Proceedings of the 1998 Winter Simulation Conference

D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

FUNDAMENTALS OF OBJECT-ORIENTED SIMULATION

Jeffrey A. Joines

Stephen D.

Roberts

Department of Industrial Engineering
Campus Box 7906
North Carolina State University
Raleigh, NC 27695-7906, U.S.A.

ABSTRACT

An object-oriented simulation (OOS) consists of a set of
objects that interact with each other over time. This paper
provides an introduction to the fundamental OOS design
elements by contrasting OOS with its procedural

counterpart. It further addresses the important issue of
composition versus inheritance that distinguishes object-
based from object-oriented languages.

1 THE SIMULATION SOFTWARE CHALLENGE

There has been tremendous growth in the capability of
computing hardware during the past three decades.
cost of memory, in-core and auxiliary (hard disks, flash
cards, CDROM, etc.) has dropped dramatically while

processor speed and capability has grown enormously.

What was available in environmentally controlled rooms
containing massive machinery in the 1960s was less
powerful than most people now have at their fingertips. In
the popular computer folklore is Moore’'s Law the
observation that the logic density of silicon integrated
circuits has closely followed the curve (bits per square
inch) = 2~ 192 wheret is time in years. This means the
amount of information storable on a given amount of
silicon has roughly doubled every vyear since the
technology was invented. This relation, first uttered in
1964 held until the late 1970s, at which point the doubling

period slowed to eighteen months. It has remained at thatturn means everything a computer can do.

value through recent years.

For modelers, an important question is how can
simulation can take full advantage of the computing power
now available. Software engineering provides part of the
answer. However, writing software “from scratch” is no
longer advisable since software systems tend to be
complex and several libraries exist for many of the
common functions. Thus, simulation models need to
include more than computational efficiency if they are to

141

The

have wider utility and acceptance in a multi-media, virtual
reality, and graphical interface software world.

Modeling and software have had a symbiotic
relationship. The computer is more than a computational
engine for simulation algorithms and should be regarded as
a tool for modeling. The technology of simulation is now a
mature and developed methodology. Although there is
plenty of room for additional research on fundamental
areas (e.g., random number and variate generation, the next
event simulation process, reliable and appropriate
statistics), there are now widespread adoptions and use of
computer simulation techniques.

However, the real limits on the future adoption of
simulation may rest on our ability to represent complex
systems and to do it easilywhich can be construed as a
matter of modeling style. The purpose of this papdpis
describe ways to improve modeling style — through object-
oriented simulation and to describe the fundamentals of
object-oriented simulation. It is useful, however, to first
consider the matter of programming style — modeling style
usually follows programming style.

2 PROCEDURAL STYLE

As long as you can specify statement sequences, define
variables, do branching, perform iteration, and have 1/O
you can do everything a Turing machine can do which in
Thus the
distinction in programming style is not what can and can’t
be done but what can be done easily. However, what can
be done easily may be a matter of judgement.

Early programs were long sequences of labeled
statements (simulation instructions) where movement of
program control used labels. Ironically, many fairly recent

Joines and

simulation languages maintain this same approach. Look,

for example, at one of the source files from GPSS:

GENERATE 1,,1
ASSIGN 1,v$DMND
TEST GE X$STOCK,P1,TRUBL
SAVEVALUE STOCK-,P1
TAB TABULATE STOCK
TABULATE LOSES

Owing to the repetition of some logical procedures,
functions or subprograms were added to programming
languages.
lists were added that could change the computation within
a function from call-to-call. Using functions to subdivide a
programming problem gave rise to the notion of
“functional decomposition,” which remains today a
popular approach to programming and simulation
modeling. For example, in programming a simulation, a
random variable generation library of functions could

Roberts

Thus, many models written in earlier versions of these
languages were highly augmented by general programming
code (Fortran, C, etc.) containing function calls to the
simulation libraries, since function calls could not be
directly invoked and users could not write functions, with
the native simulation instructions. In particular, Visual
SLAM continues to promote extensive use of programming
“inserts” with Visual Basic and C.

