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ABSTRACT

A simulation model is composed of inputs and logic;

There are a number of software packages to support
simple input modeling, including ExpertFit, the Arena
Input Processor, Stat::Fit and BestFit. Unfortunately,

the inputs represent the uncertainty or randomness in the simple models often fail for one of the following reasons:

system, while the logic determines how the system reacts
to the uncertain elements. Simple input models, consisting
of independent and identically distributed sequences of
random variates from standard probability distributions,

are included in every commercial simulation language.

Software to fit these distributions to data is also available.
In this tutorial we describe input models that are useful

when the input modeling problem is more complex.

1 INTRODUCTION

Input modelsare used to represent the uncertainty or
randomness in a simulationlnput modeling—choosing
the representation—is often characterized as “picking a
probability distribution.” And it may be that simple if the
following approximations are reasonable:

[ ]
of independent random variables having a common
(identical) distribution; in other words, a sequence of
i.i.d. random variables.

The common distribution is one of the standard fam-
ilies that are included in nearly all commercial simu-
lation languages: beta, empirical, Erlang, exponential,
gamma, lognormal, normal, Poisson, triangular, uni-
form or Weibull.

Data are available from which to select and fit the
distribution using methods such as maximum likelihood
or moment matching.

A standard distribution provides a good fit to the data,
as verified by a visual inspection or a goodness-of-fit
test.

105

e The limited shapes represented by the standard families
of distributions are not flexible enough to represent
some characteristics of the observed data or some

known aspects of the process.

The input process is not inherently independent, either
in time sequence or with respect to other input
processes in the simulation.

e The input process changes over time.

e No data are available from which to select a family

or assess the fit.

This tutorial describes models and techniques that are
useful when simple models fail. We emphasize recent
advances for which there exists some software support, even
if the software is research software rather than commercial

The input process can be represented as a sequencespftware. The related issue of random-variate generation

is also discussed.

The paper is organized according to univariate input
models (Section 3), arrival-counting processes (Section 4)
and multivariate input models (Section 5). Section 2
defines notation that is used throughout the paper, and
Section 6 gives directions for obtaining the software.

2 NOTATION

The generic univariate input random variable is denoted
by X, with cdf Fx, and density functionfx or mass
function px. The mean of a random variable is denoted
by p, variance byo?, and correlations between random
variables byp. Subscripts are added as needed.

A sequence of i.i.d. inputs i¥;,7 =1,2,..., while a
time-series input process i§X;;t = 0,1,2,...}. The
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term “time series” means that the random variables
may be dependent in sequence.
X1,X5,...,X,, then the order statistics (sorted values)
are denotedX ;) < Xg) < -+ < Xy

When the inputs are random vectors, then boldface
type is used; e.g.,

X
X2
X, :

Xik

is ak x 1 random vector with joint cdffx.

Greek letters, such a8,6 and «, denote parameters
of input models. We use™ to indicate an estimate, or
~ if the estimate is an average; e.ﬁ.,and X.

3 UNIVARIATE INPUT MODELS

In this section we consider alternative input models for
univariate distributions. These models are useful for
representing i.i.d. sequencek;,:i = 1,2,..., and are

most often needed when the process data has unusual
characteristics (e.g., more than one mode), or when we have
no data and want to construct a distribution that has certain
properties (e.g., moments or percentiles). The input models

presented here range from a flexible family (Section 3.1), to
a method for modifying any standard family (Section 3.2),
to a method for constructing a distribution with nearly any
desired properties (Section 3.3).

3.1 Johnson Family

In the case of modeling data with an unknown distribution,
an alternative to using a standard family of distributions is

to use a more flexible system of distributions, such as the
Johnson translation system (Johnson 1949). One method foran MS-DOS executable.

fitting target distributions from Johnson'’s translation system
is via least-squares estimation, which is implemented in
a software program calleBITTR1 developed by Swain,
Venkatraman and Wilson (1988).
Deutsch (1977) for another flexible family that is easy to
use in simulation.

