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ABSTRACT on repeated subroutine calls; the other takes data from
an existing file as input. In addition to minimizing user
LABATCH.2 is a collection of computer programs available effort, the first option considerably reduces space require-
in C, FORTRAN, and SIMSCRIPT II.5 by anonymous ftp, ments. It also allows user interaction with the executing
at http://www.or.unc.edu/gfish/labatch.2.html. It performs  program via screen displays of interim estimates. The
statistical analyses on sample sequences collected on strictlysecond option permits statistical analysis of stored data,
stationary stochastic processes. Designed to make itsregardless of source and date of generation, thereby making
implementation easy for potential users, it may be invoked LABATCH.2 applicable in a considerably wider range of
in-line or from a stored data file. For each sample sequence data-generating environments.
of lengtht, LABATCH.2 takes Of) computing time and LABATCH.2 is a revision of LABATCH (Fishman
O(log, t) space. 1996, Fishman and Yarberry 1997) that considerably simpli-
For each series, LABATCH.2 provides an asymp- fies its implementation and use. The simplifications are its
totically valid confidence interval, based on the batch most attractive feature. A user merely inserts a single sub-
means method, for assessing how well its sample averageroutine call statement in her/his main program and assigns
approximates its true unknown mean. It also produces values to several control arguments of the subroutine. C,
interim estimates of the variance of the sample average FORTRAN, and SIMSCRIPT II.5 implementations of LA-
that enable a user to detect systematic error in the latest BATCH.2 are obtainable by anonoymous file transfer proce-
variance estimate, due to correlation between batches. It dure (ftp) at http://www.or.unc.eduffish/labatch.2.html.
also allows a user to assess the extent to which the sampleAlso available is report TR 97/04 (Fishman 1997), which
average is free of initial conditions. contains complete details for implementation. The present
LABATCH.2 has an interactive option that displays account is an abridged version of the report.
interim results on screen. Based on these quantities, a user
may instruct LABATCH.2 to continue execution until the
next update or to terminate statistical analysis and write 2 OVERVIEW

the final results to a file. o
For each sample sequenck;, ..., X;, in its input, LA-

BATCH.2 computes as part of its output a sample average,
1 INTRODUCTION X,, as an estimate of its true unknown mean,and an

asymptotically validl00 x (1—6) percent confidence inter-
Since the typical simulation user’s interest rarely lies in sta- val for assessing how wel; approximates:. The confi-
tistical analysis, only measures of assessment automatically dence interval relies crucially on an estimai&dy (L, B),
generated during or at the completion of a simulation run of the asymptotic variances?, := lim; ., t varX;, com-
can be expected to attract her/his attention. LABATCH.2 puted by thebatch means methodvhere B denotes batch
is a collection of computer programs designed to provide size L, the number of batches, an®/(L,B) the sample
these measures. It performs statistical analyses on sam-variance of a batch average. Since this estimaterof
ple sequences collected on strictly stationary stochastic is also subject tosystematic erroras well asrandom
processes and offers two modes of implementation. One sampling errorand since the validity of the confidence
integrates LABATCH.2 into an executing data-generating interval depends on this systematic error being relatively
program (e.g., simulation) to analyze the evolving data negligible, LABATCH.2 also displays interim calculations
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of BW(L, B) that allow a user to assess the extent to
which systematic error remains in the final variance esti-
mate used to compute the confidence interval for the mean
1. The ability to make this assessment with LABATCH.2
output is one of its most valuable assets.

In the present context, systematic error in the variance

Final Tableau

due to initial conditions. It arises from neglecting all but 1 08949D+01

€Y

Mean Estimati
O

on

(t = 10000000 )

Standard Error Confidence Interval

estimate can be present even for sample data free of biasseries ~ x™  sapweeyy — Lower Upper  (Upper-Lower)|X]

