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ABSTRACT

LABATCH.2 is a collection of computer programs availab
in C, FORTRAN, and SIMSCRIPT II.5 by anonymous ft
at http://www.or.unc.edu/∼gfish/labatch.2.html. It performs
statistical analyses on sample sequences collected on st
stationary stochastic processes. Designed to make
implementation easy for potential users, it may be invok
in-line or from a stored data file. For each sample seque
of length t, LABATCH.2 takes O(t) computing time and
O(log2 t) space.

For each series, LABATCH.2 provides an asym
totically valid confidence interval, based on the bat
means method, for assessing how well its sample ave
approximates its true unknown mean. It also produ
interim estimates of the variance of the sample aver
that enable a user to detect systematic error in the la
variance estimate, due to correlation between batches
also allows a user to assess the extent to which the sa
average is free of initial conditions.

LABATCH.2 has an interactive option that display
interim results on screen. Based on these quantities, a
may instruct LABATCH.2 to continue execution until th
next update or to terminate statistical analysis and w
the final results to a file.

1 INTRODUCTION

Since the typical simulation user’s interest rarely lies in s
tistical analysis, only measures of assessment automati
generated during or at the completion of a simulation
can be expected to attract her/his attention. LABATCH
is a collection of computer programs designed to prov
these measures. It performs statistical analyses on s
ple sequences collected on strictly stationary stocha
processes and offers two modes of implementation. O
integrates LABATCH.2 into an executing data-generat
program (e.g., simulation) to analyze the evolving d
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on repeated subroutine calls; the other takes data fro
an existing file as input. In addition to minimizing user
effort, the first option considerably reduces space require
ments. It also allows user interaction with the executing
program via screen displays of interim estimates. Th
second option permits statistical analysis of stored dat
regardless of source and date of generation, thereby maki
LABATCH.2 applicable in a considerably wider range of
data-generating environments.

LABATCH.2 is a revision of LABATCH (Fishman
1996, Fishman and Yarberry 1997) that considerably simpl
fies its implementation and use. The simplifications are it
most attractive feature. A user merely inserts a single su
routine call statement in her/his main program and assign
values to several control arguments of the subroutine. C
FORTRAN, and SIMSCRIPT II.5 implementations of LA-
BATCH.2 are obtainable by anonoymous file transfer proce
dure (ftp) at http://www.or.unc.edu/∼gfish/labatch.2.html.
Also available is report TR 97/04 (Fishman 1997), which
contains complete details for implementation. The prese
account is an abridged version of the report.

2 OVERVIEW

For each sample sequence,X1, . . . , Xt, in its input, LA-
BATCH.2 computes as part of its output a sample averag
X̄t, as an estimate of its true unknown mean,µ, and an
asymptotically valid100×(1−δ) percent confidence inter-
val for assessing how well̄Xt approximatesµ. The confi-
dence interval relies crucially on an estimate,BW (L, B),
of the asymptotic variance, σ2

∞ := limt→∞ t varX̄t, com-
puted by thebatch means method, whereB denotes batch
size L, the number of batches, andW(L,B), the sample
variance of a batch average. Since this estimate ofσ2

∞
is also subject tosystematic erroras well as random
sampling error and since the validity of the confidence
interval depends on this systematic error being relativel
negligible, LABATCH.2 also displays interim calculations
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of BW (L, B) that allow a user to assess the extent t
which systematic error remains in the final variance est
mate used to compute the confidence interval for the me
µ. The ability to make this assessment with LABATCH.2
output is one of its most valuable assets.

In the present context, systematic error in the varianc
estimate can be present even for sample data free of b
due to initial conditions. It arises from neglecting all bu
the term proportional tot−1 in varX̄t and from ignoring
the correlation between batch averages. To provide a ba
for systematic error assessment, LABATCH.2 computes
sequence of estimates ofσ2

∞ based on data subsequence
of increasing lengthst1 < t2 < · · · < tJ(t) ≤ t, where
ti+1 = 2ti for i = 1, . . . , J(t) − 1, and where the user-
specified path length,t, determinest1 and J(t). See
Sec. 2.4.

As illustration, consider a simulation of the M/M/1
queueing model with .90 interarrival rate and unit servic
rate. The simulation began in the steady state and term
nated when customert = 107 entered service. Figure 1a
displays LABATCH.2–computed 99 percent confidence in
tervals for the mean waiting time in queue (Series 1) an
for the probability that a customer waits (Series 2). Th
true values are 9 and .90 respectively.