The Johnson translation system is defined by the cdf

F(z) = @ {y+og[(z —&/A}, —o0 <z <00 (1)

where ® is the standard normal cdfy and § are shape
parameters¢ is the location parameter) is the scale
parameter, ang is one of the following transformations:

log(z) for the lognormal family
) sinh™*(2) for the unbounded family
9(x) = log[z/(1 —z)] for the bounded family
x for the normal family.
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See Schmeiser and

The appropriate transformation is chosen by estimat-

If we have a sampleing the skewness and kurtosis from a random sample

X1, X,,..., X, and finding the unique Johnson cdf that
matches the pair.

The basis for the least-squares fitting procedure
implemented inFITTR1 is to minimize a quadratic
form of the differences between each parametrically
approximated uniformized order statistid®;, and its
corresponding expected valug;, where R; = F(X;))
and n; = j/(n+1). The E[R;] = j/(n+1) if F is
the true distribution ofX. The transformed variate;
can be written asR; = n; + ¢;, where the{c;} are
translated uniform order statistics with mean zero. Then
for &’ = (e1,e9,...,&,) and somen x n weight matrix
W, the least squares estimation problem is

min €' We
7,6,€,A
subject to
6>0
>0 unbounded family

A > X,y — & bounded family

=1 lognormal, normal families
¢ < X(1) lognormal, bounded families
=0 normal family

Swain, Venkatraman and Wilson (1988) investigate various
choices for the weight matrix, including the identity
matrix (which leads to ordinary least squares), a diagonal
matrix with ith diagonal element/Var[e;] (which leads
to diagonally weighted least squares), and a matrix that is
the inverse of the matrix with, jth elementCovle;, ;]
(which leads to weighted least squares). They conclude
that diagonally weighted least squares is a good overall
choice.

The FITTR1 software is available in Fortran or as
In addition to the various least-
squares fitsFITTR1 will estimate parameters via moment
matching, percentile matching, or minimuiy, or L.
norm. FITTR1 does not produce graphics, but the user
can export data to generate plots in standard graphics
programs.

Random-variate generation can be accomplished by
transforming a standard-normal variate (generated in
any way) intoX = ¢+ A\g~[(Z — v)/é], where

e? for the lognormal family
(e* —e~*)/2 for the unbounded family
1/(1+e %) for the bounded family

a for the normal family.

g Ha) =

For situations when no data are available, DeBrota
et al. (1989) describ&/ISIFIT software for matching
a Johnson bounded distribution to subjective information.
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The Johnson bounded distribution provides a more flexible
alternative to the uniform, triangular and beta distributions
often used to represent subjective information about a
random quantity. The user providé4SIFIT with an
upper and lower bound, plus any one of the following:

mode and width of central 95% of distribution
mode and standard deviation

mode and percentile (fractile)

mode and median (unless mode = median)
mode and mean (unless mode = mean)
median and width

median and mean (unless median = mean)
median and standard deviation

two percentiles (one of which may be the median)
mean and width

mean and standard deviation

mean and percentile

percentile and width

percentile and standard deviation

two beta parameters

The implied Johnson bounded distribution is then displayed
graphically, and the user may change its shape in a variety of
ways until an acceptable model is attained. WHSIFIT
software is available as an MS-DOS executable.

3.2 Inverse Distribution with a Polynomial Filter

To generate random variates from an unknown continuous
distribution, the inverse cdf, fitted to a sample of data, is
often used; i.e.X = Fy'(U), whereU ~ U(0,1) and

Fx is the chosen distribution. The philosophy behind
“inverse distribution with a polynomial filter” (IDPF) is

to improve the fit by modifying the transformation to
X = Fx'(q(U)), whereq is a polynomial inU.

