parameter simulation optimization and on rand
search methods for discrete parameter simulation o
mization. Although simulation optimization has receive
a fair amount of attention from the research commun
in recent years, the current methods generally requir
considerable amount of technical sophistication on the p
of the user, and they often require a substantial amo
of computer time as well. Therefore, additional resea
aimed at increasing the efficiency and ease of applica
of simulation optimization techniques would be valuabl
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SIGRÚN ANDRADÓTTIR is an Associate Professor in
the School of Industrial and Systems Engineering at th
Georgia Institute of Technology. Previously, she was a
Assistant Professor and later an Associate Professor
the Departments of Industrial Engineering, Mathematics
and Computer Sciences at the University of Wisconsin
Madison. She received a B.S. in Mathematics from th
University of Iceland in 1986, an M.S. in Statistics from
Stanford University in 1989, and a Ph.D. in Operation
Research from Stanford University in 1990. Her researc
interests include stochastic optimization, simulation, an
stochastic processes. She presently serves as Assoc
Editor for IIE Transactions, Stochastic Models, and the
ACM Transactions on Modeling and Computer Simulation.
She is a member of INFORMS and served as Editor of th
Proceedings of the 1997 Winter Simulation Conference.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search
	Search Results
	Print

