
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

FUNDAMENTALS OF OBJECT-ORIENTED SIMULATION

Jeffrey A. Joines
Stephen D. Roberts

Department of Industrial Engineering
Campus Box 7906

North Carolina State University
Raleigh, NC 27695-7906, U.S.A.

o

g
a

c

T

l
s

I

r

o

in
n
h

e
h
o
b
e
to
to

al

tic
nal
 as
 a
 is
tal
 next
ate
e of

of
ex
a

ct-
 of
st
yle

fine
I/O
 in
the
n’t
can

led
 of
t

ABSTRACT

An object-oriented simulation (OOS) consists of a set
objects that interact with each other over time. This pap
provides an introduction to the fundamental OOS desi
elements by contrasting OOS with its procedur
counterpart. It further addresses the important issue
composition versus inheritance that distinguishes obje
based from object-oriented languages.

1 THE SIMULATION SOFTWARE CHALLENGE

There has been tremendous growth in the capability
computing hardware during the past three decades.
cost of memory, in-core and auxiliary (hard disks, flas
cards, CDROM, etc.) has dropped dramatically whi
processor speed and capability has grown enormou
What was available in environmentally controlled room
containing massive machinery in the 1960s was le
powerful than most people now have at their fingertips.
the popular computer folklore is Moore’s Law the
observation that the logic density of silicon integrate
circuits has closely followed the curve (bits per squa
inch) = 2(t - 1962) where t is time in years. This means the
amount of information storable on a given amount
silicon has roughly doubled every year since th
technology was invented. This relation, first uttered
1964 held until the late 1970s, at which point the doubli
period slowed to eighteen months. It has remained at t
value through recent years.

For modelers, an important question is how ca
simulation can take full advantage of the computing pow
now available. Software engineering provides part of t
answer. However, writing software “from scratch” is n
longer advisable since software systems tend to
complex and several libraries exist for many of th
common functions. Thus, simulation models need
include more than computational efficiency if they are
141
f
er
n
l
of
t-

of
he
h
e
ly.
s
ss
n

d
e

f
e

g
at

n
r
e

e

have wider utility and acceptance in a multi-media, virtu
reality, and graphical interface software world.

Modeling and software have had a symbio
relationship. The computer is more than a computatio
engine for simulation algorithms and should be regarded
a tool for modeling. The technology of simulation is now
mature and developed methodology. Although there
plenty of room for additional research on fundamen
areas (e.g., random number and variate generation, the
event simulation process, reliable and appropri
statistics), there are now widespread adoptions and us
computer simulation techniques.

However, the real limits on the future adoption
simulation may rest on our ability to represent compl
systems and to do it easily, which can be construed as
matter of modeling style. The purpose of this paper is to
describe ways to improve modeling style – through obje
oriented simulation and to describe the fundamentals
object-oriented simulation. It is useful, however, to fir
consider the matter of programming style – modeling st
usually follows programming style.

2 PROCEDURAL STYLE

As long as you can specify statement sequences, de
variables, do branching, perform iteration, and have
you can do everything a Turing machine can do which
turn means everything a computer can do. Thus
distinction in programming style is not what can and ca
be done but what can be done easily. However, what
be done easily may be a matter of judgement.

Early programs were long sequences of labe
statements (simulation instructions) where movement
program control used labels. Ironically, many fairly recen

Joines and Roberts

o

s,
n
en
i

a
f

n
a
d
a

l
e
in

e
e
ng

r
l

A

n
h
e
th
o
a

g

”

ts,
a
ts

y
s
s

d

y

l

e
on

.

l

e

simulation languages maintain this same approach. Lo
for example, at one of the source files from GPSS:

GENERATE 1,,,,1
ASSIGN 1,V$DMND
TEST GE X$STOCK,P1,TRUBL
SAVEVALUE STOCK-,P1

TAB TABULATE STOCK
TABULATE LOSES

Owing to the repetition of some logical procedure
functions or subprograms were added to programmi
languages. To give these functions generality, argum
lists were added that could change the computation with
a function from call-to-call. Using functions to subdivide
programming problem gave rise to the notion o
“functional decomposition,” which remains today a
popular approach to programming and simulatio
modeling. For example, in programming a simulation,
random variable generation library of functions coul
provide a means to obtain a sample from a random vari
generator as:

double normal(mean, standDev, randomNumber)

