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ABSTRACT

This paper discusses verification and validation of simu
tion models. The different approaches to deciding mo
validity are presented; how model verification and valid
tion relate to the model development process are discus
various validation techniques are defined; conceptual mo
validity, model verification, operational validity, and da
validity are described; ways to document results are giv
and a recommended procedure is presented.

1 INTRODUCTION

Simulation models are increasingly being used in probl
solving and in decision making. The developers and us
of these models, the decision makers using informat
derived from the results of the models, and people affec
by decisions based on such models are all rightly concer
with whether a model and its results are “correc
This concern is addressed through model verificat
and validation. Model validation is usually defined
mean “substantiation that a computerized model within
domain of applicability possesses a satisfactory range
accuracy consistent with the intended application of
model” (Schlesinger et al. 1979) and is the definition us
here. Model verification is often defined as “ensuring th
the computer program of the computerized model and
implementation are correct,” and is the definition adop
here. A model sometimes becomes accredited thro
model accreditation. Model accreditation determines
a model satisfies a specified model accreditation crite
according to a specified process. A related topic is mo
credibility, which is concerned with sufficiently developin
the confidence that (potential) users have in a model

∗This paper is a modified version of Sargent (1996b).
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in the information derived from the model that they ar
willing to use the model and the derived information.

A model should be developed for a specific purpos
(or application) and its validity determined with respec
to that purpose. If the purpose of a model is to answ
a variety of questions, the validity of the model needs
be determined with respect to each question. Several s
of experimental conditions are usually required to defin
the domain of a model’s intended applicability. A mode
may be valid for one set of experimental conditions an
invalid in another. A model is considered valid for a
set of experimental conditions if its accuracy is within
its acceptable range, which is the amount of accura
required for the model’s intended purpose. This genera
requires that the model’s output variables of interest (i.e
the model variables used in answering the questions t
the model is being developed to answer) be identified a
that their required amount of accuracy be specified. T
amount of accuracy required should be specified prior
starting the development of the model or very early in th
model development process. If the variables of intere
are random variables, then properties and functions
the random variables such as means and variances
usually what is of primary interest and are what is used
determining model validity. Several versions of a mod
are usually developed prior to obtaining a satisfactory val
model. The substantiation that a model is valid, i.e., mod
verification and validation, is generally considered to b
a process and is usually part of the model developme
process.

It is often too costly and time consuming to determin
that a model isabsolutelyvalid over the complete domain
of its intended applicability. Instead, tests and evaluatio
are conducted until sufficient confidence is obtained tha
model can be considered valid for its intended applicatio
(Sargent 1982, 1984 and Shannon 1975). The relationsh
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Figure 1: Model Confidence

of cost (a similar relationship holds for the amount o
time) of performing model validation and the value of th
model to the user as a function of model confidence a
illustrated in Figure 1. The cost of model validation i
usually quite significant, particularly when extremely hig
model confidence is required.

The remainder of this paper is organized as follow
Section 2 discusses the basic approaches used in deci
model validity; Section 3 defines validation technique
Sections 4, 5, 6, and 7 contain descriptions of da
validity, conceptual model validity, model verification, an
operational validity, respectively; Section 8 describes wa
of presenting results; Section 9 contains a recommend
validation procedure; and Section 10 gives the conclusio

2 VALIDATION PROCESS

Three basic approaches are used in deciding whethe
simulation model is valid or invalid. Each of the approache
requires the model development team to conduct verificat
and validation as part of the model development proce
which is discussed below. The most common approa
is for the development team to make the decision as
whether the model is valid. This is a subjective decisio
based on the results of the various tests and evaluati
conducted as part of the model development process.

Another approach, often called “independent verific
tion and validation” (IV&V), uses a third (independent
party to decide whether the model is valid. The third par
is independent of both the model development team a
the model sponsor/user(s). After the model is develope
the third party conducts an evaluation to determine
validity. Based upon this validation, the third party make
a subjective decision on the validity of the model. Th
approach is usually used when a large cost is associa
with the problem the simulation model is being used fo
and/or to help in model credibility. (A third party is also
usually used for model accreditation.)

The evaluation performed in the IV&V approach
ranges from simply reviewing the verification and validatio
conducted by the model development team to a compl
verification and validation effort. Wood (1986) describe
experiences over this range of evaluation by a third pa
on energy models. One conclusion that Wood makes
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that a complete IV&V evaluation is extremely costly an
time consuming for what is obtained. This author’s vie
is that if a third party is used, it should beduring the
model development process. If the model has already b
developed, this author believes that usually a third pa
should evaluate only the verification and validation th
has already been performed.