It is important to note that while simulation
“languages” like GPSS, SLAM, and SIMAN were easy to

To give these functions generality, argument use, although limited, there were more powerful simulation

programming alternatives. For example SIM-SCRIPT and
SIMULA were full programming languages with
simulation functionality built into the language grammar
and syntax. Using these languages, users “programmed”
the simulation. SIMULA was not widely appreciated at the
time as a simulation language but would, in fact, form the
basis and motive for much of the modern object-oriented

provide a means to obtain a sample from a random variateparadigm.

generator as:

double normal(mean, standDev, randomNumber)

GASP was almost totally composed of functional
libraries that were called by user written code, as illustrated
by the following Fortran based GASP IV code published in
1974:

103 IF (NEXT) 107, 108, 104

104 CALL COPY (NEXT)

CALL FILEM (NFRA)
ICS=NEXT+NNAPO

NEXT=NSET(ICS)
GO TO 103

GPSS, SLAM, and SIMAN were the simulation
versions of the “library” approach to simulation, but the

libraries were invoked much differently and invisibly to the
user. Instead of writing general purpose programming

In all cases (except for SIMULA), the style was
procedural based. A problem was decomposed into
procedures and either represented by general components,
like a queue, or represented in programming code with data
structures and code. Procedural programming represents
today a fundamental style of programming usually learn-ed
in the first exposure to programming or modeling.

There are several fundamental problems with using the
procedural style of modeling and simulation. Procedures
do not correspond to real world components. Instead, they
correspond to methods and algorithms. Therefore acts
engaged by entities must be given a context for procedures
to be easily specified. Many simulation contexts are based
on networks of queues (often complicated queuing
situations). The modeling approach is to let the queuing
network create the procedural structure that is traversed by

code, users constructed text files containing a sequence ofentities. When this structure is appropriate, as it often is in

simulation “instructions.” This approach provided a higher
level of abstraction than programming in a low-level
language, making it easier to model complex systems. An
example from SLAM Il published in 1995 is:

CREATE, EXPON(30),,1,,2;
ACT,,,AS1;
ACT,,,AS2;
AS1 ASSIGN,ATRIB(2)=1,ATRIB(3)=DPROBN(2,1),
ATRIB(4)=8,ATRIB(5)=60;
UNBATCH,3;
Q1 QUE(1),,,,ASM1;

a manufacturing or communications application, the model
is a convenient analog to the real system.

However modeling languages are limited when
confronted with complicated circumstances, such as the
need to code an algorithm that creates a schedule based on
anticipated volume and current use of facilities. It is then
that the need for general programming manifests itself.
However there is a fundamental difficulty in
communication between the simulation code, provided by
a simulation vendor, and user code from a general
programming language. The only means of

These instructions generally have a direct correspondencecommunication is generally through global data exchange

to a form of a flowchart (also called network). While such
input makes it easy to specify the simulation, it limits the

direct impact the modeler can have on the execution of the

simulation, since these simulation instructions did not
constitute a programming language.
generic model templates for simulation.

142

or function calls. These mechanisms are vulnerable to

inappropriate use and were dangerously visible to users.
Perhaps the greatest limitation of the procedural style

is its lack of extensibility. From the earliest simulation

Instead these alreIanguages until the early 1990s, the only way to adapt these

Fundamentals of Object-Oriented Simulation

simulations was through functional extension. In other In C++, the keyword “class” is used to begin the
words, you could add structural functionality to the definition of an object followed by the name of the object
simulation but not alter any of its basic processes, like class and then the properties of the entity are defined

giving properties to resources. For example, if you needed
the simulation to include a bridge crane, you had to
program it completely yourself or model it with the
features available. One of the reasons for this lack of
extensibility was that procedural changes were the only
approach to model changes. Specifically, vendors had no
way to partially hide implementation details and were
either forced to give access to source code or restrict the
access to the features. A module or file provided a form of
encapsulation (which more recent simulation languages
call templates or subnetworks), but these collections do not
provide for autonomous objects.

3 OBJECT STYLE
The class concept evolved out of the notion of

encapsulation, an idea that originated in SIMULA.
However SIMULA viewed objects as much more than

encapsulation. Objects needed independence of action and

a means to hide their implementation details, yet provide

within enclosing {}. For example, the following object
defines theexponential class.

class Exponential{
.../l Properties of the Exponential

h
Without encapsulation, properties could be spread all over,
making changes to the object very difficult.

3.2.1 Class Properties

The class definition specifies the object’'s properties, the
attributes and behaviors. The attributes define all the
singular properties of the object while the behaviors define
how the object interacts within the environment with other
objects. Attributes are considered the data members of an
object. In the case of ouExponential random
variable, its mean (given by the identifiex) would be a

real number attribute.

double mu;

an interface for their use. Further, there needed to be wayOther attributes would be similarly defined.

to construct objects and to communicate among them.
C++ borrowed all these ideas from SIMULA (as did
Smalltalk) and put them into the procedural programming
language C. We use C++ to illustrate the object style.