GASP was almost totally composed of functiona
libraries that were called by user written code, as illustrat
by the following Fortran based GASP IV code published
1974:

103 IF (NEXT) 107, 108, 104
104 CALL COPY (NEXT)

CALL FILEM (NFRA)
ICS=NEXT+NNAPO
NEXT=NSET(ICS)
GO TO 103

GPSS, SLAM, and SIMAN were the simulation
versions of the “library” approach to simulation, but th
libraries were invoked much differently and invisibly to th
user. Instead of writing general purpose programmi
code, users constructed text files containing a sequence
simulation “instructions.” This approach provided a highe
level of abstraction than programming in a low-leve
language, making it easier to model complex systems.
example from SLAM II published in 1995 is:

CREATE, EXPON(30),,1,,2;
ACT,,,AS1;
ACT,,,AS2;

AS1 ASSIGN,ATRIB(2)=1,ATRIB(3)=DPROBN(2,1),
ATRIB(4)=8,ATRIB(5)=60;
UNBATCH,3;

Q1 QUE(1),,,,ASM1;

These instructions generally have a direct corresponde
to a form of a flowchart (also called network). While suc
input makes it easy to specify the simulation, it limits th
direct impact the modeler can have on the execution of
simulation, since these simulation instructions did n
constitute a programming language. Instead these
generic model templates for simulation.
142
k,

g
t

n

te

d

of

n

ce

e
t
re

Thus, many models written in earlier versions of these
languages were highly augmented by general programmin
code (Fortran, C, etc.) containing function calls to the
simulation libraries, since function calls could not be
directly invoked and users could not write functions, with
the native simulation instructions. In particular, Visual
SLAM continues to promote extensive use of programming
“inserts” with Visual Basic and C.

It is important to note that while simulation
“languages” like GPSS, SLAM, and SIMAN were easy to
use, although limited, there were more powerful simulation
programming alternatives. For example SIM-SCRIPT and
SIMULA were full programming languages with
simulation functionality built into the language grammar
and syntax. Using these languages, users “programmed
the simulation. SIMULA was not widely appreciated at the
time as a simulation language but would, in fact, form the
basis and motive for much of the modern object-oriented
paradigm.

In all cases (except for SIMULA), the style was
procedural based. A problem was decomposed into
procedures and either represented by general componen
like a queue, or represented in programming code with dat
structures and code. Procedural programming represen
today a fundamental style of programming usually learn-ed
in the first exposure to programming or modeling.

There are several fundamental problems with using the
procedural style of modeling and simulation. Procedures
do not correspond to real world components. Instead, the
correspond to methods and algorithms. Therefore act
engaged by entities must be given a context for procedure
to be easily specified. Many simulation contexts are base
on networks of queues (often complicated queuing
situations). The modeling approach is to let the queuing
network create the procedural structure that is traversed b
entities. When this structure is appropriate, as it often is in
a manufacturing or communications application, the mode
is a convenient analog to the real system.

However modeling languages are limited when
confronted with complicated circumstances, such as th
need to code an algorithm that creates a schedule based
anticipated volume and current use of facilities. It is then
that the need for general programming manifests itself
However there is a fundamental difficulty in
communication between the simulation code, provided by
a simulation vendor, and user code from a genera
programming language. The only means of
communication is generally through global data exchange
or function calls. These mechanisms are vulnerable to
inappropriate use and were dangerously visible to users.

Perhaps the greatest limitation of the procedural style
is its lack of extensibility. From the earliest simulation
languages until the early 1990s, the only way to adapt thes

Fundamentals of Object-Oriented Simulation

e
e
ik
d
t

e

n

r
 t

 n

o

n
 a
id
w

id
n

b

s
e
o
n

 t
e

s

o

rn
to
n

d

r,

e
e
e

n

f
e.
o

g
rs
le

e
f
,

d
s
,

simulations was through functional extension. In oth
words, you could add structural functionality to th
simulation but not alter any of its basic processes, l
giving properties to resources. For example, if you nee
the simulation to include a bridge crane, you had
program it completely yourself or model it with th
features available. One of the reasons for this lack
extensibility was that procedural changes were the o
approach to model changes. Specifically, vendors had
way to partially hide implementation details and we
either forced to give access to source code or restrict
access to the features. A module or file provided a form
encapsulation (which more recent simulation languag
call templates or subnetworks), but these collections do
provide for autonomous objects.