For each series, Figure 1b displays LABATCH.2–
computed sequences of point and 99 percent interv
estimates ofµ and point estimates,

√
BW (L, B), of σ∞

as the batch size,B, and the number of batches,L, grow
with sample path length according to the ABATCH rule
(Sec. 3.3). As sample path length doubles(tj+1 = 2tj),
the ABATCH rule doublesB if a test of the hypothesis H,
batch averages are independent, detects systematic er
If no systematic error is detected (H is accepted), th
rule increasesB by a factor of

√
2 approximately. This

implies that eitherL remains constant (H is rejected) on
successive reviews orL also increases (H is accepted)
approximately by a factor of

√
2. The

√
BW (L, B)

sequences in Figure 1b reveal that systematic error in t
example has become negligible for Series 1 on review
j ≥ 11 for Series 2 on reviewsj ≥ 7. Note that the
evidence for these assertions comes from interim revie
results subsequent to reviewj = 11 (Series 1) andj = 7
(Series 2), thus establishing the intrinisic value of th
tableaus in Figure 1.b.

Figure 2 graphically displays the point and interva
estimates (cols. 5, 6, and 7 in Figure 1b) forµ for
each series. The graphs provide a convenient way
assessing the accuracy of the sample averages at a gla
These and all other graphs in the paper were creat
using MathematicaiT applied to the LABATCH.2 output
after deleting the final tableau (Figure 1a) and all head
and trailer information from the interim review tableaus
132
n

s

is

-

l

r.

e

f
e.

d

r

(a)
Final Tableau

Mean Estimation
***************
(t = 10000000 )

99.0%
_ Standard Error Confidence Interval _

Series X Sqrt[B*W(L,B)/t] Lower Upper (Upper-Lower)/|X|

1 0.8949D+01 0.5681D-01 0.8802D+01 0.9097D+01 0.3290D-01

2 0.8995D+00 0.4200D-03 0.8984D+00 0.9006D+00 0.2416D-02
_
X is based on all t observations.
W(L,B) is based on first 91.75% of the t observations.

(b)
Interim Review Tableau

ABATCH Data Analysis for Series 1

99.0%
_ Confidence Interval

Review L*B L B X Lower Upper Sqrt[B*W(L,B)] p-value

1 35 7 5 0.1660D+02 0.1379D+02 0.1940D+02 0.4475D+01 0.3804
2 70 10 7 0.1810D+02 0.1575D+02 0.2045D+02 0.6047D+01 0.1109
3 140 14 10 0.1914D+02 0.1693D+02 0.2135D+02 0.8680D+01 0.1524
4 280 20 14 0.1886D+02 0.1662D+02 0.2111D+02 0.1313D+02 0.0194
5 560 20 28 0.1111D+02 0.5748D+01 0.1646D+02 0.4432D+02 0.0000
6 1120 20 56 0.7254D+01 0.2741D+01 0.1177D+02 0.5278D+02 0.0001
7 2240 20 112 0.6706D+01 0.2960D+01 0.1045D+02 0.6196D+02 0.0005
8 4480 20 224 0.7556D+01 0.3996D+01 0.1112D+02 0.8328D+02 0.0358
9 8960 20 448 0.6747D+01 0.4111D+01 0.9383D+01 0.8721D+02 0.7293

10 17920 28 640 0.7817D+01 0.5478D+01 0.1016D+02 0.1130D+03 0.7095
11 35840 40 896 0.9513D+01 0.6280D+01 0.1275D+02 0.2260D+03 0.0655
12 71680 40 1792 0.9668D+01 0.6693D+01 0.1264D+02 0.2941D+03 0.8172
13 143360 56 2560 0.9073D+01 0.7449D+01 0.1070D+02 0.2304D+03 0.7200
14 286720 80 3584 0.8883D+01 0.8012D+01 0.9754D+01 0.1767D+03 0.2993
15 573440 112 5120 0.9248D+01 0.8511D+01 0.9985D+01 0.2128D+03 0.7163
16 1146880 160 7168 0.9126D+01 0.8653D+01 0.9600D+01 0.1945D+03 0.0993
17 2293760 160 14336 0.9138D+01 0.8809D+01 0.9468D+01 0.1913D+03 0.1852
18 4587520 224 20480 0.9032D+01 0.8805D+01 0.9259D+01 0.1874D+03 0.7882
19 9175040 320 28672 0.8949D+01 0.8802D+01 0.9097D+01 0.1796D+03 0.2362

If data are independent:

10000000 10000000 1 0.8949D+01 0.8941D+01 0.8957D+01 0.9821D+01 0.0000

0.10 significance level for independence testing.
Review 19 used the first 91.75% of the t observations for W(L,B).