0.5681D-01 0.8802D+01 0.9097D+01

99.0%

0.3290D-01

the term proportional ta—! in var)_(t and from ignoring 2 0.8995D+00 0.4200D-03 0.8984D+00  0.9006D+00 0.2416D-02
the correlation between batch averages. To provide a basis X is based on al t observations. ,
. W(L,B) is based on first 91.75% of the t observations.
for systematic error assessment, LABATCH.2 computes a o
sequence of estimates of_ based on data subsequences ineim review Tabieas _
. . ABATCH Data Analysis for Series 1
of increasing lengths; < t; < --- < t;4 < t, where oo
tiy1 = 2t; for i =1,...,J(¢t) — 1, and where the user- , _ Confidence _Interval
. . Review L*B L B X Lower Upper Sqrt[B*W(L,B)] p-value
specified path length{, determinest; and J(t). See
1 35 7 5 0.1660D+02 0.1379D+02 0.1940D+02 0.4475D+01 0.3804
Sec. 2.4. 2 70 10 7 0.1810D+02 0.1575D+02 0.2045D+02 0.6047D+01 0.1109
As illustration, consider a simulation of the M/M/1 4 280 20 14 0lo6Ds02 01662002 020110402 013130402 00294
S_ : ' . . . : 5 560 20 28 0.1111D+02 0.5748D+01 0.1646D+02 0.4432D+02 0.0000
queueing model with .90 interarrival rate and unit service & 120 20 56 0.7254D+01 0.2741D+01 0.1177D+02 05278D+02 0.0001
. . ) .7 2240 20 112 0.6706D+01 0.2960D+01 0.1045D+02 0.6196D+02 0.0005
rate. The simulation began in the steady state and termi- s 0 20 224 0.7556D+01 0.3996D+01 0.1112D+02 0.8328D+02 0.0358
. . 9 8960 20 448 0.6747D+01 0.4111D+01 0.9383D+01 0.8721D+02 0.7293
nated when customer= 1()7 entered service. F|gure 1la 10 17920 28 640 0.7817D+01 0.5478D+01 0.1016D+02 0.1130D+03 0.7095
displays LABATCH.2—computed 99 percent confidence in- 1z 766 4 179 00680401 066D+l 01264Ds02 020410509 05172
— - ! +| ., )+ . )+ . )+ R
ISpiay ’ p K . P . 13 143360 56 2560 0.9073D+01 0.7449D+01 0.1070D+02 0.2304D+03 0.7200
tervals for the mean waiting time in queue (Senes 1) and 14 286720 80 3584 0.8883D+01 0.8012D+01 0.9754D+01 0.1767D+03 0.2993
- . . 15 573440 112 5120 0.9248D+01 0.8511D+01 0.9985D+01 0.2128D+03 0.7163
for the prObabI|Ity that a customer waits (Senes 2) The 16 1146880 160 7168 0.9126D+01 0.8653D+01 0.9600D+01 0.1945D+03 0.0993
. 17 2293760 160 14336 0.9138D+01 0.8809D+01 0.9468D+01 0.1913D+03 0.1852
true values are 9 and .90 respeCtNer_ 18 4587520 224 20480 0.9032D+01 0.8805D+01 0.9259D+01 0.1874D+03 0.7882
For each series. Figure 1b displavs LABATCH.2— 19 9175040 320 28672 0.8949D+01 0.8802D+01 0.9097D+01 0.1796D+03 0.2362
0 ! g . play T It data are independent:
computed sequences of point and 99 percent interval
. . . 10000000 10000000 1 0.8949D+01 0.8941D+01 0.8957D+01 0.9821D+01 0.0000
estimates ofu and point estimates,/ BW (L, B), of o o _ _
. 0.10 significance level for independence testing.
as the batch Slzda, and the number Of batches' grOW Review 19 used the first 91.75% of the t observations for W(L,B).
with sample path length according to the ABATCH rule e e Tabiens
(Sec. 3.3). As sample path length doubles,; = 2t;), ABATCH Data Analysis for Series 2
the ABATCH rule doublesB if a test of the hypothesis H, comconce 27
batch averages are independent, detects systematic errorgevew e L B X Lower  Upper SqrB*W(L,B)] p-value
If no SyStematiC error is detected (H is accepted), the 1 35 7 5 0.1000D+01 0.1000D+01 0.1000D+01 0.0000D+00 0.0000
. . ! 2 70 7 10 0.1000D+01 0.1000D+01 0.1000D+01 0.0000D+00 0.0000
rule increasesB by a factor Of\/§ apprOX|mate|y_ This 3 140 7 20 0.1000D+01 0.1000D+01 0.1000D+01 0.0000D+00 0.0000
. . . . . ] 4 280 7 40 0.1000D+01 0.1000D+01 0.1000D+01 0.0000D+00 0.0000
implies that eitherL, remains constant (H is rejected) on 5 560 7 80 0.9250D+00 0.7838D+00 0.1066D+01 0.9014D+00 0.0067
. . . . 6 1120 7 160 0.8812D+00 0.7697D+00 0.9928D+00 0.1007D+01 0.0140
successive reviews of. also increases (H IS accepted) 7 2240 7 320 0.8862D+00 0.7503D+00 0.1022D+01 0.1734D+01 0.1002
imately by a factor of/2. The \/BW(L,B) o @60 14 640 0E770D-00 0F360DL00 093800100 01209401 09560
approxima ey y ’ . e 10 17920 20 896 0.8888D+00 0.8607D+00 0.9169D+00 0.1316D+01 0.9648
sequences in Figure 1b reveal that systematic error in the 1 sssaw0 28 1280 0.9001D+00 0.8797D+00 0.9206D+00 0.1398D+01 0.3029
L. g . 12 71680 40 1792 0.8973D+00 0.8813D+00 0.9133D+00 0.1581D+01 0.9235
examp|e has become neg||g|b|e for Series 1 on reviews 13 143360 56 2560 0.8967D+00 0.8879D+00 0.9055D+00 0.1250D+01 0.6376
. ) 14 286720 80 3584 0.8976D+00 0.8916D+00 0.9036D+00 0.1220D+01 0.5008
j > 11 for Series 2 on reviewg > 7. Note that the 15 573440 112 5120 0.9001D+00 0.8956D+00 0.9045D+00 0.1280D+01 0.1352
= . — . . . 16 1146880 160 7168 0.8996D+00 0.8963D+00 0.9029D+00 0.1374D+01 0.5547
evidence for these assertions comes from interim review 17 2293760 224 10240 0.8992D+00 0.8968D+00 0.9016D+00 0.1381D+01 0.6289
i . 18 4587520 320 14336 0.8995D+00 0.8979D+00 0.9011D+00 0.1313D+01 0.7435
results Subsequent to reV|ejN: 11 (Ser|es ]_) ancy =7 19 9175040 448 20480 0.8995D+00 0.8984D+00 0.9006D+00 0.1328D+01 0.6766
(Series 2), thus establishing the intrinisic value of the i daa are independent
tableaus in Figure 1.b. 10000000 10000000 1 0.8995D+00 0.8992D+00 0.8997D+00 0.3007D+00 0.0000
Figure 2 graphically displays the point and interval 010 significance level for independence testing.
t|ma’[es (Co|s 5 6 and 7 |n F|gure 1b) fpr for Review 19 used the first 91.75% of the t observations for W(L,B).
es . y O,
each series. The graphs provide a convenient way of
assessing the accuracy of the sample averages at a glance. Figure 1: LABATCH.2 output for M/M/1