3 OBJECT STYLE

The class concept evolved out of the notion
encapsulation, an idea that originated in SIMULA
However SIMULA viewed objects as much more tha
encapsulation. Objects needed independence of action
a means to hide their implementation details, yet prov
an interface for their use. Further, there needed to be
to construct objects and to communicate among the
C++ borrowed all these ideas from SIMULA (as d
Smalltalk) and put them into the procedural programmi
language C. We use C++ to illustrate the object style.

3.1 An Example: The Exponential Random Variable

Suppose you are modeling an exponential random varia
in a simulation. The random variable may be described
a standard exponential statistical distribution, which ha
set of parameters (e.g., a mean in this case). This m
would be considered an attribute of the exponential rand
variable object. It may be important to obtain observatio
from this random variable via sampling. One may want
obtain antithetic samples or to set the random se
Sampling from the exponential random variable define
particular behavior.

3.2 Encapsulation

The entity “encapsulates” the properties of the obje
because all of its properties are set within the definition
the object. In our example, the exponential rando
variable’s properties are contained within the definition
the random variable so that any needs to understand
revise these properties are located in a single “place.” A
users of this object need not be concerned with the inte
“makeup” of the object. This also facilitates the ability
easily create multiple instances of the same object si
each object contains all of its properties.
14
r

e
ed
o

of
ly
no
e
he
of
es
ot

f
.

nd
e
ay

m.

g

le
by
 a
an
m
s
o
d.

 a

ct
of
m
f

 or
ny
al

ce

In C++, the keyword “class” is used to begin the
definition of an object followed by the name of the object
class and then the properties of the entity are define
within enclosing {}. For example, the following object
defines the Exponential class.

class Exponential{
…// Properties of the Exponential
};

Without encapsulation, properties could be spread all ove
making changes to the object very difficult.

3.2.1 Class Properties

The class definition specifies the object’s properties, th
attributes and behaviors. The attributes define all th
singular properties of the object while the behaviors defin
how the object interacts within the environment with other
objects. Attributes are considered the data members of a
object. In the case of our Exponential random
variable, its mean (given by the identifier mu) would be a
real number attribute.

double mu;

Other attributes would be similarly defined.
The behaviors (sometimes referred to as methods) o

an object represent actions the object can perform or tak
For example, if the exponential random variable needed t
obtain a sample, the following member function can be
used:

double sample(){
 return –mu * log(1.0 – randomNumber());}

where the randomNumber () function yields a uniform
random variable between 0 and 1. By representin
behavior with functions, the object can react to paramete
passed in the function argument as well as change variab
values within the function.

3.2.2 Classes and Instances

Notice, the word “class” not “object” is used in defining
the object, which can be confusing, since it would seem
that we are defining objects. Lets consider the mor
complete definition based on our prior discussion o
encapsulation and properties (ignore the “public” for now)
the Exponential class is defined as follows.

class Exponential{
 public:
 double mu;
 double sample(){ return –mu * log(1.0 –
 randomNumber());}
};

Rather than defining an object directly, a class is define
where the class provides a “pattern” for creating object
and defines the “type.” By defining a class (of objects)
3

Joines and Roberts

he
e)
f
ly
is
le

r
e
te

is
.”
in
a
ra

er
ra
ir
a
d

ec
o

to

 s
e

ld
ne

s

in

e
n

e

es
.
e

e
e
nt
s

or

be

e
e

rs

e
n
e

n
.
l

an
d
or
e

a

rather than a single object, the opportunity exists to use t
class to create many objects (i.e., re-use existing cod
Furthermore, as seen later, the class is a description o
pattern for constructing objects which can be easi
extended. Now, objects can be created directly from th
class once defined. These created objects are cal
“instances” of a class. For example, serviceTime is an
instance of the Exponential class.