Let X;,i =1,2,....,n be an i.i.d. sample. The typical
first step in input modeling is to decide what general
family—such as gamma, exponential or Johnson—provides
the shape that best matches the empirical distribution. The
IDPF method makes no assumption about the initial input
model F'x, called the reference distribution, except that
it has a continuous density function. Once a reference
distribution is selected, the second step is to establish the
set of parameters that best fit the general family to the
data. The third step is to determine the quality of the fit.
If visual inspection or a goodness-of-fit test show either
a local or general problem with the fit, then IDPF can be
applied.

The IDPF procedure, as a fourth step, creates a
modified F)}l that improves the fit compared to the
reference distribution. IDPF was developed by Avramidis
and Wilson (1994) and is an update to a method originally
proposed by Hora (1983). The method is to replate
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with an rth order polynomialg(U),
q(U) = b U + boU? 4 -+ + b, U".

The {b;;i = 1,2,...,r} are chosen in such a way that
Fx'(q(U)) remains a legitimate inverse cdf, which is
equivalent to the statement th@tl/) is strictly increasing
in U with the boundary conditiong(0) = 0 andg(1) = 1.
Estimation of theb, for the IDPF procedure is
formulated as a least squares estimation problem. The
ordinary-least-squares distance is the distance between the
empirical inverse cdf—represented by the order statistics of
the sample—and the modified inverse reference distribution.

Specifically,
I

€ =, min > {Xu) - Fy! [q (
T =1

Avramidis and Wilson (1994) also develop a weighted-least-
squares formulation that compensates for the differences
in variability of the order statistics.

The IDPF software is available in FORTRAN or
MS-DOS executable. The software assumes the reference
distribution is from the Johnson family, and uses the
techniques described in Section 3.1 to obtain the initial
fit. The key output consists of the four parameters of the
reference distribution from the Johnson family, followed
by the set ofb;s that define therth-order polynomial.
These two sets of parameters provide all that is necessary
to generate variates. Variate generation is accomplished
in the obvious way by first generating ~ U(0,1), then
returning X = Fi' (q(U)).

1—0.5

3.3 Univariate Bezier Distributions

Univariate Bezier distributions provide a flexible alternative
to standard distributions (Wagner and Wilson 1996a). The
univariate Bezier distribution is a special case of a spline
curve and is constructed by fitting a curve to a specified
number of points called control points. Lpt = (z;, 2;)’
be theith control point fori = 0,1,2,...,n. The control
points are not data points; instead, they act as “anchors”
for the Bézier cdf and can be moved so as to alter the
shape of the distribution. Typically, theéBier cdf is a
continuous distribution. The &ier cdf interpolates the
first and last control points exactly (and is thus a bounded
distribution) but might only pass in close proximity to
control points1,2,...,n — 1.

A Beézier distribution withn + 1 control points is
defined as

x(t)

W*(mmm

)gmwm
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for t € [0,1], whereB,, ;(t) is the Bernstein polynomial

{ (M1 —t)t, for t € [0,1]

By, (t) = X
0, otherwise.

)

Although the Bernstein polynomial may initially seem
complex, itis helpful to think of it in terms of the probability
mass function (pmf) of a binomial random variable. For a
binomial random variabl&”, the probability ofi successes
in n trials is

Pr{Y =i} = (?)pi(l )"

for i =0,1,...,n, wherep is the probability of success.
The parametep is fixed, and probability statements are
made about the random variakbie for different values of
i. The Bernstein polynomial differs from the pmf of a
binomial random variable in that it fixesand varieg (the
continuous analog op) within the interval[0,1]. Thus,
for ¢ equal top, the value of the Bernstein polynomial
is equal to the value of the pmf of a binomial random
variable evaluated ai

At any value oft in the interval [0, 1], the value of
the Bezier distribution is simply a weighted average of
the control points. To observe this, notice that thezigr
distribution can be written as

o= ( Pty ) -3 <?>ti<1 BRANY

=0

for ¢ € [0,1]. For any fixed value oft the sum of the
weights isl.

PrIME is a software tool used to construct univariate
Bézier distributions with or without data. Itis an interactive,
graphical software program that runs on a PC under
Windows.