3.1 An Example: The Exponential Random Variable
Suppose you are modeling an exponential random variable

in a simulation. The random variable may be described by
a standard exponential statistical distribution, which has a

The behaviors (sometimes referred to as methods) of
an object represent actions the object can perform or take.
For example, if the exponential random variable needed to
obtain a sample, the following member function can be
used:

double sample(){
return —mu * log(1.0 — randomNumber());}

where therandomNumber () function yields a uniform
random variable between 0 and 1. By representing

set of parameters (e.g., a mean in this case). This mearP€havior with functions, the object can react to parameters

would be considered an attribute of the exponential random
variable object. It may be important to obtain observations
from this random variable via sampling. One may want to
obtain antithetic samples or to set the random seed.
Sampling from the exponential random variable defines a
particular behavior

3.2 Encapsulation

The entity “encapsulates” the properties of the object
because all of its properties are set within the definition of
the object. In our example, the exponential random
variable’'s properties are contained within the definition of

the random variable so that any needs to understand or

revise these properties are located in a single “place.” Any
users of this object need not be concerned with the internal
“makeup” of the object. This also facilitates the ability to
easily create multiple instances of the same object since
each object contains all of its properties.

143

passed in the function argument as well as change variable
values within the function.

3.2.2 Classes and Instances

Notice, the word “class” not “object” is used in defining
the object, which can be confusing, since it would seem
that we are defining objects. Lets consider the more
complete definition based on our prior discussion of
encapsulation and properties (ignore the “public” for now),
theExponential class is defined as follows.

class Exponential{
public:
double mu;
double sample(){ return —mu * log(1.0 —
randomNumber());}

h

Rather than defining an object directly, a class is defined
where the class provides a “pattern” for creating objects
and defines the “type.” By defining a class (of objects),

Joines and Roberts

rather than a single object, the opportunity exists to use theAlthough this example really does the same thing as the
class to create many objects (i.e., re-use existing code).direct reference, there are important distinctions. First, in
Furthermore, as seen later, the class is a description of aour function call we simply “passed” the value of 5.5 to the
pattern for constructing objects which can be easily object. Second, we didn't tell the object how to change the
extended. Now, objects can be created directly from this attribute mu The object has a function written by the
class once defined. These created objects are calleddesigner of th&xponential class that causes the mean
“instances” of a class. For exampéerviceTime s an parameter to change. Notice the user of the function does
instance of th&xponential class. not need to know how the function inside the class works.
In fact, the class designer could change the internal name
of mu to expMean within the class, and all exiting user
code would remain the same. This encapsulation of the
data is extremely important in OOS. Also, the same
message can be made to respond to several different
message value types is often referred to as
“polymorphism.”

Exponential interarrivalTime, serviceTime;
3.3 How Do Objects Communicate?

An OOS models the behavior of interacting objects over
time. However before we can consider a simulation, we
need to understand how objects interact or communicate
with each other. The interaction among objects is)
performed by communication called “message passing.” 3-3-3 Pointers

One object sends a message to another and the receiving) o)

object then responds. An object may simply publish a Another way to communicate is indirectly through pointers
message that may be responded to by one of severafhat are simply addresses of the location of an object. For
objects. For example in a bank simulation, a customer €xample, a pointer to thaterarrivalTime object
arrives at a bank and may be served by any of severalcan be created as follows and the setMu message can be
tellers. In a O-O context, the customer publishes their sent via the pointer.

arrival and waits for service by a teller. There are several Exponential * rPtr = &interarrivalTime;

ways in transmitting messages in an object-oriented rPtr->setMu(5.5);

program and it depends on the programming language. Pointers have the advantage of not needing to know the

particular object ahead of time, but only the address of the
object. Thus, if we change the pointer to point to the
serviceTime object, the format of the message remains

- ; fthe same. With a more complex message, use of pointers
reference to the object’s attributes or data members. For pacomes very convenient

example, if theinterarrivalTime object needed to
have a mean of 5.5, then the simplest means to
communicate this message is through direct assignment.