Interim Review Tableau
ABATCH Data Analysis for Series 2

99.0%
_ Confidence Interval

Review L*B L B X Lower Upper Sqrt[B*W(L,B)] p-value

1 35 7 5 0.1000D+01 0.1000D+01 0.1000D+01 0.0000D+00 0.0000
2 70 7 10 0.1000D+01 0.1000D+01 0.1000D+01 0.0000D+00 0.0000
3 140 7 20 0.1000D+01 0.1000D+01 0.1000D+01 0.0000D+00 0.0000
4 280 7 40 0.1000D+01 0.1000D+01 0.1000D+01 0.0000D+00 0.0000
5 560 7 80 0.9250D+00 0.7838D+00 0.1066D+01 0.9014D+00 0.0067
6 1120 7 160 0.8812D+00 0.7697D+00 0.9928D+00 0.1007D+01 0.0140
7 2240 7 320 0.8862D+00 0.7503D+00 0.1022D+01 0.1734D+01 0.1002
8 4480 10 448 0.8830D+00 0.7975D+00 0.9686D+00 0.1762D+01 0.8214
9 8960 14 640 0.8770D+00 0.8360D+00 0.9180D+00 0.1289D+01 0.9589

10 17920 20 896 0.8888D+00 0.8607D+00 0.9169D+00 0.1316D+01 0.9648
11 35840 28 1280 0.9001D+00 0.8797D+00 0.9206D+00 0.1398D+01 0.3029
12 71680 40 1792 0.8973D+00 0.8813D+00 0.9133D+00 0.1581D+01 0.9235
13 143360 56 2560 0.8967D+00 0.8879D+00 0.9055D+00 0.1250D+01 0.6376
14 286720 80 3584 0.8976D+00 0.8916D+00 0.9036D+00 0.1220D+01 0.5008
15 573440 112 5120 0.9001D+00 0.8956D+00 0.9045D+00 0.1280D+01 0.1352
16 1146880 160 7168 0.8996D+00 0.8963D+00 0.9029D+00 0.1374D+01 0.5547
17 2293760 224 10240 0.8992D+00 0.8968D+00 0.9016D+00 0.1381D+01 0.6289
18 4587520 320 14336 0.8995D+00 0.8979D+00 0.9011D+00 0.1313D+01 0.7435
19 9175040 448 20480 0.8995D+00 0.8984D+00 0.9006D+00 0.1328D+01 0.6766

If data are independent:

10000000 10000000 1 0.8995D+00 0.8992D+00 0.8997D+00 0.3007D+00 0.0000

0.10 significance level for independence testing.
Review 19 used the first 91.75% of the t observations for W(L,B).

Figure 1: LABATCH.2 output for M/M/1
queueing simulation

(Series 1: waiting time in queue,
Series 2: 1:=wait, 0:= no wait)
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(Figure 1b). EXCEL iT or similar software could have
been used as alternatives.
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Figure 2: LABATCH.2 sample means and 99%
confidence intervals for ABATCH rule;

simulation starts in steady state

Figure 3 graphically displays
√

BW (L, B) (col. 8
in Figure 2b) as estimates ofσ∞ for each series. For
Series 1, σ∞ = 189.3 and for Series 2,σ∞ = 1.308
(Blomqvist 1967), giving us the luxury of a comparison
based on theory.

For any path length,t ≥ 20, LABATCH.2 automati-
cally computes the number of batches,L, and the batch
size, B, to be used in its first review. For example, it
choseL=7 andB=5 for t = 107 for the M/M/1 example.
This automation, described in Sec. 2.4, relieves the us
of the need to specify initial values forL and B, as in
the original LABATCH package.

A call from a
C

FORTRAN
SIMSCRIPT II.5

main program to

BATCH MEANS(IN UNIT,OUT UNIT,T,S NUM,PSI VECTOR,
133
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(a) Series 1,σ∞ = 189.5
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(b) Series 2,σ∞ = 1.308
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Figure 3: LABATCH.2 estimates,
√

BW (L, B),
of σ∞

DELTA,RULE, BETA,L UPPER,SCREEEN) (1)

implements LABATCH.2. As an example, suppose they
arguments are:

IN UNIT = 0
OUT UNIT = 15

T = 1000
S NUM = 2 (2)

PSI VECTOR = pointer to data vector with

S NUM entries

DELTA = .01
RULE = 1
BETA = .10

L UPPER = 30
SCREEN = 0 .
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Then LABATCH.2 processes SNUM=2 sequences in
T=1000 iterative calls from the user’s main program
computes 100 × (1 − DELTA)=99 percent confidence
intervals for the sample averages, and writes the outp
to a file called

c.15
fort.15

SIMU15
(IN UNIT=0, OUT UNIT=15).