The last approach for determining whether a model
valid is to use a scoring model (see, e.g., Balci 1989, G
1979, and Gass and Joel 1987). Scores (or weights)
determined subjectively when conducting various aspe
of the validation process and then combined to determ
category scores and an overall score for the simulat
model. A simulation model is considered valid if it
overall and category scores are greater than some pas
score(s). This approach is infrequently used in practice

This author does not believe in the use of a scori
model for determining validity, because (1) the subjectiv
ness of this approach tends to be hidden and thus app
to be objective, (2) the passing scores must be decided
some (usually subjective) way, (3) a model may receive
passing score and yet have a defect that needs correc
and (4) the score(s) may cause overconfidence in a mo
or be used to argue that one model is better than anot

We now discuss how model verification and validatio
relate to the model development process. There are
common ways to view this relationship. One uses
detailed model development process, and the other us
simple model development process. Banks et al. (19
reviewed work using both of these ways and concluded t
the simple way more clearly illuminates model verificatio
and validation. This author recommends the use of
simple way (see, e.g., Sargent 1982), which is presen
next.

Consider the simplified version of the modeling pro
cess in Figure 2. Theproblem entity is the system
(real or proposed), idea, situation, policy, or phenome
to be modeled; theconceptual modelis the mathemat-
ical/logical/verbal representation (mimic) of the proble
entity developed for a particular study; and thecomput-
erized modelis the conceptual model implemented on
computer. The conceptual model is developed through
analysis and modeling phase, the computerized model is
developed through acomputer programming and imple
mentation phase, and inferences about the problem enti
are obtained by conducting computer experiments on
computerized model in theexperimentation phase.

We now relate model validation and verification to th
simplified version of the modeling process (see Figure
Conceptual model validityis defined as determining that th
theories and assumptions underlying the conceptual mo
are correct and that the model representation of the prob
entity is “reasonable” for the intended purpose of the mod
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Figure 2: Simplified Version of the Modeling Process

Computerized model verificationis defined as ensuring
that the computer programming and implementation o
the conceptual model is correct.Operational validity is
defined as determining that the model’s output behavio
has sufficient accuracy for the model’s intended purpos
over the domain of the model’s intended applicability.
Data validity is defined as ensuring that the data necessar
for model building, model evaluation and testing, and
conducting the model experiments to solve the problem
are adequate and correct.

Several versions of a model are usually developed i
the modeling process prior to obtaining a satisfactory valid
model. During each model iteration, model verification
and validation are performed (Sargent 1984). A variety
of (validation) techniques are used, which are describe
below. No algorithm or procedure exists to select which
techniques to use. Some attributes that affect whic
techniques to use are discussed in Sargent (1984).

3 VALIDATION TECHNIQUES

This section describes various validation techniques (an
tests) used in model verification and validation. Most of
the techniques described here are found in the literatur
(see Balci and Sargent (1984a) for a detailed bibliography
although some may be described slightly differently. They
can be used either subjectively or objectively. By
“objectively,” we mean using some type of statistical
test or mathematical procedure, e.g., hypothesis tests a
confidence intervals. A combination of techniques is
generally used. These techniques are used for validatin
and verifying the submodels and overall model.

Animation: The model’s operational behavior is
displayed graphically as the model moves through time
123
d

For example, the movements of parts through a facto
during a simulation are shown graphically.

Comparison to Other Models:Various results (e.g.,
outputs) of the simulation model being validated a
compared to results of other (valid) models. For examp
(1) simple cases of a simulation model may be compar
to known results of analytic modes, and (2) the simulatio
model may be compared to other simulation models th
have been validated.

Degenerate Tests:The degeneracy of the model’s
behavior is tested by appropriate selection of values
the input and internal parameters. For example, does
average number in the queue of a single server contin
to increase with respect to time when the arrival rate
larger than the service rate?

Event Validity: The “events” of occurrences of the
simulation model are compared to those of the real syst
to determine if they are similar. An example of events
deaths in a fire department simulation.

Extreme Condition Tests:The model structure and
output should be plausible for any extreme and unlike
combination of levels of factors in the system; e.g.,
in-process inventories are zero, production output sho
be zero.

Face Validity: “Face validity” is asking people
knowledgeable about the system whether the model and
its behavior are reasonable. This technique can be use
determining if the logic in the conceptual model is corre
and if a model’s input-output relationships are reasonab

Fixed Values:Fixed values (e.g., constants) are used f
various model input and internal variables and paramete
This should allow the checking of model results again
easily calculated values.

Historical Data Validation: If historical data exist (or
if data are collected on a system for building or testin
the model), part of the data is used to build the model a
the remaining data are used to determine (test) whet
the model behaves as the system does. (This testing
conducted by driving the simulation model with eithe
distributions or traces (Balci and Sargent 1982a, 1982
1984b).)