These and all other graphs in the paper were created
using Mathematic&) applied to the LABATCH.2 output
after deleting the final tableau (Figure 1a) and all header
and trailer information from the interim review tableaus
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queueing simulation

(Series 1: waiting time in queue,
Series 2: 1:=wait, 0:= no wait)
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(Figure 1b). EXCELT) or similar software could have (a) Series 1p = 189.5
been used as alternatives.

” HH |

(a) Series 1

Sqrt{B*W(L,B)]

Interim review j

0 5 10 15 20

Interim review j

(b) Series 20, = 1.308

(b) Series 2

1

095 -

g/ —

Sqrt[B*W(L,B)]
-

Probability
of 0.85 -
waiting -

08 -

0.75 -

0.7 - 5 s o = 20' Interim review j
e revien) Figure 3: LABATCH.2 estimates,/BW (L, B),
of o0
Figure 2: LABATCH.2 sample means and %9
confidence intervals for ABATCH rule;
simulation starts in steady state
DELTA,RULE, BETA,L.UPPER,SCREEEN) (1)

Figure 3 graphically displays/BW (L, B) (col. 8
in Figure 2b) as estimates of,, for each series. For implements LABATCH.2. As an example, suppose they

Series 1,0, = 189.3 and for Series 2,0, = 1.308 arguments are:
(Blomqvist 1967), giving us the luxury of a comparison
based on theory. INUNIT = 0
For any path length{ > 20, LABATCH.2 automati-
cally computes the number of batchds, and the batch OUT.UNIT =15
size, B, to be used in its first review. For example, it T = 1000
choseL=7 and B=5 for t = 107 for the M/M/1 example. SNUM = 2 (2)

This automation, described in Sec. 2.4, relieves the user PSLVECTOR
of the need to specify initial values fat and B, as in
the original LABATCH package.