3.3.1 Direct Reference

RNPtr->setMu(3.5);

) N 3.4 How Are Objects Formed?
interarrivalTime.mu = 5.5;

This message causes the object to receive the value and sdti our example, the exponential object has no ability to be
its variablemu This is a forced message because the created with different means. Instead, the object’'s mean

object has no choice but to perform the action. was changed to a specific value. Although an object can be
instantiated from a class without special instructions, often
3.3.2 Data Methods or Functions we want the creation to accomplish certain objectives.

Likewise, we also might want to do something special

Rather than forcing a value upon an object, a value could When an object is destroyed.

be communicated to the object and then let it determine

how to deal with the value. For example, if a new 3.4.1 Constructors and Destructors

“member function” or data method to the Exponential class

calledsetMu() was added as follows. Special member functions can be defined that act when an

object is created and destroyed which are called

constructors and destructors, respectively. The constructor
Now the object is sent theetMu message with a is recognized by having no return type and the same name

message value of 5.5 which “communicates” our interest in as the class. For example, the following could be a

changing the mean anidterarrivalTime receives constructor for the exponential object.

the message and changes its internal valueuof Exponential(double initMu){ mu = initMu; }

void setMu(double initMu){ mu = initMu; }

interarrivalTime.setMu(5.5);

144

Fundamentals of Object-Oriented Simulation

This function accepts the invocation argument and sets theperformed through member functions. The designer of the
internal mean to it. An object whose initial mean is 4.3 can class can now protect the class data members from
be specified upon creation as follows. unwanted changes while the user of the class is unaffected.

Exponential serviceTime(4.3); .
P @3 3.5 How Are Objects Formed From Others?

In C++, functions can be “overloaded” so that they differ

only in their formal arguments (i.e., “polymorphism”). One of the fundamental benefits of an O-O design is the

Therefore, a class can have multiple constructors. For ability to make other objects out of existing ones. We have

example, if we wanted the exponential to accept an integer already seen how to design a class of objects using the

specification of its mean. built-in types from C++. Suppose the following random
Exponential(int startMu){ mu = startMu:} number class has been defined which generates uniformly

. . L) distributed numbers between 0 and 1.
Now, exponential objects with either a double or an int as

arguments can be specified (actually C++ will make class RandomNumber{

. . . o . long seed;
appropriate conversions among its built-in types but this public
example illustrates the way a user could provide RandomNumber(long seed = -1);
conversions among user-defined classes). The following void setSeed(long sd){seed=sd;}

creates two objects using different argument types. . virtual double sample();

Exponential arrival(9.3), inspect(6); In this definition, the constructor argument can be specified

Users can also define a special member function called aor left blank to default to their initial values (i.e., -1 means
destructor that acts when the object is destroyed. Only oneuse the next seed). The public member functample ()
destructor can be defined since it has no arguments. Foris used to obtain a sample and we will assume that the seed
example, a destructor for the exponential class has thewill be updated appropriately with each call. The “virtual”
following form. keyword will be discussed later.

~Exponential(){// print out how often used? } There are two ways this random number generator
could be used with ouExponential class. The first
method is calleddomposition in which a random number
object is included within the exponential class. The second
dnethod of using the random number generator is through
inheritance which makes the exponential class a kind of
random number. Inheritance is one of the major features
hat distinguish a “object-based” language from a true
object-oriented” one.

3.4.2 Visibility of Properties

It should be clear that a user of a class does not really nee
to know the internal workings of the class. For example,
they do not need to know what algorithm is used to obtain
the sample (they may want to know for their own
assurance). Furthermore, the designer of the class may no{
want the user of the class to know everything about the
class. Thus, the class designer has the option of causin
properties of the class to become invisible to users of the ~
class and to provide a public interface to those hidden _.) .)
properties. The two most frequently used labels are First, consider the case of compo;m_on where we simply
“public’ and “private.” Properties within a class that are ©OMpose the new class from the existing class:

public can be accessed directly by a user while those that class Exponential{

5.1 Composition

are private are available only to the designer. For example, private:
; s ; ; i double mu;
the variable containing the mean is made private within the .
. RandomNumber rn;
class to prevent improper use (i.e., direct manipulation). public:
Our class would then look like the following. void setSeed(long sd){rn.setSeed(sd);}
. ... [/Public Properties

class Exponential{ %

private:

doblf_b'e mu; Notice that theExponential is defined simply to
public: « »