PRrRIME’'S main workspace is a window displaying the
X and Fx coordinate axes along with theéBier cdf.
The initial starting point forPrIME is a cdf consisting of
six control points arranged in a straight line. The shape
of the distribution is changed by repositioning the control
points within the window. Adjustments to the position of a
control point are made by clicking and dragging the point
to a new location on the screen. Control points can be

both added and deleted. As control points are repositioned,

added, or deleted, the shape of thezkr distribution is
updated. FurthermorePrIME has the ability to detect

as adjusting the cdf. Because the total area under the
pdf must remain equal td, adjusting one control point
simultaneously adjusts both adjacent control points (unless
one of the adjacent control points is the last control point)
in order to satisfy this constraint.

Another useful feature oPRIME is that it allows a
comparison between the first four moments of theziér
distribution and an empirical data set. In the absence of
data, this comparison is useful for constructing an input
model having any first four moment®RIME also allows
the user to insure that theéBier distribution has certain
fixed percentiles.

In addition to allowing the user to construct a cdf
interactively, PRIME has the ability to apply standard
statistical estimation procedures toéBer distributions.
Specifically, maximum likelihood, moment matching, per-
centile matching, least squares; norm and L., nhorm
estimation can be accessed when data has been imported.
PrIME will also determine the number of control points
to use by sequentially evaluating the impact on fit of an
additional control point via a likelihood ratio test (Wagner
and Wilson 1996b).

Bézier random-variates are generated via the inverse
transform method. Given a random numlér U(0, 1),

a search procedure is implemented to find the associated
value of the parameter such thatFx (z(t)) = U. Once
t is determined X = x(t).

4 ARRIVAL-COUNTING PROCESSES

Arrival-counting processes are among the most important
of all input models because simulations of industrial and
service systems are typically driven by the arrivals of
customers, orders, materials, information, etc. Renewal
arrival-counting processes, in which the times between
arrivals are i.i.d. random variables, are a standard feature of
commercial simulation languages. A marginal distribution
that is often chosen is the exponential distribution with
mean1/)\, which implies that the renewal arrival process
is a Poisson arrival process with constant arrival rate
arrivals per unit time.

In many practical situations there is need for an
arrival process whose rate is a function of timét). The
nonhomogeneous Poisson process (NHPP) is a well-known
generalization of the Poisson process that allows a time-
dependent arrival rate. However, fitting the functif) to

infeasible cdfs (i.e., ones that are not nondecreasing) and data is a very difficult problem. Lee, Wilson, and Crawford

highlights an invalid distribution in red.

PriME also allows the user to view and manipulate
the probability density function. Just like the cdf, the pdf
is updated as the control points are moved. Although it
is possible to manipulate the pdf, it is not as intuitive
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(1991) consider fitting an NHPP with an exponential rate
function containing a polynomial component (for long term
trend) and a trigopnometric component (for cyclic behavior).
Kuhl, Wilson and Johnson (1997) extended these ideas to
allow multiple periodicities.



Input Modeling Tools for Complex Problems

Let {N(¢) : t > 0} be a nonnegative integer valued

stochastic process representing the cumulative number of which is written to the terminal.

arrivals up to time. Consider a sequence ofarrivals for
this process at timeg < t5 < --- < t,, over a fixed time
interval (0,.5]. A reasonable starting point for modeling
such a process would be an NHPP with a rate function,
A(t), that could capture any cyclic or long term trends in
the data. Kuhl, Wilson and Johnson (1997) consider the
rate function

} - @

The vector,©, of unknown parameters consists qaf+ 1
coefficients for the polynomial component, and the
amplitudes (i), frequencies () and phase shifts¢f)
for the trigonometric component. For ease of exposition,
we focus on the casp =1 cyclic component.