= pointer to data vector with
S NUM entries

A call from a  romren  Main program to DELIA = .01
SIMSCRIPT 1.5 RULE — 1
BETA = .10
BATCH,MEANS(IN,UNIT,OUT,UNIT,T,SNUM,PSLVECTOR,
L. UPPER = 30

SCREEN = 0
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Then LABATCH.2 processes HUM=2 sequences in
T=1000 iterative calls from the user's main program,
computes 100 x (1 — DELTA)=99 percent confidence

intervals for the sample averages, and writes the output i(¢) := |t/b(¢)]|, and lett'(t) := I(¢)b(t).

c.15
fort.15

to a file called (IN_UNIT=0, OUT.UNIT=15).
SIMU15

RULE=1 causes LABATCH.2 to employ the ABATCH
rule to determine batch size on each review and BETA=.10

causes it to test for independence of batch averages at the

.10 significance level. LABATCH.2 begins its first iteration
with the number of batches no greater thatJBPPER =

30. SCREEN=0 suppresses the screen interative feature

(Sec. 4.2). In practice, all but the values of T andN8M

can be set once and the subroutine used repeatedly in

different settings.

Testing determines whether the batch size on review
j+1increases by a factor of 2 (rejection) or approximately
as+/2 (success). A doubling of batch size aims at reducing
any residual systematic error detected on revjeas fast
as possible. A2 increase signals that the number of
batches are also increasing approximately by &afactor.
Growth in both batch size and number batches as the
sample path length grows is a necessary condition for
obtaining a consistent estimator of_ . Recall thato2_ /¢
approximates the large-sample varianceXot

3 RATIONALE

Let {X;, i > 1} denoted a strictly stationary stochastic
process with unknown meap. Given a sample path,
X17 s 7Xty

1 t
Xt = EZ X,L
i=1

provides a point estimate of. When data collection
begins in the steady stat&; is an unbiased estimator of
.

Assumption 1. o7 := varX; satisfiesto? — o2, ast —
oo, Wheres?  is a positive constant.

Assumption 2. There exist a constant € (0,1/2) such
that

YU X, —p))os = Z(1) /12 +0(t™) ast — co w.p.1,

where{Z(s),s > 0} denotes standard Brownian motion.

Assumption 2 is theAssumption of Strong Approx-
imation (ASA). A X\ close to1/2 signifies a marginal
distribution for the X; close to the standard normal and
low correlation betweenX; and X; for V ¢ # j. Con-
versely, A close to zero implies the absence of one or
both of these properties. See Philipp and Stout (1975).
Section 3.4 relies on Assumptions 1 and 2.
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To assess how welK,; approximates:, we need an
estimate ofs2. The batch means method offers one
option. Let b(t) denote a positive integef< ¢), let
Our version
of the batch means method partitions the subsequence,
X1,..., Xp ), into I(t) nonoverlapping batches each of
size b(t), computes the batch averages,

b(t)
1 .
Vi) = 5y S Xopri G=1..,11), Q)
=1
and an estimate of Vi),
1 1(t)
Wiy = -1 > Vi — Xew)®, @
and uses(t)Wu)s) as an estimte of2,. Then
[(Xe 47, (1= 6/2) \/b(t) Wiy /t] )

provides an approximating00x (1 —§) percent confidence
interval forz, whereé € (0,1) andr,,_, (1—¢/2) denotes
the 1 — /2 critical value of Student's distribution with
I(t) — 1 degrees of freedom.

Damerdji (1994) indicates ho((¢), b(t)) } must grow
in order for (5) to be an asymptotically valid confidence
interval for 1 in the sense that it achieves the specified
1 — 6 coverage rate as— oc.

Unless clarity demands otherwise, we hereafter write
b:= b(t) andl := I(¢t) when batch size and number of
batches are deterministic functions iof Also, we assume
that ¢(¢t) = t so that the batches in expression (3) use
all the observations. Later, we consider the more general
case oft'(t) <t.