Exponential(double initialMu){mu=initialMu;} hani' a. RandomNumber. In O'_O parlance, the
double sample(); relationship between theExponential and the
void setMu(double changeMu)}{mu = changeMu:} RandomNumber rn is called a “has-a” relationship. The

data member rn is used in teample () function of the

) exponential. Notice, aetSeed () needs to be defined in
Now mu cannot be changed directly by a user. Thus the 5 4er to access the one in the random variable.

direct reference tomu as done earlier, will fail.
Communication to the exponential objects must be

double getMu() { return mu; }

145

Joines and Roberts
3.5.2 Inheritance 4 OBJECT-ORIENTED VS. OBJECT-BASED

The second kind of relationship among classes is called anBecause many simulation languages offer pre-specified
“‘is-a” relationship and is based on inheritance or a parent- functionality produced in another language, the user cannot
child relationship. In our example, the exponential can be access the internal function of the language. Instead, only
considered a kind of random variable. It would be useful the vendor can modify the internal functionality. Also,
for the Exponential to be a child oRandomNumber users have only limited opportunity to extend an existing
and thus inherit all the random variable properties. Hence, language feature. Some simulation languages allow for
what could be done to the random variable could also be certain programming-like expressions or statements, which
done with the exponential. No additiors®tSeed () is are inherently limited. Most languages allow the insertion
required since the one in the random class can be used. of procedural routines written in other general-purpose
For example, sometimes a sample from an exponential programming languages. None of this is fully satisfactory
is needed while other times a basic uniform generator is because, at best, any procedure written cannot use and
required. Suppose the following two objects and pointer change the behavior of a pre-existing object class. Also,

are defined: any new object classes defined by a user in general
RandomNumber uni: programming language do not co-exist directly with vendor
Exponential exp(5.5); code.

RandomNumber * pRN = &uni;

If at an activity in our simulation, a sample from a random 4.1 Object-Based Extension

variable is needed, the following message is sent to obtain

an activity time. The object-based approach only allows extensibility in the
form of composition (i.e., new objects can only be created

RN - le(); -) :) .
PRN -> sample(); out of existing objects). The simplevent object will

However, because Exponential is alsRandomNumber, demonstrate the limitations of extensibility only through
the pointer pRN could be assigned to either an composition. The Event object is used to move the
Exponential or a RandomNumber and the same simulation from one time to the next. Events are placed on

message applies. In ttempositionexample, two separate the calendar and, when an event is removed from the
activities would be required (i.e., one which used an calendar, theprocessEvent () function is called to

exponential and another one which used a uniform). handle the event. The following gives a portion of the
Event class that can be used to process arrival of entities
into the network and end of service events. Notice that
In a true O-O language with inheritance, the message depending on the type of event, the appropriate event

would be sent to the proper object and the sampling would handling function is called. This is an example use of
be from the correct sampling function. In O-O terms, composition.

determining which variate to sample at run-time is called
“run-time” binding and is performed by specifying the

PRN = &exp;

class Event{

sample () to be “virtual” in the parent class. pno\llc?éebie eventTime, eventType;

To specify that Exponential inherits from Source :SOU_'“?e{ _
RandomNumber, the header for the class definition would pﬁitg'ty activity: /... More properties
be modified as: void processEvent(){

select EventType{
case ArrivalEvent:

. . . source->newArrival(Entity); break;
showing that RandomNumber is the parent and its case EndofService:

visibility is “public”. activity->endofService(Entity); break:}}

Under inheritance, the child class inherits the public //-.. Additional Properties
(and protected) properties of the parent. Now these b
properties are directly available to the child class and the If the user wants to add additional events (e.g., a monitor
class type resolves any conflicts. C++ also permits event), it would require the designer to add an appropriate
multiple inheritance, meaning a child can inherit from data member, data methods, and then provide an additional
several parents. case statement. Therefore, the designer has the impossible

problem in anticipating every kind of event.

class Exponential: public RandomNumber{...