RULE=1 causes LABATCH.2 to employ the ABATCH
rule to determine batch size on each review and BETA=.
causes it to test for independence of batch averages at
.10 significance level. LABATCH.2 begins its first iteration
with the number of batches no greater than LUPPER =
30. SCREEN=0 suppresses the screen interative fea
(Sec. 4.2). In practice, all but the values of T and SNUM
can be set once and the subroutine used repeatedly
different settings.

Testing determines whether the batch size on revie
j+1 increases by a factor of 2 (rejection) or approximate
as

√
2 (success). A doubling of batch size aims at reducin

any residual systematic error detected on reviewj as fast
as possible. A

√
2 increase signals that the number o

batches are also increasing approximately by a
√

2 factor.
Growth in both batch size and number batches as
sample path length grows is a necessary condition
obtaining a consistent estimator ofσ2

∞. Recall thatσ2
∞/t

approximates the large-sample variance ofX̄t.

3 RATIONALE

Let {Xi, i ≥ 1} denoted a strictly stationary stochasti
process with unknown meanµ. Given a sample path,
X1, . . . , Xt,

X̄t :=
1
t

t∑
i=1

Xi

provides a point estimate ofµ. When data collection
begins in the steady state,̄Xt is an unbiased estimator of
µ.

Assumption 1. σ2
t := varX̄t satisfiestσ2

t → σ2
∞ as t →

∞, whereσ2
∞ is a positive constant.

Assumption 2. There exist a constantλ ∈ (0, 1/2) such
that

t1/2(X̄t −µ)/σ∞ = Z(t)/t1/2 +O(t−λ) as t → ∞ w.p.1,

where{Z(s), s ≥ 0} denotes standard Brownian motion.
Assumption 2 is theAssumption of Strong Approx-

imation (ASA). A λ close to 1/2 signifies a marginal
distribution for theXi close to the standard normal an
low correlation betweenXi and Xj for ∀ i 6= j. Con-
versely, λ close to zero implies the absence of one
both of these properties. See Philipp and Stout (197
Section 3.4 relies on Assumptions 1 and 2.
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To assess how well̄Xt approximatesµ, we need an
estimate ofσ2

∞. The batch means method offers one
option. Let b(t) denote a positive integer(< t), let
l(t) := bt/b(t)c, and let t′(t) := l(t)b(t). Our version
of the batch means method partitions the subsequen
X1, . . . , Xt′(t), into l(t) nonoverlapping batches each of
size b(t), computes the batch averages,

Yjb(t) :=
1

b(t)

b(t)∑
i=1

X(j−1)b(t)+i j = 1, . . . , l(t), (3)

and an estimate of varYjb(t),

Wl(t)b(t) :=
1

l(t) − 1

l(t)∑
j=1

(Yjb(t) − X̄t′(t))2, (4)

and usesb(t)Wl(t)b(t) as an estimte ofσ2
∞. Then

[X̄t ± τ
l(t)−1(1 − δ/2)

√
b(t)Wl(t)b(t)/t ] (5)

provides an approximating100×(1−δ) percent confidence
interval forµ, whereδ ∈ (0, 1) andτ

l(t)−1(1−δ/2) denotes
the 1 − δ/2 critical value of Student’st distribution with
l(t) − 1 degrees of freedom.

Damerdji (1994) indicates how{(l(t), b(t))} must grow
in order for (5) to be an asymptotically valid confidence
interval for µ in the sense that it achieves the specifie
1 − δ coverage rate ast → ∞.

Unless clarity demands otherwise, we hereafter writ
b := b(t) and l := l(t) when batch size and number of
batches are deterministic functions oft. Also, we assume
that t′(t) = t so that the batches in expression (3) us
all the observations. Later, we consider the more gener
case oft′(t) ≤ t.

Under relatively weak conditions, the choice,l(t) ∝
t1/2 and b(t) ∝ t1/2, induces the fastest convergence o
the true coverage rate to the specified theoretical covera
rate,1 − δ (Chien 1989). For other choices, see Fishma
(1997).