Under relatively weak conditions, the choidét)
t1/2 and b(t) o t'/2, induces the fastest convergence of
the true coverage rate to the specified theoretical coverage
rate,1 — 6 (Chien 1989). For other choices, see Fishman
(1997).

Observe that fot'(t) =t

EVi = (o} — o?), ©)
which, for positively autocorrelated sequences, is usually
negative. IfE(X; — p)'? < 0o and {X;} is ¢-mixing
with ¢; = O(i=Y), then expression (6) takes the form
(Goldsman and Meketon 1986)

EV; =02 +~(+1)/t +0(1/b), 7)

where o
= 722icov(X1,X1+7:)-

i=1
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Also (Chien et al. 1996),

202 (1+1)

var V, = 1 +O(1/IbY*) + O(1/1?).  (8)
Note thato2, = Z cov(X1, X145).
Expression (%) leads to the representation
1 — bo?/to?
W_Uzo :tO'tQ—O'go —t t2 (]_—l;)/tt> + €t, (9)

——

error due
to finite ¢

error due to
random sampling
between batches

error due to
ignoring correlation

where e, has mean zero and variance (8). Hereafter, we
collectively refer to the errors due to finiteand to ignoring
correlation as systematic error. From expression (7) we
see that the systematic error behaves 4§ ©1)/t) =
O(1/b) whereas, from expression (8)var ¢, behaves as
O(1/1'/?), revealing the tradeoff between the two types
of error that a choice of andb induces.

In what follows, we adopt a strategy that leads
to [ o« t*/2 and b  t'/2, once t becomes sufficiently
large. Two considerations motivate this choice. First,
since the approximating 16Q1 — §) percent confidence
interval (5) provides the means of assessing how well
X; approximatesy, we would like its true coverage
rate to be as close tb — 6 as possible. Secondly, the
square root option facilitates the efficient computation of a
sequence of estimaté3,, V;,, ..., based on subsequences
{X1,..., X, }, {X1,... X1, },..., respectively, fort; <
ta < ... <t, that provide a means for assessing the extent
to which systematic error remains i, our final estimate
of 02_. The next subsection elaborates on this issue.

3.1 Interim Review

In what follows we taket; as given andt;; := 2t;
for j =1,2,... . For a sequence of i.i.d. random vari-
ables X1, X5, ..., this choice implies co(rX’th

Vtj/tiy; for ¢ > 0 and j > 1. More generally,

if corr(X1, X14;) am, for some -1 < a < 1,

thenlim; .o com(X, , X, ) = lim;_.o Vi /tivg. We
chooset; 1/t; := 2 which implies Cor(th,XtiH) =
2-%/2 in the independent and asymptotic (ds— o)
cases. Any growth factor less than 2 would induce higher
correlation. Most importantly, this choice makes possible
the Q(t) computing time and the O(leg) space bounds
for LABATCH.2.
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3.2 FNB and SQRT Rules

The description here closely follows Fishman (1996) and
Fishman and Yarberry (1997). Fof = 1,2,..., let

l; :=1(t;) and b; := b(t;). We illustrate the benefits of
interim review for two assignment rules, FNB and SQRT,
that form the basis for the LBATCH and ABATCH rules
that LABATCH.2 incorporates. Giveril;, b;), the FNB
rule fixesl; = {; for all j and doubles the batch size
bj+1 = 2b; on successive reviews.

Given (I1,b1), the SQRT rule sets

lo = [1 = I_\/ill + 5J (10)
- 3 if by =1
b2 = b1 = (11)
|V2by +.5] if by > 1
livi = 25
bjt1 = 2bj_1 j=2,3,....

These assignments indude,;/l; = v/2 and b;;1/b; =

V2. By choosing(l;, b;) from B in Table 1, we ensure that
21,6y = I1by so thatt; = 1;b; = 27~1;b; and, therefore,
tj+1/t; = 2, as desired. This constraint proves valuable
in Sec. 3.3, which describes batch-size rules that combine
the FNB and the SQRT rules.