Exponential interarrivalTime, serviceTime;

3.3 How Do Objects Communicate?

An OOS models the behavior of interacting objects ove
time. However before we can consider a simulation, w
need to understand how objects interact or communica
with each other. The interaction among objects
performed by communication called “message passing
One object sends a message to another and the receiv
object then responds. An object may simply publish
message that may be responded to by one of seve
objects. For example in a bank simulation, a custom
arrives at a bank and may be served by any of seve
tellers. In a O-O context, the customer publishes the
arrival and waits for service by a teller. There are sever
ways in transmitting messages in an object-oriente
program and it depends on the programming language.

3.3.1 Direct Reference

Perhaps the simplest form of message passing is dir
reference to the object’s attributes or data members. F
example, if the interarrivalTime object needed to
have a mean of 5.5, then the simplest means
communicate this message is through direct assignment.

interarrivalTime.mu = 5.5;

This message causes the object to receive the value and
its variable mu. This is a forced message because th
object has no choice but to perform the action.

3.3.2 Data Methods or Functions

Rather than forcing a value upon an object, a value cou
be communicated to the object and then let it determi
how to deal with the value. For example, if a new
“member function” or data method to the Exponential clas
called setMu() was added as follows.

void setMu(double initMu){ mu = initMu; }

Now the object is sent the setMu message with a
message value of 5.5 which “communicates” our interest
changing the mean and interarrivalTime receives
the message and changes its internal value of mu.

interarrivalTime.setMu(5.5);
144
.
a

d

g

l

l

l

t
r

et

Although this example really does the same thing as th
direct reference, there are important distinctions. First, i
our function call we simply “passed” the value of 5.5 to the
object. Second, we didn’t tell the object how to change th
attribute mu. The object has a function written by the
designer of the Exponential class that causes the mean
parameter to change. Notice the user of the function do
not need to know how the function inside the class works
In fact, the class designer could change the internal nam
of mu to expMean within the class, and all exiting user
code would remain the same. This encapsulation of th
data is extremely important in OOS. Also, the sam
message can be made to respond to several differe
message value types is often referred to a
“polymorphism.”

3.3.3 Pointers

Another way to communicate is indirectly through pointers
that are simply addresses of the location of an object. F
example, a pointer to the interarrivalTime object
can be created as follows and the setMu message can
sent via the pointer.

Exponential * rnPtr = &interarrivalTime;
rnPtr->setMu(5.5);

Pointers have the advantage of not needing to know th
particular object ahead of time, but only the address of th
object. Thus, if we change the pointer to point to the
serviceTime object, the format of the message remains
the same. With a more complex message, use of pointe
becomes very convenient.

RNPtr->setMu(3.5);

3.4 How Are Objects Formed?

In our example, the exponential object has no ability to b
created with different means. Instead, the object’s mea
was changed to a specific value. Although an object can b
instantiated from a class without special instructions, ofte
we want the creation to accomplish certain objectives
Likewise, we also might want to do something specia
when an object is destroyed.

3.4.1 Constructors and Destructors

Special member functions can be defined that act when
object is created and destroyed which are calle
constructors and destructors, respectively. The construct
is recognized by having no return type and the same nam
as the class. For example, the following could be
constructor for the exponential object.

Exponential(double initMu){ mu = initMu; }

Fundamentals of Object-Oriented Simulation

he
n

r

or
er

s

s

g

 a
ne
or

he

ed
,

in

no
e

ing
e
n
e

at
e,
e
).

e

e

the
om
ted.

the
ve
the

m
mly

ied
ns

eed
l”

tor

nd
gh

of
res
ue

ply

e

This function accepts the invocation argument and sets t
internal mean to it. An object whose initial mean is 4.3 ca
be specified upon creation as follows.

Exponential serviceTime(4.3);

In C++, functions can be “overloaded” so that they diffe
only in their formal arguments (i.e., “polymorphism”).
Therefore, a class can have multiple constructors. F
example, if we wanted the exponential to accept an integ
specification of its mean.