Using the properties of an NHPP gives the following
log-likelihood function of©® in the special case = 1:

m p

Z a;tt + Z B sin(wit + ¢r)

=0 k=1

A(t) = exp {

m

L(©) = Z%Ti +p

=0

n s
i ; - A(z)d
1 sin(wt; + ¢) /0 (2)dz

Jj=

where T;, = Z;;lté». Notice that the degreen of

the polynomial component is also unknown. Sinee
must be a nonnegative integer, it is difficult to determine
via maximum likelihood. Therefore, Lee, Wilson and
Crawford (1991) recommend that estimation 6f be
conditioned on a fixed value ofi, and the final value of

m be determined by a likelihood ratio test. Differentiating
the log-likelihood function with respect to each unknown
parameter individually results in a system af + 4
nonlinear equations which can be solved numerically. See
Johnson, Lee and Wilson (1994a) for details on parameter
estimation.

Johnson, Lee, and Wilson (1994b) describe two soft-
ware programs to estimate parameters for, and simulate,
an NHPP with rate function (2) in the special case of
p = 1 cyclic component. The progradlPPMLEcomputes
maximum-likelihood estimates for the rate function param-
eters given a set of arrival epochs. The program requires
additional input from the user regarding the length of the
observation interval, number of arrivals, maximum degree
of the polynomial, significance level for the likelihood
ratio test to selectn, and other items concerning the
trigonometric component. The output provides estimated
values for all parameters.

The programNPPSIM uses rate function parameters
(such as estimates froldPPMLI to simulate arrivals by
the method of thinning with a piecewise linear majorizing
function. Inputs required biNPPSIMare the rate function
parameters and the length of the observation interval. The
output of the program is a series of arrival epochs written
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to a file, and the piecewise linear majorizing function
This rate function is
displayed with an upper limit, slope, and intercept for
each interval. Both of the software programs are written
in FORTRAN 77. For the casg > 1, Kuhl, Wilson and
Johnson (1997) have developadp3mle and mp3sim,
extensions oNPPMLEand NPPSIM that allow multiple
periodicities.

5 MULTIVARIATE INPUT MODELS

In this section we consider input models for dependent
random variables, either random vectors or time-series
processes. Standard models for these two cases are the
multivariate normal distribution (denoted MVN) for random
vectors, and the Gaussian autoregressive grdamecess
(denoted ARg)) for time-series input. The univariate
marginal distribution in both cases is normal, limiting
the usefulness of these models in simulation applications.
Nevertheless, since many alternative input models are based
on the MVN or AR{p) models, we review each of them
briefly.

The standard multivariate normal distribution defines a
k x 1 random vectoZ with mean vectop. = (0,0, ...,0)’
and correlation matrix

1 p12 Pk

pa1 1 P2k
Y= ) )
Pkl Pk2 1

such that theith elementZ; is distributedN(0,1) and
pij = Corr[Z;, Z;]. The parameterg. and X uniquely
specify a multivariate normal distribution. For multivariate
vectors with other marginal distributions, however, this
is not enough information to determine a unique joint
distribution.

The standard ARY) process is a time serigsZ;; t =
0,1,2,...} defined by the recursion

y4
Zy = Z apZi_p + € 3)
h=1

where {¢,} is a sequence of i.i.dN(0,02) random vari-
ables. Letpz(h) = Corr[Z, Z141], the autocorrelation
at lag h. If this process is appropriately initialized, the
parametersyy, o, . . ., oy, Satisfy certain conditions, and
02 =1-%"_anpz(h), then eachZ, is marginally
N(0,1) with autocorrelations that are a known function
of au, 9,..., . Similar to the case of random vectors,
alternative time-series input models with other marginal
distributions are not uniquely determined by their autocor-
relation structure.
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5.1 Time-Series Input Processes

The goal is to construct a stationary time ser{é§;;¢t =

0,1,2,...} with given marginal distributior¥x and given
first p autocorrelationspx (h),h = 1,2,...,p. There are
two basic approaches:

5.2 Random Vectors

A number of methods have been proposed for representing
and generating random vectors with specific distributions.
See Devroye (1986) and Johnson (1987) for general
references. In addition, multivariate extensions to the
Johnson family have been developed (Johnson 1987,

1. Construct such a process using properties specific to Chapter 5, Stanfield, et al. 1996), and a bivariaéziBr

the particular marginal distribution of interest.