3.3 LBATCH and ABATCH Rules

Let H denote the hypothesis: On revigwthel; batches,
Y1, .-, Yi;p;, are mutually independent. The LBATCH
and ABATCH rules both use the outcome of a test of H
to switch between the FNB and SQRT rules on succesive
reviews. The net effect is to retain the desirable prop-
erties of each rule while reducing the influence of their
limitations. The principal features of these hybrid rules are:

LBATCH Rule

Start with the FNB rule on review 1.

e Forj > 1, if His rejected on reviewj, use the FNB
rule on review;j + 1.

e Once H is accepted on revieyy use the SQRT rule
on reviews,j + 1,7 +2,... .
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Table 1: B := {(gllbl) 1<bh <L < 100, 21161 =
ll 1}T

by L by L

1 3 38 54

2 36 39 55

3 4 41 5887

4 6 43 61

5 7,14,2128 44 62, 93
7 10,1520,2530,35 46 65

8 11 48 51,68,85
9 13 49 69

10 14, 21,28 50 71

12 17,34,5168,85 51 60,72,8496
14 15,20,25,30,35 5375

15 2128 54 57

17 24,3648.6072,8496 55 78

19 2754 56 79

20 21, 28 58 82

21 25 30, 35 60 68,85
22 31,62,93 61 86

24 34,51,68,85 62 66

25 28 63 89

26 37 65 92

27 38,57 66 93

28 30,35 67 95

29 4182 68 72,84,96
31 44,6688 70 99

32 45 72 85

33 47 82 87

34 36,48,60,72,84,96 8485

36 51,68,85 85 96

37 52 88 93

i1, is defined in expression (10) ahg in expression (11).

and: ABATCH Rule

e Start with the FNB rule on review 1.

e Forj > 1, if His rejected on reviewj, use the FNB
rule on review;j + 1.

e Forj > 1, if H is accepted on reviewj, use the
SQRT rule on reviewj + 1.

By initially fixing [, the LBATCH rule allows batch
size,b, to increase at the maximal rate when H is rejected,
thus dissipating systematic error iy, as fast as possible.
Once H is accepted, the rule switches to the SQRT rule to

dissipate the error in coverage rate as rapidly as possible.

By testing H on every review, the ABATCH rule takes into
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consideration the possibility of Type Il errors on successive
replications. The LBATCH rule ignores this source of
error whereas the ABATCH rule allows the procedure to
correct itself.

As a consequence of this testing, batch size and
number of batches on review (> 1) are random. To
acknowledge this property, we denote themisand L
respectively. Lef<; denote the number of test rejections of
H on reviewsl,...,j. Then the LBATCH and ABATCH
rules induce:

N
=

SO thattj = Lij = 2j7111b1 for J=12,....

To account for the randomness ofL;, B;), j > 1}
with regard to limiting behavior, we rely on Yarberry (1993)
and Fishman and Yarberry (1997) who give conditions for
which B;W g, — 02 ~asj—oo w.p.land

oo

2U—K;)/2], if j— K; is even

2U—Ki=1/2[, if j — K, is odd

and

2U+K;=2)/2p, if j— K; is even

QUK =D/2p,if j — K; is odd

Xr,j — K

V WLJ‘ B; / L;

LN (0,1) asj—oo.  (12)

0O

3.4 Choosingt, [y, and by

For given (I1,b1) € B, choosing ¢t so that J(t)
log(t/l1b1)/log2 is an integer results in'(¢) =¢t. As a
consequence, the LBATCH and ABATCH rules used all
t observations to estimatd/s,, s,,, and X, = X;.
Since choosindy, b1, andt subject to the constraint may
be too burdensome for some users, LABATCH.2 merely
requires that be specified and then choosksand b; to
maximizet'(t).

Let B(t) denote the subset & that maximizes’(t).
LABATCH.2 chooses(l;,b;) to be the element of3(¢)
that maximizesJ(¢), the number of interim reviews. For
I <30 andt¢ > 500, this leads tot'(t)/t > .898.

We now reconcile

. X, — H
t =
\/E J(t) LJ(t)BJ(t)/t

whose properties establish the basis for the LABATCH.2
confidence interval (5), with(t) = L), b(t) = By,

A (13)
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Wiwwe) = Verry/ By, and

Xt’(t) —H

Gt =
\/BJ(t)WLm)Bm/t’(t)

(14)

whose properties are those of the variate in (12) for
j= J(t) Recall thatt’(t) = tJ(t) = LJ(t)BJ(t)-

Whereas A; uses all ¢t observations to estimate
u, Gy uses only the firstt’(¢) observations. However,
both use theB;Wr, ., B,, as an estimate obZ.
Since (X 1) — ) /o2 /t'(t) and (X, — p)/+/02 /t are
both asymptoticallyV (0,1), by Assumption 2, and since
Br, wWriB,, is strongly consistent, it a modification
of a theorem 6 in Yarberry (1993) can yield asymptotic
normality for A, as well. With regard to statistical
efficiency, A; reduces interval width by a factor of
1—/t'(t)/t <1—+/.889 =.0571 when (I1b;) € B(t)
for ¢ > 500.