Historical Methods: The three historical methods
of validation are rationalism, empiricism, and positive
economics. Rationalism assumes that everyone know
whether the underlying assumptions of a model are tru
Logic deductions are used from these assumptions
develop the correct (valid) model. Empiricism require
every assumption and outcome to be empirically validate
Positive economics requires only that the model b
able to predict the future and is not concerned wi
a model’s assumptions or structure (causal relationships
mechanism).
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Internal Validity: Several replications (runs) of a
stochastic model are made to determine the amount
(internal) stochastic variability in the model. A high
amount of variability (lack of consistency) may cause the
model’s results to be questionable and, if typical of the
problem entity, may question the appropriateness of th
policy or system being investigated.

Multistage Validation:Naylor and Finger (1967) pro-
posed combining the three historical methods of rationa
ism, empiricism, and positive economics into a multistag
process of validation. This validation method consists o
(1) developing the model’s assumptions on theory, obse
vations, general knowledge, and function, (2) validating
the model’s assumptions where possible by empiricall
testing them, and (3) comparing (testing) the input-outpu
relationships of the model to the real system.

Operational Graphics:Values of various performance
measures, e.g., number in queue and percentage of serv
busy, are shown graphically as the model moves throug
time; i.e., the dynamic behaviors of performance indicator
are visually displayed as the simulation model move
through time.

Parameter Variability–Sensitivity Analysis:This tech-
nique consists of changing the values of the input an
internal parameters of a model to determine the effec
upon the model’s behavior and its output. The same rel
tionships should occur in the model as in the real system
Those parameters that are sensitive, i.e., cause significa
changes in the model’s behavior or output, should be mad
sufficiently accurate prior to using the model. (This may
require iterations in model development.)

Predictive Validation: The model is used to predict
(forecast) the system behavior, and then compariso
are made between the system’s behavior and the mode
forecast to determine if they are the same. The system da
may come from an operational system or from experimen
performed on the system.

Traces: The behavior of different types of specific
entities in the model are traced (followed) through the
model to determine if the model’s logic is correct and if
the necessary accuracy is obtained.

Turing Tests:People who are knowledgeable about the
operations of a system are asked if they can discrimina
between system and model outputs. (Schruben (198
contains statistical tests for use with Turing tests.)

4 DATA VALIDITY

Even though data validity is usually not considered to b
part of model validation, we discuss it because it is usuall
difficult, time consuming, and costly to obtain sufficient,
accurate, and appropriate data, and is frequently the reas
that attempts to validate a model fail. Data are neede
for three purposes: for building the conceptual model, fo
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validating the model, and for performing experiments with
the validated model. In model validation we are concerned
only with the first two types of data.

To build a conceptual model we must have sufficient
data on the problem entity to develop theories that can b
used in building the model, to develop the mathematica
and logical relationships in the model that will allow it to
adequately represent the problem identity for its intended
purpose, and to test the model’s underlying assumptions
In addition, behavioral data is needed on the problem entity
to be used in the operational validity step of comparing
the problem entity’s behavior with the model’s behavior.
(Usually, these data are system input/output data.) I
these data are not available, high model confidence usual
cannot be obtained, because sufficient operational validit
cannot be achieved.

The concern with data is that appropriate, accurate, an
sufficient data are available, and if any data transformation
are made, such as disaggregation, they are correct
performed. Unfortunately, there is not much that can
be done to ensure that the data are correct. The best th
can be done is to develop good procedures for collecting
and maintaining it, test the collected data using technique
such as internal consistency checks, and screen for outlie
and determine if they are correct. If the amount of data
is large, a data base should be developed and maintaine

5 CONCEPTUAL MODEL VALIDATION

Conceptual model validity is determining that (1) the
theories and assumptions underlying the conceptual mod
are correct, and (2) the model representation of the
problem entity and the model’s structure, logic, and
mathematical and causal relationships are “reasonable
for the intended purpose of the model. The theories and
assumptions underlying the model should be tested usin
mathematical analysis and statistical methods on problem
entity data. Examples of theories and assumptions ar
linearity, independence, stationary, and Poisson arrivals
Examples of applicable statistical methods are fitting
distributions to data, estimating parameter values from
the data, and plotting the data to determine if they are
stationary. In addition, all theories used should be reviewed
to ensure they were applied correctly; for example, if a
Markov chain is used, does the system have the Marko
property, and are the states and transition probabilitie
correct?