Observe that fort′(t) = t

EVt =
t

l − 1
(σ2

b − σ2
t ), (6)

which, for positively autocorrelated sequences, is usual
negative. If E(X1 − µ)12 < ∞ and {Xi} is φ-mixing
with φi = O(i−9), then expression (6) takes the form
(Goldsman and Meketon 1986)

EVt = σ2
∞ + γ(l + 1)/t + o(1/b), (7)

where

γ := −2
∞∑

i=1

i cov(X1, X1+i).
4
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Also (Chien et al. 1996),

var Vt =
2σ4

∞(l + 1)
(l − 1)2

+ O(1/lb1/4) + O(1/l2). (8)

Note thatσ2
∞ =

∞∑
i=∞

cov(X1, X1+i).

Expression (6) leads to the representation

Vt −σ2
∞ = tσ2

t −σ2
∞ − tσ2

t

(
1 − bσ2

b/tσ2
t

1 − b/t

)
+ εt, (9)

︸ ︷︷ ︸
error due

to finite t

︸ ︷︷ ︸
error due to

ignoring correlation

︸ ︷︷ ︸
error due to

random sampling
between batches

where εt has mean zero and variance (8). Hereafter, w
collectively refer to the errors due to finitet and to ignoring
correlation as systematic error. From expression (7) w
see that the systematic error behaves as O((l + 1)/t) =
O(1/b) whereas, from expression (8),

√
var εt behaves as

O(1/l1/2), revealing the tradeoff between the two type
of error that a choice ofl and b induces.

In what follows, we adopt a strategy that lead
to l ∝ t1/2 and b ∝ t1/2, once t becomes sufficiently
large. Two considerations motivate this choice. Firs
since the approximating 100×(1 − δ) percent confidence
interval (5) provides the means of assessing how w
X̄t approximatesµ, we would like its true coverage
rate to be as close to1 − δ as possible. Secondly, the
square root option facilitates the efficient computation of
sequence of estimatesVt1 , Vt2 , . . . , based on subsequence
{X1, . . . , Xt1}, {X1, . . . Xt2}, . . . , respectively, fort1 <
t2 < . . . ≤ t, that provide a means for assessing the exte
to which systematic error remains inVt, our final estimate
of σ2

∞. The next subsection elaborates on this issue.

3.1 Interim Review

In what follows we taket1 as given andtj+1 := 2tj
for j = 1, 2, . . . . For a sequence of i.i.d. random vari
ablesX1, X2, . . . , this choice implies corr(X̄

tj
X̄ti+j

) =√
tj/ti+j for i ≥ 0 and j ≥ 1. More generally,

if corr(X1, X1+j) = α
|j|

, for some −1 < α < 1,
then limj→∞ corr(X̄

tj
, X̄

ti+j
) = limj→∞

√
tj/ti+j . We

choose tj+1/tj := 2 which implies corr(X̄
tj

, X̄
ti+j

) =
2−i/2 in the independent and asymptotic (asj → ∞)
cases. Any growth factor less than 2 would induce high
correlation. Most importantly, this choice makes possib
the O(t) computing time and the O(log2t) space bounds
for LABATCH.2.
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3.2 FNB and SQRT Rules

The description here closely follows Fishman (1996) an
Fishman and Yarberry (1997). Forj = 1, 2, . . . , let
lj := l(tj) and bj := b(tj). We illustrate the benefits of
interim review for two assignment rules, FNB and SQRT
that form the basis for the LBATCH and ABATCH rules
that LABATCH.2 incorporates. Given(l1, b1), the FNB
rule fixes lj = l1 for all j and doubles the batch size
bj+1 = 2bj on successive reviews.

Given (l1, b1), the SQRT rule sets

l2 = l̃1 := b
√

2l1 + .5c (10)

b2 = b̃1 :=

{
3 if b1 = 1

b√2b1 + .5c if b1 > 1
(11)

lj+1 = 2lj−1

bj+1 = 2bj−1 j = 2, 3, . . . .

These assignments inducelj+1/lj
·=

√
2 and bj+1/bj

·=√
2. By choosing(l1, b1) from B in Table 1, we ensure that

2l1b1 = l̃1b̃1 so thattj = ljbj = 2j−1l1b1 and, therefore,
tj+1/tj = 2, as desired. This constraint proves valuab
in Sec. 3.3, which describes batch-size rules that combi
the FNB and the SQRT rules.

3.3 LBATCH and ABATCH Rules

Let H denote the hypothesis: On reviewj, the lj batches,
Y1bj

, . . . , Yljbj
, are mutually independent. The LBATCH

and ABATCH rules both use the outcome of a test of H
to switch between the FNB and SQRT rules on succesi
reviews. The net effect is to retain the desirable prop
erties of each rule while reducing the influence of the
limitations. The principal features of these hybrid rules ar

LBATCH Rule

• Start with the FNB rule on review 1.