To test H, LABATCH.2 uses the von Neumann ratio
(von Neumann 1941, Young 1941, Fishman 1978, 1996).
The rightmost column in each Interim Review Tableau in
Figure 1 lists the correspondingvalues, the probability,
under H, of seeing a test statistic larger than the one
observed. Ifp-value < BETA, H is rejected; otherwise is
accepted.

4 ADEQUACY OF THE WARM-UP INTERVAL

LABATCH.2 also provides an assessment of the extent of
warm-up bias inX;. We again use the M/M/1 simulation.
However, this time the run began with an arrival to an empty
and idle system and data collection began with :=
waiting time of the first arrival. For this scenari&d; = 0
w.p.1 andX, X, ..., X is stationary, only asymptotically
(ast — o0). This is a more biased environment than one
would expect to encounter when data collection begins
after a user-specified warm-up interval.

Figure 4 displays the 99 percent confidence intervals for
mean waiting time in queue, taken from the LABATCH.2
interim review tableau for Series 1 for this run. It
suggests little bias after review 11, which corresponds to
2t Ly x By = 2048 x 7 x 5 = 71,680 observations.

Suppose the user had specifted 4480 for the sample
path length. Then LABATCH.2 would have generated the
same sample averages and confidence intervalg for 7
and B; = 5, but only for the first seven interim reviews.
Moreover, a display of these results would have aroused
considerably more concern about the dissipation of bias
in X;. Interestingly, had we takeh= 4480 in our first
simulation, which began in an equilibrium state, we might
equally be suspicious ok, based on the path it displays
in Figure 2 forj =1,...,7. However, this observation

20 -

Mean
waiting
time 10 -

0 5 10 15 20

Interim review j

Figure 4: LABATCH.2 sample means and 99 percent
confidence intervals for Series 1 ABATCH rule;
simulation starts in empty and idle state

know for a fact thatX, may contain systematic bias as a
result of starting in an arbitrarily chosen state and possibly
choosing an inadequate warm-up interval.

This example in no way mitigates the traditionally
sound advice of truncating a warm-up interval in the
sample data to reduce the influence of initial conditions.

5 FEATURES

Several features of LABATCH.2 allow wide latitude for
using it in practice. For example, one can easily strip the
header and trailer entries from the column display in the
interim review tableau and then transfer the remaining
tableau to a spreadsheet environment, thus facilitates
graphmaking. Experience has shown that little effort
is needed to effect the desired graphs, provided software
such as Mathematic&) or EXCEL (T) is available.

5.1 Two Modalities

As already mentioned, LABATCH.2 provides two ways
of accessing data for statistical analysis. One requires
the user to insert a call statement into the data-generating
program which executes the call each time it produces a
new data vector. Calling and executing BATQHEANS
each of T times (Table 1) that a data vector with
S.NUM entries is generated results in ORBJM xT)
computing time and O(BIUM x log,T) space being used

to generate the LABATCH.2 output. Both complexities
arise from choosing rules that cause eitlgr,.; = 25; or
Bj+1 = V/2B; on successive reviewg = 1,2,.... The

in no way mitigates the value of the assessment when we space bound is particularly appealing wheseT is very
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large. Yarberry (1993) and Alexopoulos et al.
describe the basis for these complexities.

The other option allows LABATCH.2 to read its data
from a file, giving the software a considerably broader
range of application than merely for in-line generated
sample records. We illustrate how this option works in the
context of the M/M/1 example, but stress the applicability
of the approach to stored sample data.

If IN_UNIT=30 and OUTUNIT=15 (Table 1), then
a main program needs to call BATCMEANS just once
to cause LABATCH.2 to read its sample data from a file
called w0 and to write its output towis. While the

SIMU30 SIMU15

O(S.NUMXT) time and O(SNUM x log,T) space bounds
remain for LABATCH.2, they do not tell the whole story.
In particular, the input file requires space proportional
to SNUMxT, which for SNUM as small as 1 can be
substantial for sufficiently large T.