Next, each submodel and the overall model must
be evaluated to determine if they are reasonable an
correct for the intended purpose of the model. This
should include determining if the appropriate detail and
aggregate relationships have been used for the model
intended purpose, and if the appropriate structure, logic, an
mathematical and causal relationships have been used. T
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primary validation techniques used for these evaluatio
are face validation and traces. Face validation has exp
on the problem entity evaluate the conceptual model
determine if it is correct and reasonable for its purpos
This usually requires examining the flowchart or graphic
model, or the set of model equations. The use of trac
is the tracking of entities through each submodel and
overall model to determine if the logic is correct and if th
necessary accuracy is maintained. If errors are found
the conceptual model, it must be revised and concept
model validation performed again.

6 MODEL VERIFICATION

Computerized model verification ensures that the compu
programming and implementation of the conceptual mod
are correct. To help ensure that a correct computer progr
is obtained, program design and development procedu
found in the field of software engineering should be us
in developing and implementing the computer progra
These include object-oriented design, top-down desig
structured programming, and program modularity.
separate program module or object should be used
each submodel, the overall model, and for each simulat
function (e.g., time-flow mechanism, random numb
and random variate generators, and integration routin
when using general purpose higher-order languages, e
FORTRAN, PASCAL, C, or C++, and where possibl
when using simulation languages.

One should be aware that the type of comput
language used affects the probability of having a corre
program. The use of a special-purpose simulation langu
generally will result in having fewer errors than if a
general-purpose simulation language is used, and usin
general purpose simulation language will generally res
in having fewer errors than if a general purpose highe
order language is used. Not only does the use
simulation languages increase the probability of havi
a correct program, programming time is usually reduc
significantly. (However, flexibility is usually reduced also

After the computer program has been developed, i
plemented, and—optimistically—most of the programmin
“bugs” removed, the program must be tested for correctn
and accuracy. First, the simulation functions should
tested to see if they are correct. Usually, straightforwa
tests can be used here to determine if they are work
properly. Next, each submodel and the overall mod
should be tested to see if they are correct. Here the tes
is more difficult.

There are two basic approaches to testing—sta
and dynamic testing (analysis) (Fairley 1976). In sta
testing the computer program of the computerized mod
is analyzed to determine if it is correct by using suc
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techniques as correctness proofs, structured walk-throug
and examining the structure properties of the program. Th
commonly used structured walk-through technique consis
of each program developer explaining his or her compute
program code statement-by-statement to other members
the modeling team until all are convinced it is correct.

In dynamic testing the computerized model is execute
under different conditions and the resulting values ar
used to determine if the computer program and it
implementations are correct. This includes both th
values obtained during the program execution and th
final values obtained. There are three different strategi
used in dynamic testing: (1) bottom-up testing, which
means, e.g., testing the submodels first and then t
overall model; (2) top-down testing, which means, e.g
testing the overall model first using programming stub
(sets of data) for each of the submodels and then testi
the submodels; and (3) mixed testing, which uses
combination of bottom-up and top-down testing (Fairly
1976). The techniques commonly used in dynamic testin
are traces, investigations of input-output relations usin
different validation techniques, internal consistency check
and reprogramming critical components to determine
the same results are obtained. If there are a large numb
of variables, one might aggregate some of the variable
to reduce the number of tests needed or use certain typ
of design of experiments (Kleijnen 1987), e.g., use facto
screening experiments to identify the key variables in orde
to reduce the number of experimental conditions that nee
to be tested.

It is necessary to be aware while checking the
correctness of the computer program and its implementatio
that errors may be caused by the data, the conceptual mod
the computer program, or the computer implementation.

For a more detailed discussion on model verification
see Whitner and Balci (1989).

7 OPERATIONAL VALIDITY

Operational validity is concerned with determining that the
model’s output behavior has the accuracy required for th
model’s intended purpose over the domain of its intende
applicability. This is where most of the validation testing
and evaluation takes place. The computerized model
used in operational validity, and thus any deficiencie
found may be due to an inadequate conceptual model,
improperly programmed or implemented conceptual mod
(e.g., due to programming errors or insufficient numerica
accuracy), or due to invalid data.

All of the validation techniques discussed in Section 3
are applicable to operational validity. Which technique
and whether to use them objectively or subjectively must b
decided by the model development team and other interest
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Table 1: Operational Validity Classification

OBSERVABLE NON-OBSERVABLE
SYSTEM SYSTEM

SUBJECTIVE • COMPARISON USING • EXPLORE
APPROACH GRAPHICAL DISPLAYS MODEL BEHAVIOR

• EXPLORE MODEL • COMPARISON TO
BEHAVIOR OTHER MODELS

OBJECTIVE • COMPARISON • COMPARISON
APPROACH USING TO OTHER

STATISTICAL MODELS USING
TESTS AND STATISTICAL
PROCEDURES TESTS AND

PROCEDURES

parties. The major attribute affecting operational validit
is whether the problem entity (or system) is observab
where observable means it is possible to collect data on
operational behavior of the program entity. Table 1 give
a classification of the validation approaches for operation
validity. “Comparison” means comparing/testing the mod
and system input-out behaviors, and “explore mod
behavior” means to examine the output behavior of t
model using appropriate validation techniques and usua
includes parameter variability-sensitivity analysis. Variou
sets of experimental conditions from the domain of th
model’s intended applicability should be used for bo
comparison and exploring model behavior.