Exponential(int startMu){ mu = startMu;}

Now, exponential objects with either a double or an int a
arguments can be specified (actually C++ will make
appropriate conversions among its built-in types but thi
example illustrates the way a user could provide
conversions among user-defined classes). The followin
creates two objects using different argument types.

Exponential arrival(9.3), inspect(6);

Users can also define a special member function called
destructor that acts when the object is destroyed. Only o
destructor can be defined since it has no arguments. F
example, a destructor for the exponential class has t
following form.

~Exponential(){// print out how often used? }

3.4.2 Visibility of Properties

It should be clear that a user of a class does not really ne
to know the internal workings of the class. For example
they do not need to know what algorithm is used to obta
the sample (they may want to know for their own
assurance). Furthermore, the designer of the class may
want the user of the class to know everything about th
class. Thus, the class designer has the option of caus
properties of the class to become invisible to users of th
class and to provide a public interface to those hidde
properties. The two most frequently used labels ar
“public” and “private.” Properties within a class that are
public can be accessed directly by a user while those th
are private are available only to the designer. For exampl
the variable containing the mean is made private within th
class to prevent improper use (i.e., direct manipulation
Our class would then look like the following.

class Exponential{
 private:
 double mu;
 public:
 Exponential(double initialMu){mu=initialMu;}
 double sample();
 void setMu(double changeMu){mu = changeMu;}
 double getMu() { return mu; }
};

Now mu cannot be changed directly by a user. Thus th
direct reference to mu, as done earlier, will fail.
Communication to the exponential objects must b
145
t

performed through member functions. The designer of
class can now protect the class data members fr
unwanted changes while the user of the class is unaffec

3.5 How Are Objects Formed From Others?

One of the fundamental benefits of an O-O design is
ability to make other objects out of existing ones. We ha
already seen how to design a class of objects using
built-in types from C++. Suppose the following rando
number class has been defined which generates unifor
distributed numbers between 0 and 1.

class RandomNumber{
 long seed;

 public
 RandomNumber(long seed = -1);
 void setSeed(long sd){seed=sd;}
 virtual double sample();
};

In this definition, the constructor argument can be specif
or left blank to default to their initial values (i.e., -1 mea
use the next seed). The public member function sample ()
is used to obtain a sample and we will assume that the s
will be updated appropriately with each call. The “virtua
keyword will be discussed later.

There are two ways this random number genera
could be used with our Exponential class. The first
method is called composition, in which a random number
object is included within the exponential class. The seco
method of using the random number generator is throu
inheritance which makes the exponential class a kind
random number. Inheritance is one of the major featu
that distinguish a “object-based” language from a tr
“object-oriented” one.

3.5.1 Composition

First, consider the case of composition where we sim
compose the new class from the existing class:

class Exponential{
 private:
 double mu;
 RandomNumber rn;
 public:
 void setSeed(long sd){rn.setSeed(sd);}
… //Public Properties
};

Notice that the Exponential is defined simply to
“have” a RandomNumber. In O-O parlance, the
relationship between the Exponential and the
RandomNumber rn is called a “has-a” relationship. Th
data member rn is used in the sample () function of the
exponential. Notice, a setSeed () needs to be defined in
order to access the one in the random variable.

Joines and Roberts

n
b
fu

c
 b

t
r
te

m
ta

n

a

g
u
s
e
e

ld

li
s
th
it
m

d
ot
ly

g
r
h

n
e
y
nd
o,
al
r

e
d

e
n
e

s
t

nt
f

or
te
nal
ible
3.5.2 Inheritance

The second kind of relationship among classes is called
“is-a” relationship and is based on inheritance or a pare
child relationship. In our example, the exponential can
considered a kind of random variable. It would be use
for the Exponential to be a child of RandomNumber
and thus inherit all the random variable properties. Hen
what could be done to the random variable could also
done with the exponential. No additional setSeed () is
required since the one in the random class can be used.