2. Construct a procesd/;;t =0,1,2,...} with U(0,1)

marginals and whose autocorrelations are easily con-

trolled. Then form the input process via the transfor-
mation X; = Fy ' (Uy).

distribution has been defined and implemented®kiME
(Wagner and Wilson 1995, 1996b).

A general method for obtaining random vectors with
arbitrary marginal distributions and correlation matrix is
described by Cario and Nelson (1997). The central idea
is to transform a standard multivariate normal vector into
the desired random vector. These vectors are referred to

Because of its generality, we only discuss the second as having a NORTA (NORmal To Anything) distribution.

approach here. In addition to the method we describe,

see Melamed, Hill and Goldsman (1992), Song, Hsiao
and Chen (1996) and Willemain and Desautels (1993) for
alternatives.

AutoRegressive To Anything (ARTA) processes define
a U(0,1) time series via the transformatidi, = ®(Z;),
where{Z;;t =0,1,2,...} is a stationary, standard AR(
process and® is the standard normal cdf. Cario and
Nelson (1996) have shown that the lagautocorrelation
of the time-series input process defined by

X, = F5'(U) = Fx' [@(2,)) (4)

is a continuous, nondecreasing function of the lag-
h autocorrelation of theZ;, process. Therefore, the
problem of fixing the firstp autocorrelations of the
X, process decomposes infoindependent problems of
determining the valuey;(h) = Corr[Z;, Z:41] that maps
into the desired autocorrelatigny (h) = Corr[ X, Xi4p],
for h = 1,2,...,p. Since px(h) is a continuous,
nondecreasing function @fz (h), these problems are easily
solved numerically (Cario and Nelson 1998). Variate

Specifically, let

Fx [9(Z1)]

F ) [®(22)]
X —

F, [®(Z1)]

where Z = (71, Z,,...,7Z) is a standard MVN vector
with correlation matrix3, and Fx,, F'x,, ..., Fx, are the
desired marginal distributions. The problem then becomes
finding aX that implies the desired correlation matrix for
X. The results of Cario and Nelson (1997) suggest that
this is not a difficult numerical problem. The procedure
for finding ¥ is an extension of the ARTA method for
time-series input.

The NORTA method provides a general-purpose ap-
proach for modeling and generating dependent input pro-
cesses. The generality, however, comes at the cost of
computational efficiency. The fitting process is time con-
suming, although this expense is incurred only once for

generation is accomplished by generating a stationary, each input model. And even though the marginal time

standard ARf) processZ; by any method, then applying
equation (4).

ARTAFACTYARTA Fitting Algorithm for Construct-
ing Time Series) is software available in FORTRAN to
fit ARTA processes for nine marginal distributions (nor-
mal, student’s, continuous uniform, exponential, gamma,

for generating each NORTA variate can be longer than
the fastest available method for a particular distribution
(as there is a need to evaluate the composite function
F'[®(Z)]), the NORTA method will yield acceptable

results in system simulation environments where event
processing and animation account for large fraction of the

Weibull, lognormal, Johnson unbounded, Johnson bounded, execution time.

empirical cdf and discrete distribution with finite support)
and up to5 autocorrelations. ARTAFACTSwill also

estimate the autocorrelation function of a data set. As

input the user must provide the parameters of the de-

sired marginal distribution and the autocorrelations to be
matched. ARTAGENARTA GENeration algorithm) takes
the output of ARTAFACTSand generates a stationary
ARTA process as input to a simulation.
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NORTA has been are implemented by Chen and Jeng
(1998) in theirRandom Vector software package. The
software, which is written in C, generates a given number of
k-dimensional random vectors having a desired correlation
structure and given marginals. The inputs to the program
include the initial random seed, desired number of vectors
to be generated, the dimension of the vectors, marginals
for each vector component, and the upper triangular form
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