146

Fundamentals of Object-Oriented Simulation

4.2 Object-Oriented Extension Now the designer does not have to anticipate every type of
event. Users have the ability to define their own events

An object-oriented simulation deals directly with the provided they inherit from an existing event class and
limitation of extensibility by permitting full data provide an appropriajgrocessEvent () function.
abstraction. Data abstraction means that new data types Unlike Java, C++ provides for multiple inheritance
with their own behavior can be added arbitrarily to the that facilitates a very useful and powerful feature with
programming language. When a new data type is added, itsome subtle idiosyncrasies. Multiple inheritance allows
can assume just as important a role as any implicit datayou to combine the collection of data and behavior of
types and can extend existing types. For example, a neWseveral classes. For example, when modeling a textile
user-defined robot class can be added tonguage that gjstripution network, there are nodes that are vendors,
contains standar_d_reso_urces_without compromising any gistribution centers (DCs), and stores. Vendors are
aspect of the existing simulation language, and the robot g, jiers that ship garments to consumers while stores are
may be used as a more complex resource. There_are Wstrict consumers that receive shipments. However, DCs are
Zitselﬁsﬁgﬁﬁgﬁgfeﬂfarcg;: d::]hearfe?iltlz(i)t\)l/v OOS to provide for considered both suppliers and consumers (i.e., DCs can

' ' supply other DCs and stores while receive shipments from
other suppliers (either DCs or vendors)). In a single
inheritance hierarchy, the designer must repeat similar
code for either the supplier or consumer behavior or force
an unnatural inheritance hierarchy.

4.2.1 Inheritance

Inheritance allows classes to exploit similarity through
specialization of parent classes (i.e., child classes inherit
the properties of the parent and extend them). All event
types have an associategentTime andeventType

and the appropriate data methods to specify these . . :
properties. Therefore, specific event types would inherit EVEN With inheritance, many O-O languages like Java and

; ; . ; Smalltalk can still be limiting in terms of extensibility.
these properties and provide additional ones (see Figure 1).
prop P (g)Eiffel and C++ provide an additional method of

4.2.2 Parameterized Types

getEventTimed— EVEeV;”;imE extensibility called gengricity or parameterize_d types (i.e.

setEventTime—| Eyent Typd P> ProcessEvent templates). Parameterized types are special forms of
composition that exploit commonality of function. For

NodeEvent Procesfvent example, most simulations would declare a source object

getNode Entit processEvent getEntity < Entity i - X
setNod setEntiy —p- proce}s processEvent that is used to place entities into the network. In an OOS
. environment, the user may want TVs or Orders to arrive
qetMonitorFun{-MOhI,t,T;i;:i:t rather than generic entities. The user can create several
setMonitorFun—p Functiory ® P"O°eSSEvent different source nodes by inheriting from the base Source
Figure 1: Inheritance Hierarchy class as seen in Figure 2. Each of the new classes defines a
new type of object to be created (i.e., TV, Order) and the
“virtual function” executelLeaving

For example,NodeEvent, which provides events that
occur at nodes (e.g., end of service at an activity), provides

a pointer to theNode of interest and th&ntity which Source
getinterArrivalTime ¢—

cgused the event. ThprocgssEvent() is Qeclgred setinterArtivalTime—p lmermﬁgﬂexewmmmg
virtual so that the appropriatgrocessEvent s fired
when the event is pulled off the calendar. The Event's TvSourde OrderSource
processEvent () is a pure virtual function meaning any ' eaeicand smoe . O executeLeaving
child classes must re-define it. TR@deEvent 's invokes
the nodesexecuteLeaving () (another virtual function GetResourcot = R
in the node hierarchy). setResourcefp > executeleaving
//[Event's processEvent .) . .
void virtual processEvent() = 0 Figure 2: Inheritance Hierarchy versus Commonality
// ProcessEvent's processEvent Notice, only thenterarrival object and methods
void virtual processEvent(){ are re-used in the child class. Each child class must define
processPtr->executeProcess(entityPtr)} its ownexecuteLeaving () when the only difference is
//NodeEvent's processEvent the type of object released into the network. When objects
void virtual processEvent(){ provide the same functionality, parameterized types are
nodePtr->executeLeaving(entityPtr);} used (see Figure 3). Now, the user specifies the type of

/[ExecuteLeaving -virtual function in Node . . .
entity to be released into the network and all remaining

147

Joines and Roberts

code is used. This is further demonstrated when a userthat helps one organize the complexity of complex systems
wants to add statistics to the source node. The user onlywhich simplifies the computer programming tasks. O-O
has to inherit from one class rather than create designs vyield smaller systems through the reuse of

TVSourceStat, OrderSourceStat, etc. common mechanisms. They are more reliant to change and
are better able to adapt over time. O-O designs greatly

getinterAnvalTime 4_Sc)urcTe<Type> reduces the risk of building complex goftware systems
setinterArmivalTime—p | ntesmrivaeXecuteLeaving because they are developed to evolve incrementally from

smaller systems.