• For j ≥ 1, if H is rejected on reviewj, use the FNB
rule on reviewj + 1.

• Once H is accepted on reviewj, use the SQRT rule
on reviews,j + 1, j + 2, . . . .



Fishman
Table 1: B := {(l1, b1) : 1 ≤ b1 ≤ l1 ≤ 100, 2l1b1 =
l̃1b̃1}†

b1 l1 b1 l1

1 3 38 54
2 3,6 39 55
3 4 41 58,87
4 6 43 61
5 7,14,21,28 44 62, 93
7 10,15,20,25,30,35 46 65
8 11 48 51,68,85
9 13 49 69
10 14, 21,28 50 71
12 17,34,51,68,85 51 60,72,84,96
14 15,20,25,30,35 53 75
15 21,28 54 57
17 24,36,48,60,72,84,96 55 78
19 27,54 56 79
20 21, 28 58 82
21 25, 30, 35 60 68,85
22 31,62,93 61 86
24 34,51,68,85 62 66
25 28 63 89
26 37 65 92
27 38,57 66 93
28 30,35 67 95
29 41,82 68 72,84,96
31 44,66,88 70 99
32 45 72 85
33 47 82 87
34 36,48,60,72,84,96 84 85
36 51,68,85 85 96
37 52 88 93

† l̃1 is defined in expression (10) andb̃1 in expression (11).

and: ABATCH Rule

• Start with the FNB rule on review 1.

• For j ≥ 1, if H is rejected on reviewj, use the FNB
rule on reviewj + 1.

• For j ≥ 1, if H is accepted on reviewj, use the
SQRT rule on reviewj + 1.

By initially fixing l, the LBATCH rule allows batch
size,b, to increase at the maximal rate when H is rejected
thus dissipating systematic error inVtj as fast as possible.
Once H is accepted, the rule switches to the SQRT rule
dissipate the error in coverage rate as rapidly as possib
By testing H on every review, the ABATCH rule takes into
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consideration the possibility of Type II errors on successive
replications. The LBATCH rule ignores this source of
error whereas the ABATCH rule allows the procedure to
correct itself.

As a consequence of this testing, batch size and
number of batches on reviewj (> 1) are random. To
acknowledge this property, we denote them asBj andLj

respectively. LetKj denote the number of test rejections of
H on reviews1, . . . , j. Then the LBATCH and ABATCH
rules induce:

Lj =




2(j−Kj)/2l1 if j − Kj is even

2(j−Kj−1)/2 l̃1 if j − Kj is odd

and

Bj =




2(j+Kj−2)/2b1 if j − Kj is even

2(j+Kj−1)/2b̃1 if j − Kj is odd,

so thattj = LjBj = 2j−1l1b1 for j = 1, 2, . . . .
To account for the randomness of{(Lj , Bj), j ≥ 1}

with regard to limiting behavior, we rely on Yarberry (1993)
and Fishman and Yarberry (1997) who give conditions for
which BjWLjBj

→ σ2
∞ as j → ∞ w.p.1 and

X̄tj − µ√
WLjBj

/Lj

d→ N (0, 1) as j → ∞. (12)

2

3.4 Choosingt, l1, and b1

For given (l1, b1) ∈ B, choosing t so that J(t) :=
log(t/l1b1)/ log 2 is an integer results int′(t) = t. As a
consequence, the LBATCH and ABATCH rules used all
t observations to estimateWLJ(t)BJ(t) and X̄t′(t) = X̄t.
Since choosingl1, b1, and t subject to the constraint may
be too burdensome for some users, LABATCH.2 merely
requires thatt be specified and then choosesl1 and b1 to
maximize t′(t).

Let B(t) denote the subset ofB that maximizest′(t).
LABATCH.2 chooses(l1, b1) to be the element ofB(t)
that maximizesJ(t), the number of interim reviews. For
l1 ≤ 30 and t ≥ 500, this leads tot′(t)/t ≥ .898.

We now reconcile

At :=
X̄t − µ√

BJ(t)WLJ(t)BJ(t)/t
(13)

whose properties establish the basis for the LABATCH.2
confidence interval (5), withl(t) = LJ(t), b(t) = BJ(t),
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Wl(t)b(t) = Vt′(t)/BJ(t), and

Gt :=
X̄t′(t) − µ√

BJ(t)WLJ(t)BJ(t)/t′(t)
(14)

whose properties are those of the variate in (12) fo
j = J(t). Recall thatt′(t) = tJ(t) = LJ(t)BJ(t).