To obtain a high degree of confidence in a mode
and its results, comparison of the model’s and system
input-output behaviors forat least two different sets of
experimental conditions is usually required. There a
three basic comparison approaches used: (1) graphs of
model and system behavior data, (2) confidence interva
and (3) hypothesis tests. Graphs are the most commo
used approach, and confidence intervals are next.

120

100

60

40

80

System Model

Figure 3: Box Plot

7.1 Graphical Comparison of Data

The behavior data of the model and the system are grap
for various sets of experimental conditions to determin
if the model’s output behavior has sufficient accuracy f
its intended purpose. Three types of graphs are us
126
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histograms, box (and whisker) plots, and behavior grap
using scatter plots. (See Sargent (1996a) for a thorou
discussion on the use of these for model validation.) A
example of a box plot is given in Figure 3, and exampl
of behavior graphs are shown in Figures 4 and 5.
variety of graphs using different types of (1) measur
such as the mean, variance, maximum, distribution, a
time series of a variable, and (2) relationships between t
measures of a single variable (see Figure 4) and betw
measures of two variables (see Figure 5) are required
is important that appropriate measures and relationships
used in validating a model and that they be determined w
respect to the model’s intended purpose. See Ander
and Sargent (1974) for an example of a set of graphs u
in the validation of a simulation model.

These graphs can be used in model validation
different ways. First, the model development team c
use the graphs in the model development process
make a subjective judgment on whether a model posses
sufficient accuracy for its intended purpose. Second, th
can be used in the face validity technique where experts
asked to make subjective judgments on whether a mo
possesses sufficient accuracy for its intended purpo
Third, the graphs can be used is in Turing tests. Anoth
way they can be used is in IV&V.

Figure 4: Reaction Time

7.2 Confidence Intervals

Confidence intervals (c.i.), simultaneous confidence int
vals (s.c.i.), and joint confidence regions (j.c.r.) can
obtained for the differences between the means, varian
and distributions of different model and system outp
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Figure 5: Disk Access

variables for each set of experimental conditions. The
c.i., s.c.i., and j.c.r. can be used as the model range
accuracy for model validation.

To construct the model range of accuracy, a statistic
procedure containing a statistical technique and a meth
of data collection must be developed for each set of exp
imental conditions and for each variable of interest. Th
statistical techniques used can be divided into two group
(1) univariate statistical techniques, and (2) multivaria
statistical techniques. The univariate techniques can
used to develop c.i., and with the use of the Bonferro
inequality (Law and Kelton 1991), s.c.i. The multivariate
techniques can be used to develop s.c.i. and j.c.r. Bo
parametric and nonparametric techniques can be used.

The method of data collection must satisfy th
underlying assumptions of the statistical technique bei
used. The standard statistical techniques and data collec
methods used in simulation output analysis (Banks, Cars
and Nelson 1996, Law and Kelton 1991) can be used f
developing the model range of accuracy, e.g., the metho
of replication and (nonoverlapping) batch means.

It is usually desirable to construct the model rang
of accuracy with the lengths of the c.i. and s.c.i. an
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the sizes of the j.c.r. as small as possible. The shor
the lengths or the smaller the sizes, the more useful a
meaningful the model range of accuracy will usually be
The lengths and the sizes (1) are affected by the valu
of confidence levels, variances of the model and syste
response variables, and sample sizes, and (2) can be m
smaller by decreasing the confidence levels or increasi
the sample sizes. A tradeoff needs to be made amo
the sample sizes, confidence levels, and estimates of
length or sizes of the model range of accuracy, i.e., c.
s.c.i., or j.c.r. Tradeoff curves can be constructed to a
in the tradeoff analysis.

Details on the use of c.i., s.c.i., and j.c.r. for operation
validity, including a general methodology, are containe
in Balci and Sargent (1984b). A brief discussion on th
use of c.i. for model validation is also contained in Law
and Kelton (1991).

7.3 Hypothesis Tests

Hypothesis tests can be used in the comparison
means, variances, distributions, and time series of t
output variables of a model and a system for each s
of experimental conditions to determine if the model’
output behavior has an acceptable range of accuracy.
acceptable range of accuracy is the amount of accura
that is required of a model to be valid for its intende
purpose.