For example, sometimes a sample from an exponen
is needed while other times a basic uniform generato
required. Suppose the following two objects and poin
are defined:

RandomNumber uni;
Exponential exp(5.5);
RandomNumber * pRN = &uni;

If at an activity in our simulation, a sample from a rando
variable is needed, the following message is sent to ob
an activity time.

pRN -> sample();

However, because Exponential is also a RandomNumber,
the pointer pRN could be assigned to either a
Exponential or a RandomNumber and the same
message applies. In the composition example, two separate
activities would be required (i.e., one which used
exponential and another one which used a uniform).

pRN = &exp;

In a true O-O language with inheritance, the messa
would be sent to the proper object and the sampling wo
be from the correct sampling function. In O-O term
determining which variate to sample at run-time is call
“run-time” binding and is performed by specifying th
sample () to be “virtual” in the parent class.

To specify that Exponential inherits from
RandomNumber, the header for the class definition wou
be modified as:

class Exponential: public RandomNumber{...

showing that RandomNumber is the parent and its
visibility is “public”.

Under inheritance, the child class inherits the pub
(and protected) properties of the parent. Now the
properties are directly available to the child class and
class type resolves any conflicts. C++ also perm
multiple inheritance, meaning a child can inherit fro
several parents.
146
an
t-
e
l

e,
e

ial
is
r

in

n

e
ld
,
d

c
e
e
s

4 OBJECT-ORIENTED VS. OBJECT-BASED

Because many simulation languages offer pre-specifie
functionality produced in another language, the user cann
access the internal function of the language. Instead, on
the vendor can modify the internal functionality. Also,
users have only limited opportunity to extend an existin
language feature. Some simulation languages allow fo
certain programming-like expressions or statements, whic
are inherently limited. Most languages allow the insertio
of procedural routines written in other general-purpos
programming languages. None of this is fully satisfactor
because, at best, any procedure written cannot use a
change the behavior of a pre-existing object class. Als
any new object classes defined by a user in gener
programming language do not co-exist directly with vendo
code.

4.1 Object-Based Extension

The object-based approach only allows extensibility in th
form of composition (i.e., new objects can only be create
out of existing objects). The simple Event object will
demonstrate the limitations of extensibility only through
composition. The Event object is used to move th
simulation from one time to the next. Events are placed o
the calendar and, when an event is removed from th
calendar, the processEvent () function is called to
handle the event. The following gives a portion of the
Event class that can be used to process arrival of entitie
into the network and end of service events. Notice tha
depending on the type of event, the appropriate eve
handling function is called. This is an example use o
composition.

class Event{
private:
 double eventTime, eventType;
 Source *source;
 Activity *activity; //… More properties
public:
 void processEvent(){

 select EventType{
case ArrivalEvent:

source->newArrival(Entity); break;
case EndofService:

activity->endofService(Entity); break;}}
 //… Additional Properties
};

If the user wants to add additional events (e.g., a monit
event), it would require the designer to add an appropria
data member, data methods, and then provide an additio
case statement. Therefore, the designer has the imposs
problem in anticipating every kind of event.

Fundamentals of Object-Oriented Simulation

e

p
h
d
a

n

b

fo

e
e

e
r

t
d

t
y

4.2 Object-Oriented Extension

An object-oriented simulation deals directly with th
limitation of extensibility by permitting full data
abstraction. Data abstraction means that new data ty
with their own behavior can be added arbitrarily to t
programming language. When a new data type is adde
can assume just as important a role as any implicit d
types and can extend existing types. For example, a
user-defined robot class can be added to a language that
contains standard resources without compromising a
aspect of the existing simulation language, and the ro
may be used as a more complex resource. There are
basic mechanisms in C++ that allow OOS to provide
extensibility: inheritance and genericity.

4.2.1 Inheritance

Inheritance allows classes to exploit similarity throug
specialization of parent classes (i.e., child classes inh
the properties of the parent and extend them). All ev
types have an associated eventTime and eventType
and the appropriate data methods to specify th
properties. Therefore, specific event types would inhe
these properties and provide additional ones (see Figure

Figure 1: Inheritance Hierarchy

For example, NodeEvent, which provides events tha
occur at nodes (e.g., end of service at an activity), provi
a pointer to the Node of interest and the Entity which
caused the event. The processEvent() is declared
virtual so that the appropriate processEvent is fired
when the event is pulled off the calendar. The Even
processEvent () is a pure virtual function meaning an
child classes must re-define it. The NodeEvent ’s invokes
the nodes executeLeaving () (another virtual function
in the node hierarchy).