Whereas At uses all t observations to estimate
µ, Gt uses only the firstt′(t) observations. However,
both use theBJ(t)WLJ(t)BJ(t) as an estimate ofσ2

∞.

Since(X̄t′(t) − µ)/
√

σ2∞/t′(t) and (X̄t − µ)/
√

σ2∞/t are
both asymptoticallyN (0,1), by Assumption 2, and since
BLJ(t)WLJ(t)BJ(t)

is strongly consistent, it a modification
of a theorem 6 in Yarberry (1993) can yield asymptotic
normality for At as well. With regard to statistical
efficiency, At reduces interval width by a factor of
1 − √

t′(t)/t ≤ 1 − √
.889 = .0571 when (l1b1) ∈ B(t)

for t ≥ 500.
To test H, LABATCH.2 uses the von Neumann ratio

(von Neumann 1941, Young 1941, Fishman 1978, 1996
The rightmost column in each Interim Review Tableau in
Figure 1 lists the correspondingp-values, the probability,
under H, of seeing a test statistic larger than the on
observed. Ifp-value ≤ BETA, H is rejected; otherwise is
accepted.

4 ADEQUACY OF THE WARM-UP INTERVAL

LABATCH.2 also provides an assessment of the extent
warm-up bias inX̄t. We again use the M/M/1 simulation.
However, this time the run began with an arrival to an empt
and idle system and data collection began withX1 :=
waiting time of the first arrival. For this scenario,X1 = 0
w.p.1 andX1, X2, . . . , Xt is stationary, only asymptotically
(as t → ∞). This is a more biased environment than on
would expect to encounter when data collection begin
after a user-specified warm-up interval.

Figure 4 displays the 99 percent confidence intervals fo
mean waiting time in queue, taken from the LABATCH.2
interim review tableau for Series 1 for this run. It
suggests little bias after review 11, which corresponds
211 × L1 × B1 = 2048 × 7 × 5 = 71, 680 observations.

Suppose the user had specifiedt = 4480 for the sample
path length. Then LABATCH.2 would have generated th
same sample averages and confidence intervals forL1 = 7
and B1 = 5, but only for the first seven interim reviews.
Moreover, a display of these results would have arouse
considerably more concern about the dissipation of bia
in X̄t. Interestingly, had we takent = 4480 in our first
simulation, which began in an equilibrium state, we migh
equally be suspicious of̄Xt based on the path it displays
in Figure 2 for j = 1, . . . , 7. However, this observation
in no way mitigates the value of the assessment when w
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Figure 4: LABATCH.2 sample means and 99 percent
confidence intervals for Series 1 ABATCH rule;

simulation starts in empty and idle state

know for a fact thatX̄t may contain systematic bias as a
result of starting in an arbitrarily chosen state and possibl
choosing an inadequate warm-up interval.

This example in no way mitigates the traditionally
sound advice of truncating a warm-up interval in the
sample data to reduce the influence of initial conditions.

5 FEATURES

Several features of LABATCH.2 allow wide latitude for
using it in practice. For example, one can easily strip th
header and trailer entries from the column display in th
interim review tableau and then transfer the remainin
tableau to a spreadsheet environment, thus facilitate
graphmaking. Experience has shown that little effor
is needed to effect the desired graphs, provided softwa
such as MathematicaiT or EXCEL iT is available.

5.1 Two Modalities

As already mentioned, LABATCH.2 provides two ways
of accessing data for statistical analysis. One require
the user to insert a call statement into the data-generatin
program which executes the call each time it produces
new data vector. Calling and executing BATCHMEANS
each of T times (Table 1) that a data vector with
S NUM entries is generated results in O(SNUM×T)
computing time and O(SNUM× log2T) space being used
to generate the LABATCH.2 output. Both complexities
arise from choosing rules that cause eitherBj+1 = 2Bj or
Bj+1

.=
√

2Bj on successive reviewsj = 1, 2, . . . . The
space bound is particularly appealing whent =T is very
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large. Yarberry (1993) and Alexopoulos et al. (1997
describe the basis for these complexities.

The other option allows LABATCH.2 to read its dat
from a file, giving the software a considerably broad
range of application than merely for in-line generate
sample records. We illustrate how this option works in th
context of the M/M/1 example, but stress the applicabili
of the approach to stored sample data.

If IN UNIT=30 and OUTUNIT=15 (Table 1), then
a main program needs to call BATCHMEANS just once
to cause LABATCH.2 to read its sample data from a fi
called

c.30
fort.30

SIMU30
and to write its output to

c.15
fort.15

SIMU15
. While the

O(S NUM×T) time and O(SNUM× log2T) space bounds
remain for LABATCH.2, they do not tell the whole story
In particular, the input file requires space proportion
to S NUM×T, which for SNUM as small as 1 can be
substantial for sufficiently large T.