The first step in hypothesis testing is to state th
hypotheses to be tested:
H0: Model is valid for the acceptable range of accurac

under the set of experimental conditions.
H1: Model is invalid for the acceptable range of accurac

under the set of experimental conditions.
Two types of errors are possible in testing hypothese

The first, or type I error, is rejecting the validity of a valid
model and the second, or type II error, is accepting th
validity of an invalid model. The probability of a type
error I,α, is calledmodel builder’s risk, and the probability
of the type II error,β, is calledmodel user’s risk(Balci
and Sargent 1981). In model validation, the model use
risk is extremely important and must be kept small. Thu
both type I and type II errors must be carefully considere
when using hypothesis testing for model validation.

The amount of agreement between a model and
system can be measured by a validity measure,λ, which
is chosen such that the model accuracy or the amount
agreement between the model and the system decrease
the value of the validity measure increases. The accepta
range of accuracy can be used to determine an accepta
validity range,0 ≤ λ ≤ λ∗.

The probability of acceptance of a model being valid
Pa, can be examined as a function of the validity measu
by using an Operating Characteristic Curve (Johnson 199
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Figure 6: Operating Characteristic Curves

Figure 6 contains three different operating characterist
curves to illustrate how the sample size of observation
affectPa as a function ofλ. As can be seen, an inaccurate
model has a high probability of being accepted if a sma
sample size of observations is used, and an accurate mo
has a low probability of being accepted if a large sampl
size of observations is used.

The location and shape of the operating characterist
curves are a function of the statistical technique being use
the value ofα chosen forλ = 0, i.e., α∗, and the sample
size of observations. Once the operating characteris
curves are constructed, the intervals for the model use
risk β(λ) and the model builders riskα can be determined
for a givenλ∗ as follows:

α∗ ≤ model builder’s riskα ≤ (1 − β∗)
0 ≤ model user’s riskβ(λ) ≤ β∗.

Thus there is a direct relationship among the builder
risk, model user’s risk, acceptable validity range, and th
sample size of observations. A tradeoff among these mu
be made in using hypothesis tests in model validation.

Details of the methodology for using hypothesis test
in comparing the model’s and system’s output data fo
model validations are given in Balci and Sargent (1981
Examples of the application of this methodology in the
testing of output means for model validation are give
in Balci and Sargent (1982a, 1982b, 1983). Also, se
Banks et al. (1996).

8 DOCUMENTATION

Documentation on model verification and validation is
usually critical in convincing users of the “correctness
of a model and its results, and should be included in th
simulation model documentation. (For a general discussio
on documentation of computer-based models, see Ga
(1984).) Both detailed and summary documentatio
are desired. The detailed documentation should includ
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specifics on the tests, evaluations made, data, results,
The summary documentation should contain a separ
evaluation table for data validity, conceptual model validit
computer model verification, operational validity, and a
overall summary. See Table 2 for an example of a
evaluation table of conceptual model validity. (See Sarge
(1994, 1996b) for examples of two of the other evaluatio
tables.) The columns of the table are self-explanato
except for the last column, which refers to the confiden
the evaluators have in the results or conclusions, and t
is often expressed as low, medium, or high.

9 RECOMMENDED PROCEDURE

This author recommends that, as a minimum, the followin
steps be performed in model validation:

1. Have an agreement madeprior to developing the model
between (a) the model development team and (b) t
model sponsors and (if possible) the users, specifyi
the basic validation approach and a minimum s
of specific validation techniques to be used in th
validation process.

2. Specify the amount of accuracy required of the mode
output variables of interest for the model’s intende
application prior to starting the development of th
model or very early in the model development proces

3. Test, wherever possible, the assumptions and theo
underlying the model.

4. In each model iteration, perform at least face validi
on the conceptual model.

5. In each model iteration, at least explore the mode
behavior using the computerized model.

6. In at least the last model iteration, make compariso
if possible, between the model and system behav
(output) data forat least two sets of experimental
conditions.

7. Develop validation documentation for inclusion in th
simulation model documentation.

8. If the model is to be used over a period of time
develop a schedule for periodic review of the model
validity.

Models occasionally are developed to be used mo
than once. A procedure for reviewing the validity of thes
models over their life cycles needs to be developed,
specified by step 8. No general procedure can be giv
as each situation is different. For example, if no da
were available on the system when a model was initia
developed and validated, then revalidation of the mod
should take place prior to each usage of the model if n
data or system understanding has occurred since its
validation.
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Table 2: Evaluation Table for Conceptual Model Validity
Category/Item Technique(s) Justification for Reference to Result/ Confidence

Used Technique Used Supporting Report Conclusion In Result
• Theories • Face validity
• Assumptions • Historical
• Model • Accepted

representation approach
• Derived from

empirical data
• Theoretical

derivation

Strengths
Weaknesses

Overall evaluation for Overall Justification for Confidence
Computer Model Verification Conclusion Conclusion In Conclusion
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10 SUMMARY

Model verification and validation are critical in the
development of a simulation model. Unfortunately, the
is no set of specific tests that can easily be applied
determine the “correctness” of the model. Furthermore,
algorithm exists to determine what techniques or procedu
to use. Every new simulation project presents a new a
unique challenge.