//Event’s processEvent
void virtual processEvent() = 0

// ProcessEvent’s processEvent
void virtual processEvent(){
 processPtr->executeProcess(entityPtr);}

//NodeEvent’s processEvent
void virtual processEvent(){
 nodePtr->executeLeaving(entityPtr);}
//ExecuteLeaving -virtual function in Node

Entity
Node

NodeEvent
getNode

setNode
 processEvent

Monitor-
Function

MonitorEvent
getMonitorFun

setMonitorFun processEvent

Entity
Process

ProcessEvent
getEntity

setEntity processEvent

Event Time
Event Type

Event
getEventTime

setEventTime processEvent
14
es
e
, it
ta

ew

ny
ot
two
r

h
rit
nt

se
it
1).

es

’s

Now the designer does not have to anticipate every type of
event. Users have the ability to define their own events
provided they inherit from an existing event class and
provide an appropriate processEvent () function.

Unlike Java, C++ provides for multiple inheritance
that facilitates a very useful and powerful feature with
some subtle idiosyncrasies. Multiple inheritance allows
you to combine the collection of data and behavior of
several classes. For example, when modeling a textile
distribution network, there are nodes that are vendors,
distribution centers (DCs), and stores. Vendors are
suppliers that ship garments to consumers while stores are
strict consumers that receive shipments. However, DCs are
considered both suppliers and consumers (i.e., DCs can
supply other DCs and stores while receive shipments from
other suppliers (either DCs or vendors)). In a single
inheritance hierarchy, the designer must repeat similar
code for either the supplier or consumer behavior or force
an unnatural inheritance hierarchy.

4.2.2 Parameterized Types

Even with inheritance, many O-O languages like Java and
Smalltalk can still be limiting in terms of extensibility.
Eiffel and C++ provide an additional method of
extensibility called genericity or parameterized types (i.e.
templates). Parameterized types are special forms of
composition that exploit commonality of function. For
example, most simulations would declare a source object
that is used to place entities into the network. In an OOS
environment, the user may want TVs or Orders to arrive
rather than generic entities. The user can create several
different source nodes by inheriting from the base Source
class as seen in Figure 2. Each of the new classes defines a
new type of object to be created (i.e., TV, Order) and the
“virtual function” executeLeaving .

Figure 2: Inheritance Hierarchy versus Commonality

Notice, only the Interarrival object and methods
are re-used in the child class. Each child class must define
its own executeLeaving () when the only difference is
the type of object released into the network. When objects
provide the same functionality, parameterized types are
used (see Figure 3). Now, the user specifies the type of
entity to be released into the network and all remaining

getTV

setTV
TV

TVSource

executeLeaving

Resource

ResourceSource
getResource

setResource

Order

OrderSource
getOrder

setOrder executeLeaving

Entity
InterArrival

Source
getInterArrivalTime

setInterArrivalTime executeLeaving

executeLeaving
7

Joines and Roberts

se
n
te

n

n
ec

io
fo
s

ib
d

 to
.”
e
fic
or
 a
nd

b
on
L

S

se
 a
tio
ti
io

ent

us
e
sk

s

of
nd
tly
s
m

r

ke
d
d

in

nd
th
ng
im
nd
and
s.

ly

del

d
is
 of
ed
res

n
ill

g

ct-

es
s

code is used. This is further demonstrated when a u
wants to add statistics to the source node. The user o
has to inherit from one class rather than crea
TVSourceStat, OrderSourceStat, etc.

Figure 3: Parameterized Type

The following would declare two different source nodes.

Source<TV> tvSource(…);
Source<Order> orderSource(…);

5 CREATING A SPECIFIC OOS

A key to the creation of a fully integrated simulatio
package is the use of a class inheritance hierarchy. The
formation of such a hierarchy is described in Joines a
Roberts (1996). Object-based “frames” are used to coll
classes into levels of abstraction. A frame is a set of
classes that provide a level of abstraction in the simulat
and modeling platform. A frame is a convenient means
describing various “levels” within the simulation clas
hierarchy and is a conceptual term.