The O-O ideas have re-rooted in simulation, after
The following would declare two different source nodes. being initiated by simulation through SIMULA. The
Smalltalk environment is fully O-O and contains fully

Figure 3: Parameterized Type

Source<TV> tvSource(...);

Source<Order> orderSource(...); OOS. Obviously simulation languages based on C++, like
C++/CSIM and C++SIM, possess all the object-oriented
5 CREATING A SPECIFIC O0S capability described in this paper. Simple++ and
MODSIM 1l are further examples of object-oriented
A key to the creation of a fully integrated simulation languages that employ most of these concepts within
package is the use ofdass inheritance hierarchyThe different simulation frameworks.

formation of such a hierarchy is described in Joines and The queuing network based languages like Arena and
Roberts (1996). Object-based “frames” are used to collect AweSim have beginnings of object-based features. Both
classes into levels of abstraction. fRame is a set of languages provide a composition approach to creating
classes that provide a level of abstraction in the simulation network macros, through Arena templates and AweSim
and modeling platform. A frame is a convenient means for subnetworks. However neither are autonomous and
describing various ‘“levels” within the simulation class independent objects in the sense described here and
hierarchy and is a conceptual term. extensibility cannot be used to extend the active entities.

While frames provide a convenient means to describe Both have access to Visual Basic, which is itself only
the levels of abstraction within the entire object-oriented object-based. AweSim wraps its functionality in a few
simulation platform, another means of encapsulation is to objects, whereas Arena contains a complete object model
place higher level complex interactions into “frameworks.” that is integrated with Visual Basic.
For our purposedrameworksare used to describe those A new simulation language called SLX from
collections of classes that provide a set of specific Wolverine Software provides a new object-based
modeling facilities. The frameworks may consist of one or Simulation product from the makers of GPSS/H. This
more class hierarchies. These collections make the use andanguage has all the object-based facilities but has none of
reuse of simulation modeling features more intuitive and the object-oriented facilities. It does contain an extended
provide for greater extensibility. macro facility for adding statements and extended features

Special simulation languages and packages may befor representing the simultaneous behavior of objects.
created from these object classes. For more information, To take full advantage of object-oriented simulation
see Joines and Roberts (1997) in the creation of YANSL, requires more skill from the user. However, that same skill
which is just oneinstance of the kind of simulation would be required of any powerful simulation modeling
capability that can be developed within an OOS package, but with greater limitations.
environment.

REFERENCES
6 FINAL THOUGHTS
Joines, J.A. and S. D. Roberts. 1996. Design of object-

Modeling and simulation in an O-O language possesses oriented simulations in C++. IRroceedings of the
many advantages. As shown, internal functionality of a 1996 Winter Simulation Conferenceed., John
language now becomes available to a user (at the discretion ~ Charnes, Douglas Morrice, Dan Brunner, and James
of the class designer). Such access means that existing Swain, 65-72. Institute of Electrical and Electronics
behavior can be altered and new objects with new behavior Engineers, San Diego, CA.
introduced. The O-O approach provides a consistent
means of handling these problems.

0O-0O systems view the world as a set of autonomous
agents that interact or work together to solve some
complex task. Each object is responsible for a specific task

148

Fundamentals of Object-Oriented Simulation

Joines, J.A. and S. D. Roberts. 1997. An Introduction to
Object-Oriented Simulation in C++. IAroceedings
of the 1997 Winter Simulation Conferened., Sigrun
Andradottir, Kevin J. Healy, David H. Withers, Barry
L. Nelson, 78-89. Institute of Electrical and
Electronics Engineers, San Diego, CA.

AUTHOR BIOGRAPHIES

JEFFERY A. JOINES is a Research Associate in the

Furniture Manufacturing and Management Center at
NCSU. He received his B.S.l.LE, B.S.E.E, M.S.I.LE and
Ph.D. from NCSU. He is a member of INFORMS, IIE,

and IEEE. His interests include O-O simulation, cellular
manufacturing, and genetic algorithms.

STEPHEN D. ROBERTS is Professor and Head of the
Department of Industrial Engineering at NCSU. He
received his B.S.I.LE., M.S.l.LE., and Ph.D. from Purdue
University. He was the recipient of the 1994 Distinguished
Service Award. He has served as Proceedings Editor and
Program Chair for WSC.

149

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