There is considerable literature on verification an
validation. Articles given in the limited bibliography can
be used as a starting point for furthering your knowled
on model verification and validation. For a fairly recen
bibliography, see the following UHL on the WWW:
http://manta.cs.vt.edu/biblio/.

LIMITED BIBLIOGRAPHY

Anderson, H. A. and R. G. Sargent. 1974. An Investigati
into Scheduling for an Interactive Computer System
IBM Journal of Research and Development, 18, 2,
pp. 125–137.

Balci, O. 1989. How to Assess the Acceptability an
Credibility of Simulation Results,Proc. of the 1989
Winter Simulation Conf., pp. 62–71.

Balci, O. 1995. Principles and Techniques of Simulatio
Validation, Verification, and testing,Proc. of the 1995
Winter Simulation Conf., pp. 147–154.

Balci, O. and R. G. Sargent. 1981. A Methodology for Cos
Risk Analysis in the Statistical Validation of Simulation
Models, Comm. of the ACM, 24, 4, pp. 190–197.

Balci, O. and R. G. Sargent. 1982a. Validation of Multivar
ate Response Simulation Models by Using Hotelling
Two-SampleT 2s Test,Simulation, 39, 6, pp. 185–192.

Balci, O. and R. G. Sargent. 1982b. Some Examp
of Simulation Model Validation Using Hypothesis
Testing, Proc. of the 1982 Winter Simulation Conf.,
pp. 620–629.
129
to
o
es
d

e

n
,

-

s

Balci, O. and R. G. Sargent. 1983. Validation of Mul-
tivariate Response Trace-Driven Simulation Models,
Performance 83, ed. Agrawada and Tripathi, North
Holland, pp. 309–323.

Balci, O. and R. G. Sargent. 1984a. A Bibliography on the
Credibility Assessment and Validation of Simulation
and Mathematical Models,Simuletter, 15, 3, pp. 15–27.

Balci, O. and R. G. Sargent. 1984b. Validation of Simu-
lation Models via Simultaneous Confidence Intervals,
American Journal of Mathematical and Management
Science, 4, 3, pp. 375–406.

Banks, J., J. S. Carson II, and B. L. Nelson. 1996.
Discrete-Event System Simulation, 2nd Ed., Prentice-
Hall, Englewood Cliffs, N.J.

Banks, J., D. Gerstein, and S. P. Searles. 1988. Modeling
Processes, Validation, and Verification of Complex
Simulations: A Survey,Methodology and Validation,
Simulation Series, Vol. 19, No. 1, The Society for
Computer Simulation, pp. 13–18.

DOD Simulations: Improved Assessment Procedures Would
Increase the Credibility of Results. 1987. U. S. General
Accounting Office, PEMD-88-3.

Fairley, R. E. 1976. Dynamic Testing of Simulation Soft-
ware,Proc. of the 1976 Summer Computer Simulation
Conf., Washington, D.C., pp. 40–46.

Gass, S. I. 1977. A Procedure for Evaluation of Complex
Models,Proc. of the First International Conf. on Math.
Modeling, Univ. of MO, pp. 247–257.

Gass, S. I. 1983. Decision-Aiding Models: Validation,
Assessment, and Related Issues for Policy Analysis,
Operations Research, 31, 4, pp. 601–663.

Gass, S. I. 1984. Documenting a Computer-Based Model,
Interfaces, Vol. 14, No. 3, pp. 84–93.

Gass, S. I. and L. Joel. 1987. Concepts of Model
Confidence,Computers and Operations Research, 8,
4, pp. 341–346.

Gass, S. I. and B. W. Thompson. 1980. Guidelines for
Model Evaluation: An Abridged Version of the U.S.



Sargent

ph

g

f

p
e,

ry

an

S
d
a

-

s,

ve

nd

de
f.

d

ls,
of

d

-

-

ds

n

,

f

g
,

t

-
ty
s-
S

e
-
e

m-
n.
General Accounting Office Exposure Draft,Operations
Research, 28, 2, pp. 431–479.

Johnson, R. A. 1994.Miller and Freund’s Probability
and Statistics for Engineers, 5th Ed., Prentice-Hall,
Englewood Cliffs, N.J.

Kleijnen, J. P. C. 1987.Statistical Tools for Simulation
Practitioners, Marcel Dekker, New York.

Kleindorfer, G. B. and R. Ganeshan. 1993. The Philoso
of Science and Validation in Simulation,Proc. of 1993
Winter Simulation Conf., 50–57.