While frames provide a convenient means to descr
the levels of abstraction within the entire object-oriente
simulation platform, another means of encapsulation is
place higher level complex interactions into “frameworks
For our purposes, frameworks are used to describe thos
collections of classes that provide a set of speci
modeling facilities. The frameworks may consist of one
more class hierarchies. These collections make the use
reuse of simulation modeling features more intuitive a
provide for greater extensibility.

Special simulation languages and packages may
created from these object classes. For more informati
see Joines and Roberts (1997) in the creation of YANS
which is just one instance of the kind of simulation
capability that can be developed within an OO
environment.

6 FINAL THOUGHTS

Modeling and simulation in an O-O language posses
many advantages. As shown, internal functionality of
language now becomes available to a user (at the discre
of the class designer). Such access means that exis
behavior can be altered and new objects with new behav
introduced. The O-O approach provides a consist
means of handling these problems.

O-O systems view the world as a set of autonomo
agents that interact or work together to solve som
complex task. Each object is responsible for a specific ta

Type
InterArrival

Source< Type >
getInterArrivalTime

setInterArrivalTime executeLeaving
148
r
ly

d
t

n
r

e

nd

e
,
,

s

n
ng
r

that helps one organize the complexity of complex system
which simplifies the computer programming tasks. O-O
designs yield smaller systems through the reuse
common mechanisms. They are more reliant to change a
are better able to adapt over time. O-O designs grea
reduces the risk of building complex software system
because they are developed to evolve incrementally fro
smaller systems.

The O-O ideas have re-rooted in simulation, afte
being initiated by simulation through SIMULA. The
Smalltalk environment is fully O-O and contains fully
OOS. Obviously simulation languages based on C++, li
C++/CSIM and C++SIM, possess all the object-oriente
capability described in this paper. Simple++ an
MODSIM III are further examples of object-oriented
languages that employ most of these concepts with
different simulation frameworks.

The queuing network based languages like Arena a
AweSim have beginnings of object-based features. Bo
languages provide a composition approach to creati
network macros, through Arena templates and AweS
subnetworks. However neither are autonomous a
independent objects in the sense described here
extensibility cannot be used to extend the active entitie
Both have access to Visual Basic, which is itself on
object-based. AweSim wraps its functionality in a few
objects, whereas Arena contains a complete object mo
that is integrated with Visual Basic.

A new simulation language called SLX from
Wolverine Software provides a new object-base
simulation product from the makers of GPSS/H. Th
language has all the object-based facilities but has none
the object-oriented facilities. It does contain an extend
macro facility for adding statements and extended featu
for representing the simultaneous behavior of objects.

To take full advantage of object-oriented simulatio
requires more skill from the user. However, that same sk
would be required of any powerful simulation modelin
package, but with greater limitations.

REFERENCES

Joines, J.A. and S. D. Roberts. 1996. Design of obje
oriented simulations in C++. In Proceedings of the
1996 Winter Simulation Conference, ed., John
Charnes, Douglas Morrice, Dan Brunner, and Jam
Swain, 65-72. Institute of Electrical and Electronic
Engineers, San Diego, CA.

Fundamentals of Object-Oriented Simulation

d

Joines, J.A. and S. D. Roberts. 1997. An Introduction to
Object-Oriented Simulation in C++. In Proceedings
of the 1997 Winter Simulation Conference, ed., Sigrun
Andradottir, Kevin J. Healy, David H. Withers, Barry
L. Nelson, 78-89. Institute of Electrical and
Electronics Engineers, San Diego, CA.

AUTHOR BIOGRAPHIES

JEFFERY A. JOINES is a Research Associate in the
Furniture Manufacturing and Management Center at
NCSU. He received his B.S.I.E, B.S.E.E, M.S.I.E and
Ph.D. from NCSU. He is a member of INFORMS, IIE,
and IEEE. His interests include O-O simulation, cellular
manufacturing, and genetic algorithms.

STEPHEN D. ROBERTS is Professor and Head of the
Department of Industrial Engineering at NCSU. He
received his B.S.I.E., M.S.I.E., and Ph.D. from Purdue
University. He was the recipient of the 1994 Distinguished
Service Award. He has served as Proceedings Editor an
Program Chair for WSC.
149

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