Programs written in C, FORTRAN, or SIMSCRIPT
II.5 can implement the second option without qualificatio
Any program that provides access to and execution o
C, FORTRAN, or SIMSCRIPT II.5 subroutine can tak
advantage of the first option. In a simulation environment
user-written program in a language that provides stand
linkages for incorporating a subroutine generally wi
consume less time calling BATCHMEANS and analyzing
data than a program generated at the icon-level in
point-and-click environment.

5.2 Interacting with the Analysis

If SCREEN=0 in expression (2), then LABATCH.2 per
forms as described in Sec. 2. However, if SCREEN=
then after executing interim reviewj, LABATCH.2 dis-
plays on the screen̄Xtj , the sample coefficient variation
of X̄tj

, sometimes called the relative standard erro
and

√
BjW (Lj , Bj), for Series i in column i + 1 for

i = 1, . . . ,min(6,S NUM), where screen size dictates th
upper limit oni. LABATCH.2 then asks the user if he/she
wishes to continue.

Figure 5 shows an abbreviated screen display for
steady-state M/M/1 simulation, where column 2 show
the sequence of estimates for Series 1 and column
does likewise for Series 2. If the user concludes th√

BjW (Lj , Bj) has stabilized in each column, so tha
the systematic errors have become negligible, and t
the C.V.(X̄tj

) are sufficiently small, then he/she ma
terminate the simulation by typing “n". This action
causes LABATCH.2 to compute confidence intervals f
the SNUM and to write both the final and interim review
tableaus (Figure 1) to file OUTUNIT. If this action occurs
immediately after the on-screen display, for reviewj, then
the final tableau, as well as the interim review tableau
useLjBj observations. If the screen display suggests th
138
)

r
d
e
y

l

.
a

a
rd
l

a

,

r,

e
s
3
t

t
at

r

s,
at

systematic error remains, then, provided thatLjBj < t
typing “y" causes LABATCH.2 to collect additional data, to
perform the next review, to display

√
Bj+1W (Lj+1, Bj+1)

on screen, and to ask the user whether or not he/she wish
to continue. IfLjBj = t′(t) and the user types “y", then
the simulation goes to completion and LABATCH.2 uses
all t=T observations for the sample averages and the firs
t′(t) observations for the finalBJ(t)W (LJ(t), BJ(t))’s.

X_BAR, C.V.(X_BAR), and Sqrt[B*W(L,B)] for
Series 1 Through 2

********************************************
No. of

Review Obs. 1 2

1 35 X_BAR 0.1660D+02 0.1000D+01
C.V.(X_BAR) 0.4557D-01 0.0000D+00

Sqrt[B*W(L,B)] 0.4475D+01 0.0000D+00
continue[y/n]? y

. . . .

. . . .

. . . .

9 8960 X_BAR 0.6747D+01 0.8770D+00
C.V.(X_BAR) 0.1366D+00 0.1553D-01

Sqrt[B*W(L,B)] 0.8721D+02 0.1289D+01
continue[y/n]? y
10 17920 X_BAR 0.7817D+01 0.8888D+00

C.V.(X_BAR) 0.1080D+00 0.1106D-01
Sqrt[B*W(L,B)] 0.1130D+03 0.1316D+01

continue[y/n]? y
11 35840 X_BAR 0.9513D+01 0.9001D+00

C.V.(X_BAR) 0.1255D+00 0.8205D-02
Sqrt[B*W(L,B)] 0.2260D+03 0.1398D+01

continue[y/n]? y
12 71680 X_BAR 0.9668D+01 0.8973D+00

C.V.(X_BAR) 0.1136D+00 0.6581D-02
Sqrt[B*W(L,B)] 0.2941D+03 0.1581D+01

continue[y/n]?

Figure 5: Abbreviated LABATCH.2 screen
display when SCREEN=1

As illustration of how this procedure works in practice,
consider review 11 in Figure 5, where C.V.(XBAR)=.1255
for mean waiting time (Series 1) and C.V.(XBAR)=.008205
for probability of waiting (Series 2) may encourage one to
conclude that the sample averages (XBAR) are statistically
reliable. By constrast, the variability in Sqrt[B∗W(L,B)],
the estimates ofσ∞, for say, reviews 9 through 11
encourages continuation of the experiment; hence “y" in
response to the query, produces the output on review 12
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