Knepell, P. L. and D. C. Arangno. 1993.Simulation
Validation: A Confidence Assessment Methodolo,
IEEE Computer Society Press.

Law, A. M. and W. D. Kelton. 1991.Simulation Modeling
and Analysis, 2nd Ed., McGraw-Hill.

Naylor, T. H. and J. M. Finger. 1967. Verification o
Computer Simulation Models,Management Science,
14, 2, pp. B92–B101.

Oren, T. 1981. Concepts and Criteria to Assess Acce
ability of Simulation Studies: A Frame of Referenc
Comm. of the ACM, 24, 4, pp. 180–189.

Rao, M. J. and R. G. Sargent. 1988. An adviso
System for Operational Validity,Artificial Intelligence
and Simulation: The Diversity of Applications, ed.
T. Hensen, Society for Computer Simulation, S
Diego, CA, pp. 245–2250.

Sargent, R. G. 1979. Validation of Simulation Models,Proc.
of the 1979 Winter Simulation Conf., San Diego, CA,
pp. 497–503.

Sargent, R. G. 1981. An Assessment Procedure and a
of Criteria for Use in the Evaluation of Computerize
Models and Computer-Based Modelling Tools, Fin
Technical Report RADC-TR-80-409.

Sargent, R. G. 1982. Verification and Validation of Sim
ulation Models, Chapter IX inProgress in Modelling
and Simulation, ed. F. E. Cellier, Academic Pres
London, pp. 159–169.

Sargent, R. G. 1984. Simulation Model Validation,Simula-
tion and Model-Based Methodologies: An Integrati
View, ed. Oren, et al., Springer-Verlag.

Sargent, R. G. 1985. An Expository on Verification a
Validation of Simulation Models,Proc. of the 1985
Winter Simulation Conf., pp. 15-22.

Sargent, R. G. 1986. The Use of Graphic Models in Mo
Validation,Proc. of the 1986 Winter Simulation Con,
Washington, D.C., pp. 237–241.

Sargent, R. G. 1988. A Tutorial on Validation an
Verification of Simulation Models,Proc. of 1988
Winter Simulation Conf., pp. 33–39.

Sargent, R. G. 1990. Validation of Mathematical Mode
Proc. of Geoval-90: Symposium on Validation
Geosphere Flow and Transport Models, Stockholm,
Sweden, pp. 571–579.
130
y

y

t-

et

l

l

Sargent, R. G. 1991. Simulation Model Verification an
Validation, Proc. of 1991 Winter Simulation Conf.,
Phoenix, AZ, pp. 37–47.

Sargent, R. G. 1992. Validation and Verification of Simu
lation Models,Proc. of 1992 Winter Simulation Conf.,
Arlington, VA, pp. 104–114.

Sargent, R. G. 1994. Verification and Validation of Simu
lation Models,Proc. of 1994 Winter Simulation Conf.,
Lake Buena Vista, FL, pp. 77–87.

Sargent, R. G. 1996a. Some Subjective Validation Metho
Using Graphical Displays of Data,Proc. of 1996 Winter
Simulation Conf., pp. 345–351.

Sargent, R. G. 1996b. Verifying and Validating Simulatio
Models, Proc. of 1996 Winter Simulation Conf., pp.
55–64.

Schlesinger, et al. 1979. Terminology for Model Credibility
Simulation, 32, 3„ pp. 103–104.

Schruben, L. W. 1980. Establishing the Credibility o
Simulations,Simulation, 34, 3, pp. 101–105.

Shannon, R. E. 1975.Systems Simulation: The Art and
the Science, Prentice-Hall.

Whitner, R. B. and O. Balci. 1989. Guidelines for Selectin
and Using Simulation Model Verification Techniques
Proc. of 1989 Winter Simulation Conf., Washington,
D.C., pp. 559–568.

Wood, D. O. 1986. MIT Model Analysis Program: Wha
We Have Learned About Policy Model Review,Proc.
of the 1986 Winter Simulation Conf., Washington,
D.C., pp. 248–252.

Zeigler, B. P. 1976.Theory of Modelling and Simulation,
John Wiley and Sons, Inc., New York.

AUTHOR BIOGRAPHY

ROBERT G. SARGENT is a professor at Syracuse Uni
versity. He received his education at The Universi
of Michigan. Professor Sargent has served his profe
sion in numerous ways and has been awarded the TIM
(INFORMS) College on Simulation Distinguished Servic
Award for longstanding exceptional service to the sim
ulation community. His research interests include th
methodology areas of modeling and discrete event si
ulation, model validation, and performance evaluatio
Professor Sargent is listed inWho’s Who in America.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search
	Search Results
	Print