Programs written in C, FORTRAN, or SIMSCRIPT
11.5 can implement the second option without qualification.
Any program that provides access to and execution of a
C, FORTRAN, or SIMSCRIPT 1.5 subroutine can take
advantage of the first option. In a simulation environment, a
user-written program in a language that provides standard
linkages for incorporating a subroutine generally will
consume less time calling BATCNIEANS and analyzing
data than a program generated at the icon-level in a
point-and-click environment.

(1997)

5.2 Interacting with the Analysis

If SCREEN=0 in expression (2), then LABATCH.2 per-
forms as described in Sec. 2. However, if SCREEN=1,
then after executing interim reviey, LABATCH.2 dis-
plays on the screerf(tj, the sample coefficient variation
of X;,, sometimes called the relative standard error,
and \/B;W(L;, B;), for Seriesi in column ¢+ 1 for
i=1,...,min(6, SNUM), where screen size dictates the
upper limit oni. LABATCH.2 then asks the user if he/she
wishes to continue.

Figure 5 shows an abbreviated screen display for the
steady-state M/M/1 simulation, where column 2 shows
the sequence of estimates for Series 1 and column 3
does likewise for Series 2. If the user concludes that

B;W(Lj, Bj) has stabilized in each column, so that
the systematic errors have become negligible, and that
the C.V.(f(tj) are sufficiently small, then he/she may
terminate the simulation by typing “n". This action
causes LABATCH.2 to compute confidence intervals for
the SNUM and to write both the final and interim review
tableaus (Figure 1) to file OUTNIT. If this action occurs
immediately after the on-screen display, for revigwthen
the final tableau, as well as the interim review tableaus,
useL;B; observations. If the screen display suggests that
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systematic error remains, then, provided tHgtB; < t
typing “y" causes LABATCH.2 to collect additional data, to
perform the next review, to displa\)/BjHW(LjH, Bji1)

on screen, and to ask the user whether or not he/she wishes
to continue. IfL;B; = t'(t) and the user types “y", then
the simulation goes to completion and LABATCH.2 uses
all t=T observations for the sample averages and the first

t'(t) observations for the finabB ;W (L), Byw))'s.

X_BAR, C.V.(X_BAR), and Sqrt[B*W(L,B)] for
Series 1 Through 2

No. of
Review Obs. 1 2
1 35 X BAR 0.1660D+02 0.1000D+01
C.V.(X_BAR) 0.4557D-01 0.0000D+00

Sqrt[B*W(L,B)] 0.4475D+01 0.0000D+00
continue[y/n]? y

9 8960 X_BAR 0.6747D+01 0.8770D+00
C.V.(X_BAR)  0.1366D+00 0.1553D-01
Sqrt[B*W(L,B)] 0.8721D+02 0.1289D+01
continue[y/n]? y
10 17920 X_BAR 0.7817D+01 0.8888D+00
C.V.(X_BAR)  0.1080D+00 0.1106D-01
Sqrt[B*W(L,B)] 0.1130D+03 0.1316D+01
continue[y/n]? y
11 35840 X_BAR 0.9513D+01 0.9001D+00
C.V.(X_BAR)  0.1255D+00 0.8205D-02
Sqrt[B*W(L,B)] 0.2260D+03 0.1398D+01
continuely/n]? y
12 71680 X_BAR 0.9668D+01 0.8973D+00
C.V.(X_BAR)  0.1136D+00 0.6581D-02
Sqrt{B*W(L,B)] 0.2941D+03 0.1581D+01
continue[y/n]?

Figure 5: Abbreviated LABATCH.2 screen
display when SCREEN=1

As illustration of how this procedure works in practice,
consider review 11 in Figure 5, where C.V.AR)=.1255
for mean waiting time (Series 1) and C.V.®AR)=.008205
for probability of waiting (Series 2) may encourage one to
conclude that the sample averagesBXR) are statistically
reliable. By constrast, the variability in Sqrt[B/(L,B)],
the estimates ofo.,, for say, reviews 9 through 11
encourages continuation of the experiment; hence “y" in
response to the query, produces the output on review 12.
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